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Abstract. Nowadays, users are permanently prompted to create web
accounts when they buy online goods. This collected data gives an in-
sight on the user, sometimes beyond the application scope. Inference
attacks on databases represent an issue for data controllers when mali-
cious processors attempt to guess sensitive data - to which they haven’t
access - by inferring them using legally accessed data. Several inference
attack detection systems address this problem in case of a single targeted
database. But the issue remains unsolved in case of several databases to
which the same users might have submitted their data. In this paper, we
propose a global model and its associated graph representation named
Global Instance Graph (GIG) representing the probabilistic and semantic
dependencies inside each database, enriched by the dependencies between
the different databases. The graph is obtained using privacy-preserving
record linkage techniques and serves as a knowledge input to the infer-
ence attack detection system. We validate the GIG creation feasibility
thanks to a proof of concept. Despite the quadratic creation time, the
performances when data is queried from the databases are not affected
since the GIG creation is performed offline.

Keywords: Inference detection · Multi-database attacks · Data pri-
vacy · Privacy-preserving record linkage

1 Introduction

We are assisting an era with almost unlimited data storage capacities thanks to
the constant increase in data centers’ offers. As a consequence, online applica-
tions do not hesitate to store huge amounts of raw data concerning their users’
habits and behaviors. Moreover, users are permanently prompted to disclose
more information including their personal data. But sometimes, this collected
data gives an insight on the user beyond the application scope. This could benefit
to external stakeholders with the objective to learn more about the user, which
could harm the user’s privacy. New regulations are now emerging to protect
the user privacy, among them the General Data Protection Regulation (GDPR)
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which is intended to regulate the way EU citizens’ personal data should be con-
sumed (according to user’s consent) by data controllers and data processors.
Moreover the GDPR is not only a theoretic regulation: Ongoing research works
on concrete implementations, e.g. [6]. In fact, user’s privacy can be disclosed via
inference attacks where malicious processors and controllers exploit the possi-
bility to indirectly infer sensitive data to which they haven’t access thanks to
legally accessed data. This problem can be locally solved using inference systems
proposed in the literature [1–3, 7, 10]. However these solutions are not suitable
in case of inference attempts where several databases are implied.

Let us consider the following scenario in which a user u registers on two online
applications: Train to buy train tickets and Flight for flight tickets. For each
application, u gives a set of her personal data to validate the registration process.
At this stage, Train and Flight have the ability to protect the user data thanks
to: the implemented access control policies and a locally implemented inference
attack detection system. Moreover each application is allowed to share with other
controllers and processors, with the consent of u, a part of her collected personal
data. In this scenario, we could imagine a common processor Service which
gather and process travel information coming from several tour operators (e.g.,
Flight and Train). In this case, Service has legal access to subsets of personal
data coming from both operators (among them u’s personal data subset Fu

and Tu from Flight and Train respectively). This creates possible inference
opportunities: a part of Fu could be exploited by Service in order to reveal
u’s sensitive personal data in Tu while bypassing the local inference detection
system of Train. This scenario highlights the exploitation of inference channels
targeting multiple databases through legal access by the same entity. Inference
attacks exploiting these inference channels rely on the distributed dependency
strategy [12]. We will refer to them in the remainder of the paper as Multiple
Database Inference Attack (MDIA).

Inference attacks happen either in a non-interactive setting (e.g. dump from
a database, log files, etc.) or in an interactive setting (e.g. by means of Web
browser, localization systems, database queries, and so on). In this paper we
focus on the later and thus we give a brief description of the related proposals
in the scientific literature. Staddon [10] presents a solution where keys are given
to the users in order to generate the required tokens to query the objects in an
inference channel and thus prevent its full exploitation. The solution presented
by Biskup [1] relies on dynamically adapting policies preventing malicious users
to fully exploit inference channels in a logic-oriented information system. The
system presented by Brodsky et al. [2] models the functional dependencies of a
database to compute the disclosed knowledge each time a query is issued. Then,
based on the query log of the issuing user, the system either denies the answer or
returns a fake one. Guarnieri et al. [7] propose a system where one module acts as
a policy decision point whereas the other checks inference attempts. The latter
relies on the security policy defining the inference threshold of the sensitive
information and the attacker model describing the user’s a priori knowledge.
Then, based on the inference detection results, the first module decides to deliver
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or not the query answer. Chen et al. [3] propose to tackle inference attacks by
building first a Semantic Inference Model (SIM) representing the probability of
attributes to influence others. Then based on the SIM dependencies, a Semantic
Instance Graph (SIG) reflecting these dependencies at the instances’ level in the
database is generated and enrolled to detect the inference attacks. All these works
present solutions capable of preventing inference attacks on single databases, but
they are not adapted for inference attacks when multiple databases are involved.

