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Abstract 

Fuel cells are gradually becoming the competitive alternative to conventional internal combustion 

engines due to their high system efficiency and zero-local-emission property. Nevertheless, the high 

manufacturing cost and the limited lifetime of fuel cell systems still remain the major barrier towards 

the massive promotion of fuel cell electric vehicles. To reduce the vehicle’s operating cost, reliable 

energy management strategies should be devised to coordinate the outputs of multiple energy sources 

in hybrid powertrain. 

This chapter intends to present the development of predictive energy management strategy for fuel cell 

hybrid electric vehicles, especially focusing on the possibility of combining the driving predictive 

information with the real-time optimization framework. To this end, two driving prediction techniques 

are proposed, namely a vehicle speed forecasting approach and a driving pattern recognition method. 

Thereafter, model predictive control is adopted for real-time decision-making with the assistance of the 

predicted information. Validation results indicate that the proposed control strategy outperforms the 

benchmark control strategies in terms of fuel economy and fuel cell durability, thereby verifying the 

control performance improvement imposed by driving prediction integration. 

Key words: Fuel Cell Hybrid Electric Vehicle; Energy Management Strategy; Driving Prediction 

Techniques; Model Predictive Control; Real-time Optimization 
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1. Introduction  

With the global warming and the depletion of fossil fuels, fuel cell technologies have gained increasingly 

growing attentions in transportation electrification field [1]. Fuel cell hybrid electric vehicles (FCHEVs) 

are associated with many appealing properties, like high-efficiency, zero-emission and rapid-refueling, 

which make them the competitive substitutions to internal combustion engine-based hybrid electric 

vehicles (HEVs) [2]. Nevertheless, vehicle’s high ownership cost and the limited lifespan of fuel cell 

systems greatly hinder the massive commercialization of FCHEVs. To reduce the FCHEV’s operating 

cost for better economic performance, one of the practical solutions at the current stage is to develop 

and implement the reliable energy management strategies (EMSs) [3].  

EMSs are vehicular system-level control strategies dedicated to coordinating the outputs of multiple 

energy sources within the hybrid powertrain, so as to meet the requested propulsion power demand. 

Existing EMSs for FCHEVs can be roughly categorized into rule-based and optimization-based 

strategies. Rule-based strategies constitute of a series of predefined deterministic (or fuzzy) rules. These 

rules for power allocation are largely designed based on human intuition, engineering experience or 

expertise knowledge [4]. Generally, the advantages of rule-based strategies lie in their simplicity, real-

time suitability and robustness against discrepancies in driving cycles. However, their performance 

optimality (i.e. fuel economy) cannot be guaranteed by the calibrated parameters and preset rules, which 

is the major deficiency of rule-based strategies. In contrary, global optimization-based strategies derive 

the optimal power-distributing effect based on the complete driving cycle knowledge a priori [5], which 

can dramatically improve the performance optimality versus rule-based strategies. Nevertheless, such 

optimal control effect cannot be directly applied to real-time scenarios due to the requirement on the 

entire driving cycle information beforehand.  

Alternatively, to optimally distribute power demand in real-time, a diversity of control algorithms has 

been successfully applied to vehicular energy management problems, wherein model predictive control 

(MPC) is one of the most representative approaches [6]. Specifically, MPC anticipates the upcoming 

vehicle’s behavior over the finite time horizon and takes control actions accordingly. With the 

advancement in onboard electronic control units and real-time optimization techniques, MPC-based 

strategies can be adopted for real-time power-allocation. Nevertheless, vehicle’s future behaviors could 

be heavily affected by a variety of unpredictable traffic factors, like the stochastic distribution of traffic 

lights and the unexpected movement of pedestrians [3]. Such driving disturbance would differ the actual 

vehicle behaviors from the estimated ones, thus degrading the precision of predictive control framework. 

Therefore, how to properly characterize the future driving uncertainties has become a crucial aspect in 

terms of MPC performance enhancement [3]. 

Nowadays, the maturation of modern telematics systems and the advances in driving prediction 

techniques (DPTs) make it possible to acquire the previewed information about the vehicle’s future 
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driving states, such as the traffic flow speed and the road slope profile. Benefiting from the previewed 

information, there would be more chances for predictive energy management strategies (PEMSs) to 

further enhance the vehicles' performance against traditional non-predictive EMSs. In this case, this 

chapter will especially focus on the development of PEMS for FCHEV, so as to underline the potential 

performance improvement imposed by driving prediction integration. 

The rest of this chapter is organized as follows. Section 2 presents the development and validation of a 

layer recurrent neural network (LRNN) predictor. Moreover, to enhance the EMS’s adaptability under 

multiple driving patterns, a Markov Chain based driving pattern recognizer is devised and verified in 

Section 3. With the driving prediction techniques and model predictive control, Section 4 presents a 

multi-mode predictive energy management strategy (PEMS) for FCHEV, whose functionality and real-

time suitability are validated via Software-in-the-Loop (SIL) testing against the benchmark strategies. 

The major findings and future research directions are briefed in Section 5. 

2. Data-driven speed-forecasting approach   

Under the framework of model predictive control (MPC), the control actions are computed based on the 

estimation of future disturbances. In vehicular energy management field, vehicle’s upcoming propulsion 

power requests are normally deemed as the system disturbances. Therefore, the prediction quality of 

vehicular future power demand would have a profound impact on the performance of MPC-based energy 

management strategies. Moreover, considering the dependency between the propulsion power request 

and vehicle speed, it is thus necessary to study how to precisely estimate the distribution of vehicle’s 

upcoming speed profiles.  

