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Abstract—Smart Car Parks (SCPs) based on Wireless Sensor
Networks (WSNs) are one of the most interesting IoT applica-
tions. The present study addresses the deployment optimization
problem of two-tiered WSNs dedicated to fire monitoring in
smart parking lots. Networks deployed inside the SCP consist
of three types of nodes: Sensor Nodes (SNs) which cover the
spots within the parking area, Relay Nodes (RNs) which forward
alert messages generated by SNs, and the Sink node which is
connected to the outside world (e.g, firefighters), through a high
bandwidth connection. This paper proposes an algorithm based
on chaos theory and Whale Optimization Algorithm (WOA),
which minimizes simultaneously the deployed number of SNs,
RNs, and the maximum distance from SNs to the sink node
(network diameter) while ensuring coverage and connectivity. To
evaluate the effectiveness of our proposal, we have conducted
extensive tests. The results show that the Chaos WOA (CWOA)
outperforms the original WOA in terms of solution quality and
computation time and by comparison with the exact method,
CWOA finds results very close to the optimal in terms of fitness
value and is efficient in terms of computational time when the
problem becomes more complex.

Index Terms—Whale optimization algorithm, Chaos map,
WSN deployment, Smart parking fire surveillance, Internet of
things.

I. INTRODUCTION

In recent years, the deployment of IoT technologies has
increased as they enable the connection of physical devices to
one another and to the Internet [1]. We discuss in this work
WSNs, which are the very core of IoT systems, a network
consisting of SNs, RNs, and sink nodes that have constrained
resources, i.e., processing, communication, and storage. The
fundamental function of an SNs is to gather data from the
local environment and transfer it to the sink node directly or
via RNs. A Smart Car Park (SCP) [10] is a typical application
of IoT technology. Most existing work on the implementation
of SCP systems have focused on the management of the
car spots (called also targets) inside the parking area, where

the fire surveillance within SCP is a an important safety
criterion. In this work, we are interested in the problem of
the deployment of WSNs in order to guarantee the coverage
of all targets and the connectivity between SNs and the sink
node, using RNs with respect to two-tiered architecture [15].
This problem is known to be an NP-hard [5], which requires
the use of efficient algorithms such as meta-heuristic in order
to tackle large instances.

Recently, meta-heuristics prove their performance in many
recent fields like optimization of neural networks [4],
cellular network planning [2], and WSN deployment [16].
In this work, we use a recent meta-heuristic called Whale
Optimization Algorithm (WOA) [11], which proved its
performance in recent works on the deployment of WSN such
as in [13] and [8]. Despite the efficiency of this algorithm, it
is not able to avoid a local optimum, therefore we propose an
enhanced version in order to visit more region in the research
space to find better solutions. More details will be discussed
in the next sections.

The rest of this paper is organized as follows. Section II
presents the related works on deterministic WSN deployment
problem. Sections III and IV provide respectively the problem
formulation, and the WOA definition. Section V presents the
proposed algorithm. Section VI details the experimental results
and analysis. Section VII concludes the paper.

II. RELATED WORKS

Several meta-heuristics were used in the literature to solve
WSN coverage and connectivity issues [16]. The work
in [12] focused on the optimization of the deployment of
SNs using a Biogeography Based Optimization where the
objectives are the minimization of the sensing interference
and the number of deployed SNs, and the maximization of



the target coverage, under the the connectivity constraint.
Authors in [7], proposed a hybrid meta-heuristic based on the
tunicate swarm optimizer and the salp swarm optimizer, with
the main aim of determining a minimum number of potential
positions selected to place SNs and maximize the target
coverage and network connectivity. In [9], the work addressed
the deployment of SNs for target coverage using improved
gravitational search algorithm (GSA) called oppositional
GSA. The objectives are the minimization of the number of
SNs, the coverage of targets and the network connectivity.
Authors in [18], proposed three adaptive strategies for WOA
to solve the RNs deployment problem. The objectives are the
minimization of the number of deployed RNs and the energy
consumption under the connectivity constraint. In [14], the
work dealt with the RNs deployment problem which has
been solved using multi-objectives decomposition-based moth
flame optimization meta-heuristic. The authors considered
the following objectives: the minimization of the average
intra-cluster distance and the average hop-count.

It should be noted that the works discussed above can be
classified into two categories, SNs deployment for both
coverage and connectivity issues, while the second category
considered only the deployment of RNs for connectivity. In
our case, we consider the deployment problem of both SNs
and RNs simultaneously.