In this paper we propose an extension of the work of Chen et al. [3] to
address the MDIA issue. Our proposal consists in building a Global Instance
Graph (GIG) by discovering similarities between instances in the SIGs from the
concerned databases in order to model inference channels that could be exploited
by MDIAs. Moreover, to avoid honest-but-curious behavior, the SIGs are first
anonymised. The faced challenge is to discover these similarities on anonymised
data. This paper presents the following contributions: (i) The GIG creation
algorithm based on a set of SIGs, using Bloom Filters [8] to discover instance
similarities while preserving the users’ data privacy. (ii) An architecture that
manages the MDIAs for a set of implied databases.

2 Inference detection in case of a single database

In this section we briefly review the approach of Chen which is based on the cre-
ation of a Semantic Inference Model (SIM). For more details please refer to the
original paper. The purpose of the SIM is to represent the inference channels of
a database at schema level. It extends the Probabilistic Relational Model (PRM)
which is based on Bayesian networks. According to [5], the PRM “[...] allows the
properties of an object to depend probabilistically both on other properties of
that object and on properties of related objects”. It is made up of two parts: a
skeleton and the parameter. The skeleton represents the relations between each
attribute and his parents which have a direct influence on it. The parameter
is the Conditional Probability Distribution (CPD) between an attribute and his
parents. The CPD is computed for a given database and thus represents the
distribution of the data at the time of computation. The SIM is composed of
three types of links: (i) dependency links: which are the dependencies related
to the skeleton of the PRM (ii) schema links: which connect primary keys and
foreign keys in the databases tables and (iii) semantic links: which represent de-
pendencies that can be provided by an operator with domain specific knowledge
or by analyzing queries issued to the database. The SIM is instantiated with the
instances of the database into a Semantic Instance Graph (SIG) in order to rep-
resent the dependencies at the instance-level. Thus, the nodes in a SIG represent
the attribute values of a specific instance in a database. To protect data against
inference attacks, sensitive attributes are identified and their inference thresh-
olds assigned. An inference attack is detected once the percentage of confidence
about the value of a sensitive attribute exceeds his corresponding threshold. A
Bayesian network is instantiated from the SIG for each user in order to keep
track of the knowledge she has about the database.
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Fig. 1: Workflow of the Chen et al. solution.

The following example, extracted from [3], illustrates the overall workflow
of their architecture and the inference attacks detection process. The white
steps (i.e., ¬ to ¯) in Figure 1 are made once offline. They represent the
SIM and the SIG computing. Whereas the black steps (i.e., º to ¼) are ex-
ecuted whenever a query is submitted to the system. The example represents
a chunk of a SIG related to three instances in the database: LAX, R1 and
C5. For clarity, each attribute instance in the SIG is prefixed with the name
of the instance to which it belongs. Thus, multiple occurrences of the attribute
RUNWAY_WIDTH could be related to different instances. The example as-
sumes that the attribute TAKEOFF_LANDING_CAPACITY (TLC) is de-
fined as a sensitive attribute and his inference threshold is set to 70%. If a user
knows that the instance C5 is able to land on R1 from LAX and that the in-
stance attributes C5_MIN_LAND_DIST and C5_MIN_RUNWAY_WIDTH
have long and wide values respectively. Then the user can infer the value for
TLC with a confidence of 58.3%. If the same user succeeds to obtain the value
of the instance attribute LAX_PARKING_SQ_FT (which is large), then she
can infer the value ’large’ for the instance attribute TLC with a confidence
of 71.5% which is above the inference threshold of TLC. Therefore, answering
the last query will lead to an inference attack. This solution works well when
the queries target the same protected database. However it does not prevent
malicious users to query the data required to infer sensitive values both from
the protected database and from an external source. This latter scenario is not
detected by such a system.