According to our previous study [3], data-driven approaches such as artificial neural network, Markov 

Chain, support vector machine are widely applied to forecast the vehicle’s speed. As one of the 

representative methods, neural networks can learn predictive knowledge from historical dataset via 

training processes and reproduce the similar behaviors in future speed prediction tasks. However, 

conventional back propagation neural networks (BPNN) are suffering from two drawbacks, namely the 

slow convergence rate and the risk of being trapped into the local optima in training stage, which would 

eventually deteriorate the speed-forecasting performance [3]. To this end, we propose a novel speed-

forecasting approach in this section, based on layer recurrent neural network (LRNN), with the purpose 

of enhancing the forecast precision with the assistance of an improved type of network structure. 

2.1 Layer recurrent neural network speed predictor   

LRNN is one type of recurrent neural network (RNN), which is a connectionist model including multiple 

self-connected hidden layers. The biggest advantage of the recurrent connection is that a “memory” of 

previous inputs remains in the network’s internal state [3]. The structure of the proposed LRNN speed 

predictor is depicted in Fig. 1.  
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Fig. 1. Schematic diagram of the LRNN predictor. 

As can be seen, the LRNN comprises an input layer, multiple middle layers and an output layer. The 

output of each middle layer is feedback to itself with a time delay. Such recurrent network structure 

helps the LRNN to store historical temporal information, thus better capturing the dynamics in a time-

series. Mathematically, the functionality of LRNN is to receive the historical speed samples and to 

project the future ones, which can be expressed as follows: 

[𝑣𝑘+1
∗ , 𝑣𝑘+2

∗ , … , 𝑣𝑘+𝐻𝑝
∗ ] = 𝑓LRNN (𝑣𝑘−𝐻𝑞+1, … , 𝑣𝑘−1, 𝑣𝑘)     (1) 

Where Hq and Hp are the length of input and output speed samples, respectively. As reported in [8] and 

[9], it is suggested to set the length of forecast horizon (Hp) to 1-10 seconds (with sampling time period 

being 1s) in vehicular energy management problems. Therefore, in this study, the upper limit for velocity 

prediction horizon is set to 10s, while the length of input speed sequence is set the same as the prediction 

horizon (Hp = Hq). 

 

Fig. 2. Multiple standard driving cycles extracted from ADVISOR simulator.  

The training of LRNN should be accomplished based on a comprehensive database. To guarantee the 

...

Time Delay

...

Time Delay

W

W

B

+

W

W

B

+

...
W

B

+

...
Middle 

Layers

Input 

Layer
Output 

Layer

...

CYC_INDIA_HW

CYC_Nuremberg36

CYC_WVSUB

CYC_HHDDT65

CYC_Highway

CYC_NewYorkBUS

CYC_NYCC

CYC_BUSRTE



5 
 

satisfied forecast precision, this driving database should contain abundant driving cycles covering a wide 

range of driving scenarios. To this end, eight standard driving cycles with different driving patterns 

(urban/suburban/highway) are aggregated to establish the offline driving database, as shown in Fig. 2. 

Please note these standard driving cycles are taken from the vehicular simulator ADVISOR [10]. 

Thereafter, another standard driving cycle, Urban Dynamometer Driving Schedule (UDDS), is picked 

from ADVISOR to verify the performance of LRNN predictor. The root-mean-square-error (RMSE) is 

used as the evaluation metric for forecast precision [9]. 

2.1.1 Impact of percentage of training sample and middle layer configuration 

Before online implementation, a sensitivity analysis is conducted to explore the impacts on forecast 

precision of LRNN caused by different percentage of network training samples and different node 

combinations in LRNN middle layer, so as to further improve the quality of speed prediction. 

Firstly, to study the impact on prediction accuracy by different ratios of network training sample, the 

LRNN is trained with seven different percentage of driving data, and then the performance is tested 

under the UDDS driving cycle. In NN training phase, once the percentage x% of training sample is 

settled, the (1-x%) of driving data is used for validation accordingly, since we do not consider any testing 

sample (0%). The middle layer configuration of LRNN is {3,4,6}. The reason for using such 

configuration will be illustrated afterwards. Table 1 details the prediction results. As can be seen, with 

the increment of training ratio from 35% to 85%, the forecast accuracy of LRNN is improved when Hp 

= 3, 5 and 10s. This is mainly because, with a higher ratio of training sample, LRNN can learn predictive 

knowledge from a wider range of driving scenarios, thereby increasing its forecast precision in face of 

the newly-encountered driving conditions. Nevertheless, too much training sample (e.g. 95%) would 

degrade the prediction accuracy to some extent, since an over high ratio of training sample would 

compromise the generalization capacity of LRNN, thus reducing the forecast quality. As a result, the 

ratio of training sample is set to 85% since it can improve the prediction accuracy without over degrading 

the network generalization capacity. 

Table 1. Average RMSE (km/h) under different training data percentage. 

 35% 45% 55% 65% 75% 85% 95% 

Hp = 3s 1.75 1.78 1.82 1.74 1.72 1.67 1.70 

Hp = 5s 3.00 2.98 3.06 2.96 2.91 2.85 2.97 

Hp =10s 6.31 6.31 6.43 6.29 6.20 6.09 6.28 

Moreover, we keep using 85% of driving data (8227 out of 9479 speed samples) as the training sample 

for LRNN. Thereafter, by maintaining the three-middle-layer structure unchanged, the total number of 

middle nodes as a constant (e.g. in our case, 13), and altering the node numbers in the first two middle 

layers, LRNN predictor is tested under UDDS driving cycle, with the average prediction error (RMSE) 

listed in Table 2. As can be observed, when Hp = 3, 5 and 10s, the highest prediction accuracy is achieved 
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under the middle layer configuration III, namely {3,4,6}.  

Table 2. Average RMSE (km/h) under different node combinations of LRNN middle layer 

Hp 
Config. I 

{1,6,6} 

Config. II 

{2,5,6} 

Config. III 

{3,4,6} 

Config. IV 

{4,3,6} 

Config. V 

{5,2,6} 

Config. VI 

{6,1,6} 

3s 2.66 1.81 1.67 2.08 3.04 2.89 

5s 3.46 2.92 2.85 3.12 3.76 3.59 

10s 6.72 6.21 6.09 6.22 6.75 6.70 

Therefore, based on the results of sensitivity analysis, for LRNN predictor, 85% of data in offline driving 

database is used for network training while the remaining 15% is for performance validation, and the 

hidden layer node configuration is set to {3,4,6} for online implementation. 