There are a few works taking into consideration the
deployment of SNs and RNs in a sequential manner like
in [6] where authors used an hybrid approach based on particle
swarm optimization and iterated local search algorithms (PSO-
ILS) to optimize firstly the deployment of SNs for target
coverage, than to optimize the placement of RNs based on
the deployed SNs in the first step for connectivity requirement.

Since the sequential deployment approach limits the search
space, other works focused on the simultaneous deployment
of both SNs and RNs. In [15], the authors proposed an exact
and heuristic methods to solve respectively, small and large
instances. The objectives are the minimization of the number
of SNs and RNs and the outage probabilities of the links
between all nodes in the network. The issue was formulated
as a single objective which is the sum of all objectives without
weights, which leads to find only one solution, whereas they
have a conflicting objectives. To overcome the issue in [15], we
have recently proposed a multi-objective linear program [3],
in order to find all efficient solutions. The proposed method
in [3] solves the problem of the simultaneous deployment
of SNs and RNs in order to minimize their number and the
network diameter1. The limitation of the work [3] is the high
computational time. Therefore, in the current work we propose
a meta-heuristic based algorithm to find a good compromise
between the solution quality and the computational time.

1Represents the length of the longest path among all shortest paths between
all the SNs and the sink node

Fig. 1: Discretization of the deployment space (3×4 grid: 20
CSPs, 11 CRPs, 1 sink and 73 targets)

III. PROBLEM FORMULATION

In this work, we express the issue as follows. The deployment
space is discretized as a two-dimensional grid, where the
square cells corners are the SN candidate positions and the
square cells centers are the RNs candidate positions, as
depicted in Figure 1. Targets and the single sink node are
randomly deployed within the square cells of the grid.

The objective is to select the minimal number of candidate
positions to deploy SNs and RNs, and minimal network
diameter, under the coverage and connectivity constraints. In
fact, each target must be inside the sensing range of at least
one SN which have to be connected to the sink node directly
or through a path composed only of RNs to build a two-tiered
architecture. On the other side, the generated networks should
have a minimal diameter in order to minimize the network
energy consumption and delay during the routing process.

Notations:

Covij and Comij denote respectively, coverage and commu-
nication matrices, and can be generated as follow:

Covij =

{
1 if a SN i covers the target j
0 Otherwise

Comij =

{
1 if nodes (i, j) communicate directly
0 Otherwise

Using the above notations Covij and Comij , we transform
the initial problem to a graph, where each vertex of the
graph is either SN, RN or sink node and every vertex SN
has a list of target which can cover them. For instance,
the Figure 2a depicts the problem of the deployment
of WSN with 9 SN candidate positions (blue circles),
CSP = {CSP1, CSP2, ....., CSP9}, where each CSPi has
a list of targets, 3 RN candidate positions (green circles),
CRP = {CRP1, CRP2, CRP3}, and eight parking spots
or Targets T = {T1, T2, ....., T3}. This instance of problem
contains two solutions as illustrated in Figure 2b and
Figure 2c respectively. In the first solution, SNs are deployed



(a) Initial network

(b) Result 1: (4) SNs and (1)
RN

(c) Result 2: (3) SNs and (2)
RNs

Fig. 2: Initial network and induced sub-networks.

on four positions out of 10 and only one RN is placed rather
than three, and for the second one, SNs are placed on three
positions out of 10 and two RNs are placed rather than
three. It is noteworthy that both constraints, coverage and
connectivity, are satisfied in the two resulted networks. For
example, as shown in the Figure 2b, the union of the lists of
targets covered by the four chosen SNs is equal to the set of
all targets {{T2, T3, T5} ∪ {T4, T6, T8} ∪ {T7} ∪ {T1}} = T ,
which means that the coverage constraint is satisfied, and in
the same Figure we can see that all chosen SNs are connected
to the sink directly or via the RN number ten.