3 Extension to a multi-database protection: A step ahead

Multi Database Inference Attacks (MDIA) occur due to the fact that personal
information is scattered among several databases and sensitive data can then
be inferred using the knowledge obtained from each database separately. Thus,
traditional inference detection systems like [1–3,7,10] are not able to catch such
attacks since they only model the inference channels present in a single database.
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To tackle this issue, our approach proposes to aggregate data controllers’ SIGs
into one global model called the Global Instance Graph (GIG) to be able to
represent both inference channels within each database and those implied by
the access to several databases. Solving the MDIA issue is not an easy task, we
make the following set of hypothesis that remain realistic: (i) We assume that
each data controller interested in protecting its users’ privacy subscribes to a
provider that proposes such a solution and collaborates with it. (ii) The data
controllers do not send in clear user data to the inference detection module.
(iii) The proposed inference detection module is centralized in order to reuse
the inference detection algorithm of Chen by replacing the input SIGs with the
GIG. (iv) The inference detection module does not collude with any of the data
controllers that subscribe to use its service, but we assume that is could have
an honest-but-curious behavior. (v) The databases managed by data controllers
are not subject to updates. (vi) The data processors do not collude.

To compute the GIG, one must identify similar instances present in differ-
ent SIGs. Instances are said to be similar if they represent the same real world
entity. For example the instances: (Alice, Thing, 1992-07-12 ) and (Alice Thing,
12/7/1992 ) have different formats but represent the same real world entity. As
a consequence, the GIG must represent those relations of similarity by adding
a new kind of links, the similarity links, between nodes of similar instances in
different SIGs. Adding such links allows to model the propagation of a user
knowledge beyond the SIG of the queried database to the other SIGs. In other
words, if in the GIG, the nodes n1 and n2 from different SIGs are both linked
with a similarity link, then if a user queries the value of n1 her knowledge of
this attribute value is set to 100% thus the probabilistic propagation will set the
percentage of knowledge of the n2 value to 100%. Therefore, the main challenge
of computing the similarity links is related to the data format heterogeneity
among databases. As demonstrated in [8] Bloom Filter (BF) is the most com-
monly used structure when calculating similarity scores (e.g., based on the Dice
coefficient). The second challenge to respect hypothesis (ii) is to anonymize data
in the SIG before sending it to the inference detection module. To keep the sim-
ilarity calculation possible, the anonymization function used on each SIG must
be the same. The BF must also preserve the privacy of the encoded instances.
Encoding techniques such as the one demonstrated in [8] are sensible to attacks,
based on frequency accounting or bit pattern, aiming to re-identify data encoded
within the BF structure. Such an attack is presented in [4] where the following
recommendations to use BF for preserving-privacy computing is proposed: (i) use
record-level4 BF encoding (like the CLK approach proposed in [9]), (ii) employ
different hash mechanisms, and, (iii) use advanced techniques (random hashing,
adding random bits, etc.).

Computing the GIG Our global graph is initialized by computing the disjoint
union of the SIGs issued by the set of data controllers participating to the in-

4 Record-level mean that each field (i.e., attribute) of an instance are encoded into a
single BF whereas field-level mean that each field is encoded into a separated BF.
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ference detection solution. Then the GIG computation is completed by linking
semantically corresponding nodes related to similar instances from different SIGs
with similarity links. The naive approach is to first encode instances of each SIG
into a BF and proceed to a pairwise similarity score computation. The nodes
related to a couple of similar instances are then linked together with a similarity
link in the GIG. But computing this score for each couple of BFs is expensive.
To reduce this cost, we propose to guide the similarity discovery process by be-
forehand applying schema matching techniques, such as [11], among the SIMs.
In fact, a SIM represent dependencies at the schema-level in a database thus
by identifying the semantically related attributes in different databases, one can
restrict the pairwise similarity score computation to the instances related by a
schema matching relation.

Algorithm 1: Computation of the Global Instance Graph (GIG)
Inputs: SIG: Set of the data controllers’ SIG. SML: Set of schema matching

relations between the SIMs. BF : Set of BFs related to instances in
the SIGs. st: Similarity threshold.