2.1.2 Benchmark speed predictor description 

Two commonly-used speed predictors are introduced as the benchmark, namely a multi-step Markov 

Chain (MSMC) predictor and a back-propagation neural network (BPNN) predictor. MSMC predicts 

the vehicle’s acceleration via the multi-step transition probability matrices (TPM), with the number of 

Markov state being 50 and the order of Markov Chain being 1. More details regarding the establishment 

of MSMC are available in [9]. In addition, the BPNN predictor has a three-layer structure, constituting 

of an input layer, a hidden layer and an output layer. It is a multi-input-multi-output mapping function, 

where the node number of BPNN hidden layer equals to the sum of nodes in LRNN middle layers, 13 

in our case. More details regarding the elaboration of BPNN predictor are available in [9]. Furthermore, 

the estimation of TPM and the training of BPNN are accomplished using the driving data in Fig. 2. 

2.1.3 Prediction results and discussions 

Fig. 3 depicts the performance discrepancy of three predictors under UDDS testing cycle, where the 

blue and red curves respectively denote the real speed and the forecasted speed over each prediction 

horizon, where Hp = 10s and the sampling time interval ∆T = 1s.  

As shown in Fig. 3(a)-(c), due to the stochastic nature of Markov Chain, the predicted speed of MSMC 

tend to diverge heavily from the actual speed traces, thus causing the largest prediction error among 

three approaches. Besides, since the order of Markov Chain is set to one, the MSMC approach forecasts 

the upcoming speeds only relying on the current driving state, thus degrading its credibility in 

characterizing the complex and blended driving behaviors. Moreover, since more past speed samples 

are used for speed forecasting, the prediction quality of BPNN approach can thus be enhanced in contrast 

to MSMC method. In addition, thanks to the additional “memory” effect imposed by the recurrent 

network structure, the forecasted speed of LRNN distributes closer to the actual speed trajectories versus 

BPNN predictor, implying the improved forecast accuracy.  

Furthermore, as underlined in the dashed regions in Fig. 3(d)-(f), the LRNN predictor shows an overall 

higher rate of re-convergence after the inflection points of the speed trajectory versus benchmark 
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predictors, indicating it can more promptly adapt to recent driving changes.  

 

Fig. 3. Comparative speed forecasting results on UDDS driving cycle (Hp = 10): (a)-(c) global view of MSMC, 

BPNN and LRNN predictors; (d)-(f) Local view of MSMC, BPNN and LRNN predictors.  

Table 3 lists the average RMSE (RMSE̅̅ ̅̅ ̅̅ ̅̅ ) of three predictors with different Hp on UDDS testing cycle, 

where the percentage is the RMSE̅̅ ̅̅ ̅̅ ̅̅  decrement brought by LRNN predictor. Specifically, in contrast to 

benchmark approaches, the proposed LRNN approach can respectively shrink the forecast error in 

average by at least 16.23% (MSMC) and 6.16% (BPNN), implying the improved forecast precision. 

Hence, the effectiveness of enhancing the prediction quality via using an improved type of network 

structure is verified. 

(a) MSMC

(b) BPNN

(c) LRNN

(d1) MSMC
(d2) MSMC

(e1) BPNN
(e2) BPNN

(f1) LRNN
(f2) LRNN

Predicted Velocity (m/s)Real Velocity (m/s)



8 
 

Table 3. Average RMSE and prediction accuracy improvement on UDDS driving cycle 

Hp MSMC BPNN LRNN 

3s 
RMSE̅̅ ̅̅ ̅̅ ̅̅  (km/h) 2.34 1.97 1.67 

Error reduction 28.63% 15.23% N/A 

5s 
RMSE̅̅ ̅̅ ̅̅ ̅̅  (km/h) 3.98 3.18 2.85 

Error reduction 28.39% 10.38% N/A 

10s 
RMSE̅̅ ̅̅ ̅̅ ̅̅  (km/h) 7.27 6.49 6.09 

Error reduction 16.23% 6.16% N/A 

3. Markov Chain based driving pattern recognizer 

Driving pattern is an overall characterization of the combination of vehicle states and road environment 

[3], with urban (flowing or congested), suburban and highway being the representative patterns. Usually, 

the speed and the power demand profile under different classes of driving pattern exhibits different 

features. This would greatly challenge the adaptability and optimality of energy management strategies 

(EMS) under changeable driving scenarios. Yet, most of existing EMSs for FCHEVs still focuses on 

optimizing the power-splitting effects on specific driving cycles (e.g. [5]), which did not completely 

account for the impacts on control performance by different driving patterns.  

In such context, a driving-pattern-conscious EMS with strengthened adaptability in changeable driving 

scenarios should be further investigated, which, in parallel, brings a challenging mission: driving pattern 

recognition (DPR). To address this issue, this section develops a DPR approach based on Markov Chain 

and moving window technique [11], which can effectively identify the pattern of the online driving 

fragment. The design process will be detailed in the following parts. 

3.1 Working principle of the Markov Chain based DRP approach   

In this section, the velocity-acceleration (v-a) transition behavior is deemed as the characteristic of each 

driving pattern, and it is quantified by the transition probability matrix (TPM) of Markov Chain. The 

workflow of the devised DPR method is illustrated in Fig. 4, including four working stages: (a) offline 

benchmark TPM building stage, (b) online TPM estimation stage, (c) resemblance quantification stage 

and (d) DPR precision enhancing stage, where stage (a) is accomplished offline, whereas others are 

fulfilled in real-time. The principle of each working stage will be detailed in the rest of this section. 
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Fig. 4. Flowchart of the Markov driving pattern recognition (DPR) method. 