Solution representation: A solution is represented as a
vector with a fixed size, which is determined by the number
of SN and RN candidate positions in the WSN. Each element
of the vector is either a SN or RN candidate position. The
value of each element of the vector is set to 1 or 0 to indicate
if a SN candidate position is chosen or not, and 2 or 0 to
indicate if a RN candidate position is chosen or not. An
example of the solution representation is given here after:

Xi
CSP1 CSP2 CRP1 CSP3 CRP2 CSP4

1 0 0 1 2 1

Objective functions: In order to evaluate each solution, we
use the following objective functions:

F1 = min
∑

i∈CSP

Xi

F2 = min
1

2

∑
i∈CRP

Xi

F3 = min{ max
i∈CSPOPT

(distance(sink,i))

where CSPOPT is the set of the CSPs chosen and sink is the
index of the sink node. To solve this problem, we transform
it into a mono-objective problem F using the weighted sum
approach [7]:

F = min{αF1 + βF2 + γF3}
Where: α+ β + γ = 0

IV. WHALE OPTIMZIATION ALGORITHM (WOA)

The WOA [11] meta-heuristic performs the hunting activity of
humpback whales by simulating their movements and sounds.
The steps of the WOA method are namely, random prey search
and the bubble net attack. These steps are mathematically
modeled as follows [11].

A. Search for prey

When hunting, humpback whales need to find the location
of the prey, however, the position of the prey in the search
space is typically unknown. Therefore, whale positions are
chosen randomly in order to generate new whale positions.
The following equation describes this behavior [11].

D⃗ = ||C⃗ ·Xrand(t)−Xi(t)|| (1)

Xi(t+ 1) = Xrand(t)− A⃗ · D⃗ (2)
Where D⃗ is the distance between two whales, Xi(t) is the
position vector of the whale i (solution i) at iteration t,
Xrand(t) is a random whale chosen randomly at iteration t,
|| || denotes the absolute value and ′.′ denotes an element-by-
element multiplication. The rest of parameters A⃗ and C⃗ are
updated as follows [11].

a⃗ = 2− 2 · t

max iteration
(3)

A⃗ = 2 · a⃗ · r⃗ − a⃗ (4)
C⃗ = 2 · r⃗ (5)

where r⃗ is a random vector in range [0, 1], a⃗ decreases linearly
from 2 to 0 during the iterations, A⃗ is a random value in range
[−⃗a, a⃗] and C⃗ is a random vector in range [0, 2].

B. The bubble net attack

The bubble net attack is composed of two essential move-
ments, encircling the prey and the spiral-shaped trajectory.

1) Encircling prey: Humpback whales can detect prey
places and encircle them in order to grab the prey. To mimic
the process, the other search agents move toward the current
optimum solution (prey) and update their location, presuming
that the current optimal solution is the global optimal solution
or near to it. More precisely, as the value of A⃗ decreases(A⃗ <
1), the search agents move closer to the prey (exploitation), and
as the value of A⃗ increases(A⃗ ≥ 1), the search agents move
away from the prey (exploration). Therefore, the value of A⃗
is responsible for the choice of exploration or exploitation.
Furthermore, as a⃗ decreases linearly from 2 to 0 during the
iterations and A⃗ is a random value in range [−⃗a, a⃗], then when
a⃗ reaches the value 1, the value of A⃗ will be in the range [-
1,1]. This will stop the algorithm to run the exploration part.



The following equations describe the behavior of encircling
prey [11]:

D⃗ = ||C⃗ ·X∗(t)−Xi(t)|| (6)
Xi(t+ 1) = X∗(t)− A⃗ · D⃗ (7)

where X∗(t) is the best whale (best solution) until iteration t.
2) Spiral-shaped trajectory updating position: At this stage

the whale moves around the prey by using a spiral pattern. The
following equations describe this behavior [11].

D⃗′ = ||X∗(t)−Xi(t)|| (8)
Xi(t+ 1) = D⃗′ · ebl · cos(2πl) +X∗(t) (9)

where D⃗′ is the distance between two whales, b is a constant
used to define the logarithmic spiral’s shape and l is a random
number in [-1,1].

It is worth noting that the whales swim around the prey in
a shrinking circle and a spiral-shaped trajectory at the same
time. To mimic this concurrent behavior, we assume that there
is a 50% chance of selecting either the shrinking encircling
mechanism or the spiral model to update the position of
whales throughout the optimization. The mathematical model
of updating the position of whale using random search for
prey, encircling prey and the spiral-shaped trajectory are
summarized as follows [11].

Xi(t+ 1) =

If p < 0.5

{
If |A| ≥ 1 Eq. (1) and Eq. (2)
If |A| < 1 Eq. (6) and Eq. (7)

If p ≥ 0.5 Eq. (8) and Eq. (9)
(10)

where p is a random number in range [0,1].