Outputs: M : Set of pairs of nodes related to semantically similar instances.
GIG: SIGs’ linkage based on the instances similarity.

1 Function instance_matching(SIGi, SIGj , SMLij , BFij , st)
2 M ←− ∅
3 foreach l ∈ SMLij do
4 foreach (ni, nj) related by l, ni ∈ SIGi, nj ∈ SIGj do

// Get the Bloom Filter of a node’s instance
5 bfi, bfj ←− get(BFij , ni), get(BFij , nj)
6 if Dice_Coefficient(bfi, bfj) > st then
7 M ←−M ∪ (ni, nj)

8 return M

9 Function gig_computation(SIG, SML, BF, st)
10 GIG←− disjoint union of the SIGs in SIG
11 foreach (SIGi, SIGj) ∈ SIG, i < j, SMLij ∈ SML, BFij ∈ BF do
12 M ←− instance_matching(SIGi, SIGj , SMLij , BFij , st)
13 foreach (nk, nl) ∈M do
14 GIG←− Add a similarity link between nk and nl in GIG

15 return GIG

In the following, we present our algorithm for the GIG creation. Algorithm 1
is composed of two functions: (i) instance_matching filters pairs of nodes of dif-
ferent SIGs based on the related schema matching relations (SML); computes
the similarity score of each candidate pair based on Bloom Filters (BFs); then
collects the pairs of nodes of similar instances based on the similarity threshold,
and (ii) gig_computation which initialises the GIG with the disjoint union of all
the SIGs; processes pairwisely the SIGs to compute the pairs of similar instances;
and links nodes related to similar instances with a similarity link in the GIG.
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The time complexity of Algorithm 1 is related to the number of calls to the
Dice_Coefficient function which computes the similarity score between two
BFs (i.e., two instances). In the worst case, for the function instance_matching
all pairs of nodes (ni, nj) are related to each semantic matching link l. A sim-
ilarity score is thus computed for each pair of nodes which leads to a complex-
ity of O(|SMLij | · |SIGi| · |SIGj |) where |.| denotes either the cardinality of
the set of schema matching relations or the number of instances in a SIG. For
readability purposes, the complexity of instance_matching is abbreviated as
O(im). Then the function gig_computation goes through all the combinations
of pairs of SIGs without repetition and, in the worst case, calls the function
instance_matching for each pair. With |SIG| being the number of SIGs, the
complexity of gig_computation is O(|SIG|2 · im) since instance_matching is
called for each combination of SIGs.
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Workflow In our architecture, to achieve the privacy preservation of data con-
troller’s information, the values of the attributes in the SIGs and the BFs are
anonimized by the data controllers themselves so that there is no need to trust
the centralized system. As depicted in Figure 2a, after collecting data from the
users ¬ each data controller must compute its own: SIM, anonymised SIG, and
record-level BFs of the instances in the SIG and then sends ­ these information
to the knowledge module. The GIG is built ® relying on a schema matching tech-
nique, such as [11], which processes the set of SIMs from each data controller
(i.e., SIM1, ..., SIMn denoted by SIMn

1 ). Then Algorithm 1 takes as input the
computed schema matching relations, the set of SIGs, the related BFs, and the
similarity thresholds in order to compute the similarity links between the SIGs
and therefore create the GIG. Once computed, for each incoming query from
a data processor p ¹, the related data controller sends the anonymized answer
of the query to the inference detection module º. Which, as explained in Sec-
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tion 2, relies on the knowledge module to query the Bayesian network instance
of the GIG assigned to the data processor p issuing the query (i.e., GIGp) ».
Once GIGp is retrieved, the inference detection module operates the probabilis-
tic propagation for the dependency links as in Chen and manages the similarity
links as presented in Section 3.

4 Experimentation and validation

In this section we have focused on validating and experimenting the GIG cre-
ation step as it represents the novel part of our proposal. The project is hosted
at: https://gitlab.com/plht/prototype. Since the system proposed by Chen has
not been implemented during this experimentation, several programs have been
implemented in order to simulate the processing block of the data controllers
which build the anonymised SIG and record-level BFs as depicted in Figure 2a.