3.2 Design of Markov-based driving pattern recognizer   

As shown in Fig.4, conventional Markov model is leveraged to estimate offline-benchmark TPMs for 

three representative driving patterns, that is, urban, suburban and highway. In contrast, the TPMs related 

to recent driving changes are generated via the self-learning Markov model. Finally, the pattern 

recognition results can be attained through measuring the resemblance between offline-benchmark 

TPMs and online-recognized TPMs.  

For DPR purpose, the Markov state is defined as the discrete (v-a) pair, respectively velocity and 

acceleration at the time k, denoted by 𝑥(𝑘) = (𝑣(𝑘), 𝑎(𝑘)). Therefore, the (𝑖, 𝑗)𝑡ℎ element in the 𝑙-step 

TPM can be derived by [12]:  

[𝑇𝑙]𝑖𝑗 = Pr{𝑥(𝑘 + 𝑙) = 𝑥𝑗|𝑥(𝑘) = 𝑥𝑖} ≈ 𝐍𝐮𝐦𝑖𝑗
𝑙 𝐍𝐮𝐦𝑜𝑖

𝑙⁄       (2) 

𝐍𝐮𝐦𝑜𝑖
𝑙 = ∑ 𝐍𝐮𝐦𝑖𝑗

𝑙𝑠
𝑗=1 , 𝑖, 𝑗 ∈ {1,2,… , 𝑠}, 𝑙 ∈ {1,… ,𝑁𝑇}      (3) 

where 𝐍𝐮𝐦𝑖𝑗
𝑙  denotes the number of state transition event 𝑥𝑖 → 𝑥𝑗  in 𝑙 steps ahead, 𝐍𝐮𝐦𝑜𝑖

𝑙  the state 

transition number originating from 𝑥𝑖 , and 𝑁𝑇  is the time-scale range of conventional Markov model.  

To identify the TPM group via the real-time measurements, the number of state transition 𝐍𝐮𝐦 should 

be replaced by the frequency of state transition 𝐅𝐫𝐞. Hence, the original estimation model of transition 

probability (2) is reformulated as [12]:  

[𝑇𝑙(𝐿)]𝑖𝑗 ≈
𝐍𝐮𝐦𝑖𝑗

𝑙 (𝐿)/𝐿

𝐍𝐮𝐦𝑜𝑖
𝑙 (𝐿)/𝐿

=
𝐅𝐫𝐞𝑖𝑗

𝑙 (𝐿)

𝐅𝐫𝐞𝑜𝑖
𝑙 (𝐿)

        (4a) 
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𝐅𝐫𝐞𝑖𝑗
𝑙 (𝐿) = 𝐍𝐮𝐦𝑖𝑗

𝑙 (𝐿)/𝐿 =
1

𝐿
∑ 𝐟𝐥 𝐠𝑖𝑗

𝑙 (𝑡)𝐿
𝑡=1        (4b) 

𝐅𝐫𝐞𝑜𝑖
𝑙 (𝐿) = 𝐍𝐮𝐦𝑜𝑖

𝑙 (𝐿)/𝐿 =
1

𝐿
∑ 𝐟𝐥 𝐠𝑜𝑖

𝑙 (𝑡)𝐿
𝑡=1        (4c) 

𝐟𝐥 𝐠𝑜𝑖
𝑙 (𝑡) = ∑ 𝐟𝐥 𝐠𝑖𝑗

𝑙 (𝑡)𝑠
𝑗=1          (4d) 

Where 𝐿 is the length of observation. Besides, 𝐟𝐥 𝐠 implies the occurrence of corresponding transition 

events, 𝑖, 𝑗 ∈ {1,… , 𝑠} and 𝑙 ∈ {1,… ,𝐻𝑝}. For instance, 𝐟𝐥 𝐠𝑖𝑗
𝑙 (𝑡) = 1 only when the state transition 

incident 𝑎𝑖 → 𝑎𝑗  occurs at time step 𝑡 (𝑡 ∈ [1, 𝐿]), while 𝐟𝐥 𝐠𝑜𝑖
𝑙 (𝑡) = 1 only when the state transition 

incident originates from state 𝑎𝑖 at time step 𝑡. If the corresponding transition events do not occur, they 

both take zero values. Furthermore, the frequency of transition (𝐅𝐫𝐞𝑖𝑗
𝑙  and 𝐅𝐫𝐞𝑜𝑖

𝑙 )  can be further 

expanded in the following way [12]:  

𝐅𝐫𝐞𝑖𝑗
𝑙 (𝐿) =

1

𝐿
∑ 𝐟𝐥 𝐠𝑖𝑗

𝑙 (𝑡)𝐿
𝑡=1 =

1

𝐿
∙ [(𝐿 − 1)𝐅𝐫𝐞𝑖𝑗

𝑙 (𝐿 − 1) + 𝐟𝐥 𝐠𝑖𝑗
𝑙 (𝐿)]

= 𝐅𝐫𝐞𝑖𝑗
𝑙 (𝐿 − 1) +

1

𝐿
∙ [𝐟𝐥 𝐠𝑖𝑗

𝑙 (𝐿) − 𝐅𝐫𝐞𝑖𝑗
𝑙 (𝐿 − 1)]

≈ 𝐅𝐫𝐞𝑖𝑗
𝑙 (𝐿 − 1) + 𝝋 ∙ [𝐟𝐥 𝐠𝑖𝑗

𝑙 (𝐿) − 𝐅𝐫𝐞𝑖𝑗
𝑙 (𝐿 − 1)]

    (5a) 

𝐅𝐫𝐞𝑜𝑖
𝑙 (𝐿) =

1

𝐿
∑ 𝐟𝐥 𝐠𝑜𝑖

𝑙 (𝑡)𝐿
𝑡=1 =

1

𝐿
∙ [(𝐿 − 1)𝐅𝐫𝐞𝑜𝑖

𝑙 (𝐿 − 1) + 𝐟𝐥 𝐠𝑜𝑖
𝑙 (𝐿)]