V. CHAOS AND WOA BASED ALGORITHM (CWOA)

Despite having a better convergence rate, WOA is still unable
to outperform in terms of avoiding local optimum, which
impacts the algorithm’s convergence rate. So, in order to
alleviate this effect and increase its efficiency, an enhanced
WOA algorithm is proposed by combining chaotic map [17]
with the original WOA algorithm.

Two features of chaotic maps are ergodicity and non-
repeatability. These two characteristics allow a rapid
convergence of meta-heuristic optimization methods by
efficiently exploring the search space and helping to avoid
local optimum.

In order to benefit from the advantage of the chaos map,
this paper considers the combination of the hybrid chaos
map (Kent map + Logistic map), proposed in [17], with
the original WOA. The hybrid Kent map and Logistic map
equations are both described in [17].

The chaotic number z(t) produced using map in [17] will be
used for updating the jth randomly chosen dimension of the
position of the whale i as follow.

Xij(t+ 1) = lbj + z(t)× (ubj − lbj) (11)
where lbj and ubj are respectively the lower and upper
bounds of the jth dimension.

To sum up, the CWOA starts by the initialization of all
whales (solutions), selects the best whale as the leader of
the population, then divides the population into two sub-
populations. For the first sub-population, the position of the
leader is assigned to each whale, then a random dimension j
is chosen to rotate the current position of the whale by only
one chosen dimension Xij using the Equation (11). As for the
second sub-population, the procedure of the original WOA is
applied (see Equation (10)).

Algo avg time worst best std #SN #RN D
Number of targets: 10 targets

WOA 17,1 140 18,9 13,3 1,59 9,7 30,8 10,9
CWOA 12,9 94,5 16 11,7 1,17 8,9 20,2 9,8
OPT 9.31 7.05 8 13 7

Number of targets: 30 targets
WOA 21,4 137 26,5 17,9 2,49 15,3 38,2 10,9
CWOA 15,5 99,7 19 13 1,6 14,6 22,7 9,4
OPT 10.64 104.83 11 13 8

Number of targets: 50 targets
WOA 26,2 167 28,9 21,2 2,14 21,4 46,8 11
CWOA 18,4 107 20,6 16,6 1,16 18 27,4 9,9
OPT 12.28 202 16 14 7

Number of targets: 80 targets
WOA 29,7 162 35,7 24,5 3,6 28,8 50,8 10,1
CWOA 20,8 114 22,9 19,2 0,98 25 28,3 9,5
OPT 14.26 1484.4 19 17 7

Number of targets: 100 targets
WOA 30,8 169 33,1 28,8 1,27 29,4 53,4 10,2
CWOA 21,8 127 23,5 20,2 1 27,4 28,3 10
OPT 14.27 446.1 20 15 8

TABLE I: Targets number variation in a (12×12) grid

Algo avg time worst best std #SN #RN D
Grid size: 6×6

WOA 7,56 28,9 8,62 6,64 0,67 11,2 7,7 3,9
CWOA 7,23 20,9 8,29 5,97 0,57 10,6 7,3 3,9

Grid size: 8×8
WOA 13,5 46,1 15,2 11,9 1,02 15,5 18,7 6,6
CWOA 11,2 34,4 12,3 9,96 0,61 15,4 12,3 5,9

Grid size: 10×10
WOA 22,5 105 25,8 19,9 1,98 23,9 35,4 8,5
CWOA 17 76,7 18,6 14,9 1,13 21,5 20,7 9

Grid size: 12×12
WOA 30,8 169 33,1 28,8 1,27 29,4 53,4 10,2
CWOA 21,8 127 23,5 20,2 1 27,4 28,3 10

Grid size: 16×16
WOA 62,9 757 71,4 52,6 6,43 55,2 123 12,4
CWOA 31,1 386 33,1 28,8 1,48 37,6 44,2 12,1

TABLE II: Grid size variation with 100 Targets

VI. EXPERIMENTAL RESULTS AND ANALYSIS

To show the effectiveness of CWOA, a series of experiments
have been conducted. The original WOA [11] and the exact
method (OPT for short) proposed in [3] were chosen for
comparative study. In all the experiments, we set the size
of the population to 30, the maximum number of iterations



to 500. Moreover, for each dataset, all algorithms (WOA,
CWOA and exact method) are individually performed 10
times. All the experiments were performed using Python 3.7
on a computer having Intel(R) Core(TM) i5-8250U CPU @
2.50 GHz with 6GB RAM.