Dataset The requirements that we want for the dataset are: (i) it must con-
tain at least two databases with more than one table to have dependencies be-
tween attributes within a table and between different tables (ii) the two schema
must have semantically matching attributes (iii) both databases must contain
instances that are similar. We did not find a dataset that matches all three re-
quirements. Thus we have adapted the Northix dataset5 designed for schema
matching benchmark in data integration problems. It contains a total of 115
attributes distributed in two databases called Sakila and Northwind, modeling
an online DVD rental store and a fictitious food company respectively. Those
databases are often used as samples for learning purposes and experimentation
in scientific publications.

The resulting schema matching leads to 110 and 28 relations, between at-
tributes within the same database and between attributes of different databases
respectively. In our case, the drawback of this dataset is that it does not contain
any similar instances between the two databases. Thus, we have implemented a
program which creates either duplicates of customer instances from one database
to the other or create pairs of randomly generated similar customer instances in
both databases.

Settings & results To measure the efficiency of the GIG computation, we
choose to focus only on customer instances matching since they represent the
type of instances that interests potentially an attacker in a realistic MDIA.
The two SIMs6 used for the experimentation have been created manually. We
have been careful to represent semantically realistic dependencies between the
attributes. We have chosen to vary the number of pairs of similar instances from
0 up to 104 pairs by inserting 100 new pairs at each step. All points of measure
has been repeated 10 times and the median of each repetition is used in the
plot. Finally, the measures have been performed in a Docker container hosted
5 https://archive.ics.uci.edu/ml/datasets/Northix
6 https://gitlab.com/plht/prototype/-/tree/master/model#experimentation

https://gitlab.com/plht/prototype
https://archive.ics.uci.edu/ml/datasets/Northix
https://gitlab.com/plht/prototype/-/tree/master/model#experimentation
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Fig. 3: GIG with four pairs of similar customer instances.

on Ubuntu 14.04.6 and running on an Intel(R) Xeon(R) CPU E5-2640 v3 @
2.60GHz with 46GiB of RAM.

Figure 2b depicts the measure of the GIG computation time growth depend-
ing on the number of pairs of similar instances between the two databases of the
Northix dataset. The quadratic growth matches the theoretical time complexity
of Section 3 and is the result of processing pairwisely the SIGs (line 11 in Al-
gorithm 1) in order to compute the matching instances. Nevertheless, the GIG
can be computed offline by processing the white steps in Figure 2a before being
used online and the performances when data is queried from the databases are
not affected during the black steps.

Figure 3 shows an example of a small GIG with 4 similarity links related to
the schema matching relation (postal_code, postalCode) and 4 others related to
(first_name, contactName). In the zoomed sub-graph the two customer instances
are linked together by a similarity link. Therefore, when a query is issued to
Sakila to get the value of first_name, then during the probability propagation
phase of the Bayesian network instance specific to the user issuing the query, the
inference detection algorithm will update the knowledge of first_name to 100%
since the user now knows the value of this attribute. Next the similarity link will
be processed by setting the same percentage of knowledge to the node at the
other end (i.e., contactName). This knowledge propagation through similarity
links allows the centralised system to detect knowledge queried on one database
which can be used to infer sensitive values on other related databases.

The experimental part of our work highlights several issues linked to the use of
BF in our solution: first of all the BF limitations in handling heterogeneity among
database schemas to identify similarities7. On the other hand, the similarity is
stated between two instances based on a fixed threshold.

7 https://gitlab.com/plht/prototype/-/tree/master/dataset#sakila

https://gitlab.com/plht/prototype/-/tree/master/dataset#sakila
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5 Conclusion

We have proposed the design of a Multi Database Inference Attack (MDIA)
detection system. Our approach extends an existing solution by using schema
matching and privacy-preserving record linkage techniques in order to detect
inference channels between databases. With respect to our hypothesis, we are
able to build a Global Instance Graph which represents the inference channels
within each (and among) database(s). It allows the detection of MDIA that the
usual inference detection systems are not able to identify. This is a first step
towards the development of a distributed and fully featured MDIA detection
system. In addition, data and schema updates could be integrated in our solution
by removing hypothesis (v). In fact, this will affect the models used by the system
and requires to propose efficient mechanisms to keep them up-to-date with the
concern of maintaining data availability and a good inference detection level.
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