= 𝐅𝐫𝐞𝑜𝑖
𝑙 (𝐿 − 1) +

1

𝐿
∙ [𝐟𝐥 𝐠𝑜𝑖

𝑙 (𝐿) − 𝐅𝐫𝐞𝑜𝑖
𝑙 (𝐿 − 1)]

≈ 𝐅𝐫𝐞𝑜𝑖
𝑙 (𝐿 − 1) + 𝝋 ∙ [𝐟𝐥 𝐠𝑜𝑖

𝑙 (𝐿) − 𝐅𝐫𝐞𝑜𝑖
𝑙 (𝐿 − 1)]

   (5b) 

To help TPMs adapt to recent driving changes, the varying decay coefficient 1/𝐿 is replaced by a 

constant forgetting coefficient 𝝋 (0 < 𝝋 < 1) in (5a) and (5b), with the purpose of stepwise removing 

the impacts on transition probabilities by old measurements. A larger 𝜑 denotes a higher updating rate 

of TPM. In specific, all the measurements [𝐟𝐥 𝐠𝑖𝑗
𝑙 (1),… , 𝐟𝐥 𝐠𝑖𝑗

𝑙 (𝐿)] and [𝐟𝐥 𝐠𝑜𝑖
𝑙 (1), … , 𝐟𝐥 𝐠𝑜𝑖

𝑙 (𝐿)] are 

allocated with a group of exponentially declining weights [𝝋(1 − 𝝋)𝐿−1, … , 𝝋(1 − 𝝋),𝝋], wherein the 

sum of all weight elements is one. Thus, the probability [𝑇𝑙(𝐿)]𝑖𝑗 can be updated online by [12]:  

[𝑇𝑙(𝐿)]𝑖𝑗 ≈
𝐅𝐫𝐞𝑖𝑗

𝑙 (𝐿−1)+𝝋∙[𝐟𝐥 𝐠𝑖𝑗
𝑙 (𝐿)−𝐅𝐫𝐞𝑖𝑗

𝑙 (𝐿−1)]

𝐅𝐫𝐞𝑜𝑖
𝑙 (𝐿−1)+𝝋∙[𝐟𝐥 𝐠𝑜𝑖

𝑙 (𝐿)−𝐅𝐫𝐞𝑜𝑖
𝑙 (𝐿−1)]

, 𝑖, 𝑗 ∈ {1,… , 𝑠}, 𝑙 ∈ {1,… ,𝐻𝑝}.   (6) 

By (6), the TPM can be gradually renewed based on the incrementally attained driving information. 

3.2.1 Offline-benchmark transition probability matrix building stage 

Fig. 5 gives the flowchart of offline-benchmark TPM building stage. In specific, the workflow of this 

stage is detailed as follows: 

• Step 1: multiple standard driving cycles are selected from ADVISOR [10], including the Cruise3, 

HWFET, ARTEMIS_HW, HHDDT65, ARTEMIS_UB, US06_HW, BUSRTE, Manhattan, 

AQMDRTC2, NurembergR36, ARTEMIS_SUB, WVUINTER, WVUSUB, UNIF01 and IM240. 
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The driving cycles with identical patterns are aggregated to generate the related sub-database. 

• Step 2: within each sub-database, collected speed profiles are discretized into related (v-a) pairs. 

Then, these time-index labelled driving samples are imported into the velocity-acceleration plane. 

The same Markov state indices are given to those samples which are distributed in the identical 

rectangle zone.  

• Step 3: According to the measurements within the velocity-acceleration plane, the TPM groups of 

each driving pattern can be generated by (2). These TPM groups are deemed as the offline references 

for real-time resemblance quantification. Furthermore, as seen from the attained 3-D bar diagrams, 

every driving scenario has its own velocity-acceleration transition feature. Hence, the generated 

multi-step TPM groups can be adopted to represent corresponding driving scenarios. 

 

Fig. 5. Flowchart of offline scenario-based benchmark TPMs estimation phase (e.g. s = 36 and 𝑁𝑇 = 3): Step 1. 

Establishment of the offline scenario-based driving database; Step 2. Discretion & projection speed samples into 

the V-A plane; Step 3. Estimation of offline benchmark TPM groups in different driving patterns. 
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3.2.2 Real-time transition probability matrix recognition stage 

Fig. 6 presents the workflow of real-time TPM recognition stage. As shown in Fig.6, the online-learning 

Markov model (6) is applied to each driving fragment within the moving horizon. Lu and Ls represent 

the length of updating and sampling window, respectively. 

Based on the (v-a) samples, the Markov transition probabilities are renewed at each sampling time 

instant, so as to evolve the real-time TPMs from the initial status to the terminal status. Thereby, at the 

end of each sampling phase, the similarity between the online-recognized TPMs and the offline-

benchmark TPMs can be quantified. The quantification results keep unchanged within the whole 

updating phase (Lu seconds). Thereafter, to promptly remove the negative impacts imposed by old 

measurements, all the elements in the online-recognized TPMs are set to 1 𝑠⁄  at every initialization 

moment (denoted by red line in Fig. 6). Hence, the quantification results are renewed every Lu seconds. 

More details regarding the TPM resemblance quantification will be introduced in subsection 3.2.3. 

 

Fig. 6. Flowchart of online multi-scale TPM identification phase. 
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Markov effective memory depth 𝐷𝜑 is set identical to the length of sampling window Ls. Obviously, a 

larger Ls covers a wider range of historical driving conditions. Yet, an overlarge Ls might include 

redundant information and also lead to heavier computational burden. As stated in [13], typically, the 

HEVs’ driving period is approximately three minutes. In this case, as a rational tradeoff, Ls  is set 

approximated to this threshold. In addition, the setting of updating window length Lu should guarantee 

the renewing rate of pattern recognition without frequent pattern switching. In light of these issues, 

Lu and Ls are set to 50s and 150s, respectively. It should be mentioned that the settings on Lu and Ls are 

attained via numerous cross-validations. 