At this step, in the absence of real datasets, we generate
graphs composed of CSPs and CRPs with different grid sizes
{6×6, 8×8, 10×10, 12×12, 16×16} and different number
of targets randomly disseminated over the square cells of the
grid {10, 30, 50, 80, 100}.

The following metrics have been chosen to evaluate the
performance of the three compared algorithms: average of
fitness value (avg), running time (time), worst of fitness value
(worst), best of fitness value (best), standard deviation (std),
sensor number (#SN), relay number (#RN) and network
diameter (D).

Finally, we notice that we have set α, β and γ to the same
value, namely 1

3 . However, the proposed algorithm can be used
for any combination of weights.

A. Impact of the variation of targets density and the network
size

Tables I and II show that the proposed algorithm CWOA
outperforms the original WOA and finds very close results
to the exact method (OPT) in all instances. More accurately,
from Table I, we can note that the #SN and #RN required
respectively for coverage and connectivity increases when the
number of targets increases. However, the proposed CWOA
has always the best value in terms of #SN, #RN, and network
diameter than the original WOA.

It is noteworthy that as the number of targets increases, the
difference between CWOA and WOA in terms of #SN and
#RN increases, which demonstrates the effectiveness of the
proposed CWOA. On the other side, the CWOA finds the
better value in terms of best, worst and std values proving
the robustness of the proposed CWOA.

Table II shows the performance of the proposed CWOA when
the network size increases. We can see that for all evaluation
metrics, CWOA is the better one for all instances. Mostly for
the #RN, as the network size increases the difference becomes
very large (x3).

Figure 3 displays the average fitness over 10 runs. Compared
with the optimal solution, we can note that the CWOA is very
competitive since it is much closer to the optimal solution,
whereas the original WOA is so far from the optimal solution.
Furthermore, the proposed algorithm keeps the gap between
it and the optimal solution, while the WOA, increases its gap
as the density of targets increases. Therefore, we can predict
that as the problem is complex, the WOA becomes worst.
Figure 4 shows the average of the fitness values when the
network size increases over the 10 runs. We can see that when

Fig. 3: Average of fitness values according to the variation of
targets number in a (12×12) grid

Fig. 4: Average of fitness values according to the variation of
the grid size (targets number=100)

the network size is small, CWOA and WOA produce close
solutions and as the network size increases, the WOA fails
to find good solutions compared to CWOA, which prove the
incapability of the WOA to escape a local optimum. Therefore,
the integration of the chaos theory in WOA has a good impact
to help the original WOA to converge toward more optimal
solutions. Thus, the CWOA becomes more efficient when the
network size increases.

B. Evaluation of the running time

Figure 5 and Figure 6 show the average running time over
10 executions. As depicted in Figure 5, the running time
of the exact algorithm (OPT) increases exponentially with
the augmentation of the number of targets while the meta-
heuristics based algorithm show their efficiency. Furthermore,
the proposed CWOA becomes the best one as the complexity
of the problem increases, where the ratio solution quality/
running time is the lowest one for the CWOA compared with
the exact method and the WOA.

The Figure 6 plots the running time when the network size
increase. We can see that, as the network is large as the running



Fig. 5: Running time according to the variation targets number
in a (12×12) grid

Fig. 6: Running time according to the variation of the grid
size (targets number=100)

time of CWOA becomes half of the running time of WOA,
which demonstrates that the proposed CWOA is not very
affected by the increase of the network size compared with
the WOA. Finally, We can deduce from Table II and Figure 6
that CWOA is the suggested algorithm for the optimization of
the deployement of WSNs, as it achieves a better ratio solution
quality/running time compared to WOA.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have investigated the optimal placement
of WSNs for fire surveillance in a SCP by simultaneously
minimizing the number of SNs, RNs, and network diameter
while meeting coverage and connectivity requirements. As
this problem is NP-hard, we have proposed an enhanced
Whale Optimization Algorithm (WOA) based on chaos theory
in order to find better result in reasonable time comparatively
to the original WOA and the exact solution proposed in [3].

We have conducted extensive tests on several instances with
the augmentation of the number of targets and the network
size. The proposed algorithm has shown interesting results in
terms of computational time and quality of solution. As future

work, we plan to consider the usage of a realistic physical
layer model to take into account obstacles inside SCPs.
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