3.2.3 Quantification of similarity degree 

The 2-D correlation factor 𝑟 ∈ [0,1] is adopted in this section to quantify the resemblance between the 

online-recognized TPMs and the offline-benchmark TPMs. Given two matrices 𝐴, 𝐵 ∈ 𝑅𝑚×𝑛, 𝑟(𝐴, 𝐵) 

indicates the resemblance between them, as calculated by:  

𝑟(𝐴, 𝐵) =
∑ ∑ ([𝐴]𝑖,𝑗−�̅�)([𝐵]𝑖,𝑗−�̅�)

𝑛
𝑗=1

𝑚
𝑖=1

√(∑ ∑ ([𝐴]𝑖,𝑗−�̅�)
2𝑛

𝑗=1
𝑚
𝑖=1 )(∑ ∑ ([𝐵]𝑖,𝑗−�̅�)

2𝑛
𝑗=1

𝑚
𝑖=1 )

      (7) 

where [∙]𝑖,𝑗 represents the (𝑖, 𝑗)𝑡ℎ element of a matrix.  �̅� and �̅� represent the average of elements in 

𝐴 and 𝐵 , respectively. A larger 𝑟(𝐴, 𝐵) means a higher degree of similarity between the examined 

matrices. In addition, let 𝑁 represent the index of updating window. Hence, at 𝑡 = 𝑘,𝑁 = 𝑓𝑖𝑥(𝑘 𝐿𝑢⁄ ), 

wherein Lu = 50s and the function of 𝑓𝑖𝑥 is to output the integer part of  𝑘 Lu⁄ . 

At the 𝑁𝑡ℎ updating time-step, the online-recognized TPMs, denoted by 𝑇𝑙(𝑁), are compared to the 

offline-benchmark TPMs, denoted by 𝑇𝑙
𝑖, 𝑙 = 1,2, … ,𝑁𝑇, wherein 𝑖 is the driving pattern index (1: urban, 

2: suburban, 3: highway). Hence, the quantification results are expressed by a vector of similarity 

SD(N) = [sd1(N), sd2(N), sd3(N)], wherein sd𝑖(N) ∈ [0,1], 𝑖 = 1,2,3 measures the average similarity 

of the online-recognized TPMs versus each type of offline-benchmark TPMs, as denoted by:  

sdi(N) =
1

𝑁𝑇
∑ 𝑟(𝑇𝑙(𝑁), 𝑇𝑙

𝑖)
𝑁𝑇
𝑙=1 , 𝑖 = 1,2,3.       (8) 

Besides, we define the discrepancy of the largest and the second largest element in  SD(N)  by 

∆SDmax(N) ∈ [0,1] , the indices of the largest and the second largest element in  SD(N)  by 

Imax(N), Imax−2(N) ∈ {1,2,3}, respectively, and the similarity threshold by εSD ∈ (0,1). On this basis, 

two possible cases tend to occur within the 𝑁𝑡ℎ sampling horizon: 

• Case I (∆  𝐦  (𝐍) > 𝛆  ): such difference in resemblance is deemed adequate to split different 

driving patterns. Hence, the pattern identification results can be confidently derived based on the 

largest element in SD(N), namely P(N) = Imax(N). This case tends to occur if the (v-a) samples 

originate from single driving pattern, like the 𝑘𝑡ℎ and the 𝑟𝑡ℎ phases shown in Fig. 7(a). 
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• Case II (∆  𝐦  (𝐍) ≤ 𝛆  ): it is not persuasive to differentiate driving patterns based on such 

insignificant similarity differences. This case tends to occur within either the pattern-shifting phases 

(e.g. see the 𝑞𝑡ℎ phase of Fig. 7(a)) or the confusion phases (e.g. see the 𝑠𝑡ℎ phase of Fig. 7(a)). 

 

Fig. 7. Representation of (a) similarity quantification results in different driving scenarios; (b) real driving pattern-

switching phases (e.g. urban to suburban); (c) confusion phases (e.g. urban vs. suburban); (d) proposed solution to 

separate pattern switching phases from confusion phases (e.g. urban vs suburban). 
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and the sensitivity towards the (v-a) transitions. In specific, the driving pattern updating rate might be 

restricted by a larger  εSD , thus degrading the real-time suitability under rapid-changing driving 

conditions. In contrary, if an over-small εSD were used, the reliability of DPR would be reduced by the 

frequent pattern switching results. As a result, εSD is set to 0.05 after a large number of trials and errors. 

The TPM resemblance quantification results in Case II make it impossible to discriminate two conflict 

patterns, and, thus, additional rules are required to enhance the precision of pattern recognition. In fact, 

distinct pattern identification decisions should be taken in terms of two different driving conditions. In 

specific, though  ∆SDmax(N) ≤ εSD  under pattern-shifting phases (e.g. see Fig. 7(b1), where more 

driving samples are derived from “urban” pattern, and Fig. 7(b2), where more driving samples are 

derived from “suburban” pattern), it is thus rational to recognize the upcoming pattern as “suburban”, 

since the pattern-switching moment (see the purple dashed curve) is located in the current sampling 

horizon. Nevertheless, to prevent mis-recognitions in confusion phases (Fig. 7(c1) and (c2)), it is 

suggested to recognize the current pattern as “urban” since the real driving pattern does not alter. 

3.2.4 Complementary rules development 

To split pattern-switching phases and confusion phases, the workflow of the proposed solution (see Fig. 

7(d)) is detailed as below. Provided a)  P(N − 1) = 1 , b)  Imax(N), Imax−2(N) ∈ {1,2}  and 

c)  ∆SDmax(N) ≤ εSD , the Nth  pattern recognition result P(N) can be picked from two candidates: 

Imax(N) and Imax−2(N). Hence, we split the Nth sampling horizon into two identical fragments. If the 

driving fragment in the second-half of sampling window has sufficient supplementary driving features 

related to “suburban” scenario, then P(N) = 2. Else, P(N) = 1. Likewise, if “highway” and “urban” or 

“highway” and “suburban” are the conflict pattern pairs, the aforementioned strategy can also be adopted 

to finalize the pattern identification results. 

To fulfill the above-mentioned solution, it is supposed to extract the supplementary driving features over 

the second-half of sampling window, if  ∆SDmax(N) ≤ εSD . With the extracted features, the 

corresponding complementary rules become effective to determine if the target driving segment can be 

categorized into the upcoming driving pattern. Hereafter, a brief illustration of the selection of 

supplementary driving features in urban, suburban scenarios and the design of complementary rules are 

given to detail the criterion to separate conflict driving patterns.  

The number of stop incident (NoS) and the average speed (vmean) are chosen as the supplementary 

features if “suburban” and “urban” become the conflict driving patterns. To explore the statistical 

distributions of the selected features, numerous driving data with fixed sampling length (0.5Ls = 75 𝑠) 

are picked up from the offline driving database (as shown in Fig. 5). As a result, with the extracted 

driving samples, Fig. 8 depicts the statistical distribution of the selected features. Table 4 summarizes 

several key figures of distribution.  Note Pr(∙) is the probability of the related incident. Given these 
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statistics, the complementary rule for separating urban and suburban scenarios is depicted in Fig. 9(a). 

Likewise, the complementary rules for other situations can be finalized, as shown in Fig. 9(b) and (c), 

where the detail design procedure is omitted to avoid repetitive illustrations. 

 

Fig. 8. Histogram on NoS and vmean of driving samples (per 75s) under urban and suburban patterns. 

Table 4. Statistical distributions (per 75s) for the supplementary driving features 

  𝐫( 𝒐 =  )  𝐫( 𝒐 =  )  𝐫( 𝒐 >  )  𝐫(𝒗 𝒆 𝒏 >   𝒌 /𝒉) 

Urban 3.07% 42.55% 54.38% 4.57% 

Suburban 86.01% 13.15% 0.84% 95.10% 

 
Fig. 9. Complementary rules for (a) urban/suburban, (b) highway/suburban and (c) urban/highway. 
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The devised Markov pattern recognizer is verified under combined testing cycles, wherein the Markov 

time scale 𝑁𝑇 and the Markov state number 𝑠 are set to 5 and 16, respectively. 

3.3.1 Pattern identification results and discussions  

To test the pattern-recognition performance, eight driving cycles are aggregated to generate the 

combined testing cycle, as depicted in Fig. 10(a).  

 

Fig. 10(a)-(d). DPR results on test cycle III. Fig. (a): speed profile of testing cycle, Fig. (b): similarity quantification 

results, Fig. (c) and (d): DPR results without and with complementary, respectively. 

In addition, as seen in Fig. 10(b), the curves in red, blue, and green formats respectively represent the 

degrees of resemblance (sd1, sd2, sd3) versus three predefined modes, and the black curve represents 

the index trajectory of the largest similarity element (Imax). Moreover, the DPR results are plotted in 

Fig. 10(c) and (d). In general, the proposed method can properly recognize driving pattern according 

to Imax if a stable driving condition is encountered. Yet, as displayed in Fig. 10(c), DPR errors tend to 

appear when  ∆SDmax ≤ εSD . Contrarily, after using the complementary rules, the DPR accuracy 
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improves greatly (e.g. Phase I and II in Fig. 10(d)). Note the pattern identification result is set to 

“unrecognized (0)” in the first 150s due to the lack of historical data for pattern recognition in this period. 

Overall, as depicted in Fig. 10(a)-(d), the proposed method can separate real-time driving patterns with 

high credibility in face of complex driving scenarios.  

 

Fig. 10(e)-(h). DPR results on test cycle III: similarity quantification results in phase I and II. 
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complementary rules shown in Fig. 9(c), the 58th pattern identification result is set as “urban”, thus 

reducing the latency of pattern identification, as depicted in phase II of Fig. 10(d). 

Table 5. DPR Accuracy Comparison with/without Complementary Rules (𝑠 = 16 and 𝑁𝑇 = 5) 

 Test cycle I Test cycle II Test cycle III 

Without complementary rules 92.32% 93.55% 92.89% 

With complementary rules 94.97% 98.16% 95.55% 

Accuracy Improvement +2.65% +4.61% +2.66% 

Beside the testing cycle in Fig. 10(a), two another testing cycles are adopted to validate the presented 

DPR method, with the average precision of identification given in Table 5. In specific, over 92.32% 

recognition precision can be attained by the proposed method, even without the help of complementary 

rules. On this basis, an additional DPR precision improvement (ranging from 2.65% to 4.61%) can be 

obtained with the use of the complementary rules. This proofs that the complementary rules are capable 

of compensating for DPR performance losses in case ∆SDmax ≤ εSD. To sum up, the proposed DPR 

method can reasonably differentiate online driving patterns, with the precision of 94.97% to 98.16%. 

3.3.2 Impacts on pattern identification accuracy imposed by s and NT 

The settings of 𝑠 and 𝑁𝑇 would influence the precision of the presented pattern recognizer. Hence, a 

sensitivity analysis is conducted to explore the impacts on recognition precision by different settings on 

𝑠 and 𝑁𝑇. Related evaluation results on three driving cycles are listed in table 6.  

Table 6. DPR Accuracy Comparison with Different Parameter Configurations 

Parameter Settings Test cycle I Test cycle II Test cycle III 

𝐬 =    

𝐍𝐓 =   91.64% 88.19% 86.98% 

𝐍𝐓 =   92.31% 92.90% 92.89% 

𝐍𝐓 =   92.32% 94.87% 94.87% 

𝐍𝐓 = 𝟒 92.98% 97.49% 95.52% 

𝐍𝐓 =   94.97% 98.16% 95.55% 

𝐬 =    

𝐍𝐓 =   91.66% 86.87% 85.88% 

𝐍𝐓 =   91.66% 89.50% 89.81% 

𝐍𝐓 =   90.99% 93.44% 92.23% 

𝐍𝐓 = 𝟒 90.99% 93.44% 92.23% 

𝐍𝐓 =   90.99% 94.09% 93.54% 

As shown in table 6, the highest DPR precision is attained when 𝑠 = 16 and 𝑁𝑇 = 5. On one hand, if 

the size of Markov state-space continues to grow, more observations are requested to ensure the 

completeness of the online-identified TPMs. On the other hand, the limited number of driving data in 

the sampling window makes the expanded TPMs hard to fully capture the recent driving changes, thus 

degrading the precision of DPR. Moreover, a larger 𝑁𝑇  can contribute to the higher DPR accuracy in 

most cases, since this can permit more online-recognized TPMs for resemblance quantification. Through 

such average filtering effect, the sensitivity towards the improper quantification results could be reduced, 

thus enhancing the precision of DPR. Yet, when 𝑁𝑇  exceeds 5 steps, the accuracy increment effect can 

be neglected.  
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3.3.3 Performance comparison with existing DPR approaches 

In pattern identification tasks, the recognition accuracy and the computation burden are two concerning 

issues for real applications. In this subsection, the proposed Markov-based DPR approach is compared 

to existing DPR approaches on these two issues, with the comparison results listed in Table 7, where 

SVM refers to support vector machine, MLPNN means multilayer perceptron neural network and 

LVQNN stands for learning vector quantization neural network. Note the average DPR accuracy of the 

proposed method on three testing cycles (𝑠 = 16 and 𝑁𝑇 = 5) is adopted for comparison. Besides, the 

proposed DPR method uses five feature parameters, namely the velocity, the acceleration, the number 

of stops, the average and maximal speed.  

Overall, the pattern identification accuracy of the proposed method is comparable to those in existing 

studies [13]-[16]. Although the DPR method in [16] results in slightly higher accuracy compared to this 

work, it adopts 19 feature parameters for pattern identification, which is nearly four times the amount 

of feature parameters used in this study. Using too many feature parameters would increase the 

complexity of NN structure, thus enlarging offline training time and increasing the risk of overfitting. 

To sum up, compared to existing DPR approaches, the proposed method can achieve a well balance 

between the identification accuracy and the online computation burden. 

Table 7. DPR Performance Comparison Results 

DPR methods Number of Feature Parameters Average DPR Accuracy 

Proposed  5 96.22% 
SVM-based [13] 4 95.20% 

MLPNN-based [14] 6 95.82% 
Clustering +SVM [15] 6 95.00% 

LVQNN-based [16] 19 98.00% 

In conclusion, the major advances of the proposed method against previous DPR methods are 

summarized as follows: 

• The velocity-acceleration (v-a) transition behaviors, for the first time, are used as the driving feature 

parameters for DPR problems compared to stationary feature parameters used by traditional DPR 

approaches. This measure permits a more accurate description of each type of driving pattern; 

• The proposed complementary rules can effectively compensate for DPR accuracy losses during the 

pattern-shifting phases, thus improving the reliability of pattern identification versus traditional 

DPR approaches.  

Validation results demonstrate the proposed method can identify the real-time driving pattern with an 

average precision of 96.22%, where the periodically updated DPR results can facilitate the realization 

of multi-mode EMS framework under changeable driving scenarios. 

4. Energy management strategy via model predictive control 
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Section 2 and 3 focus on the development of driving prediction techniques. On this basis, this section 

provides an example of embedding the predictive knowledge into the real-time optimization framework 

of model predictive control (MPC), leading to the birth of an integrated predictive energy management 

strategy (PEMS) for FCHEVs. The rest of this section is organized as follows. Subsection 4.1 presents 

the modelling of vehicle’s hybrid powertrain. Subsection 4.2 illustrates the design and verification of a 

multi-mode PEMS, which can allocate power demand in face of changeable driving patterns. 

4.1 Powertrain architecture and system modeling  

This subsection presents the modeling of vehicle’s hybrid powertrain system.  

4.1.1 Vehicle model and powertrain architecture 

As depicted in Fig. 11(a), this chapter focuses on a midsize vehicle model, which is taken from the 

database of the vehicular simulator ADVISOR [10]. Fig. 11(b) schemes the topology of the studied 

hybrid propulsion system, where the fuel cell system (FCS), attached to the DC bus via a unidirectional 

DC/DC converter, and the battery, directly linked to the DC bus, work cooperatively to response the 

power request from the electric machine. The sizes of PEMFC and battery are determined by the 

component-sizing method presented in our previous work [17]. The key specifications of the studied 

vehicle model are listed in Table 8. 

 
Fig. 11. Studied vehicle model: (a) midsize vehicle outline and (b) topology of the hybrid powertrain. 

Moreover, the propulsion power (Ptra) needed by vehicle in motion can be calculated as a function of 

its weight (M) and speed (v), as denoted by (9) [18]. Accordingly, the output power of FCS (PFC) and 

battery (PBAT) together satisfy the DC bus power demand (Pd), as denoted by (10).  

Ptra = v ∙ Ftra = v ∙ [crMgcos(θ)⏟      
𝐅𝐫

+ 0.5ρairSfcdv
2⏟        

𝐅 

+Mv̇]     (9) 

Pd =
Ptra

ηdrive∙ηDC/AC∙ηEM
= PBAT + PFC ∙ ηDC/DC       (10) 

where cr is the rolling resistance coefficient, ρair the air density (1.21 kg/m3), Sf the front surface area, 

cd the aerodynamic drag coefficient, g the gravitational acceleration, ηdrive the driveline efficiency, 

ηDC/DC, ηDC/AC the power converters’ efficiency and ηEM the EM efficiency. Since a horizontal vehicle 

v

Fa

FtraFr Mg

(a) Midsize vehicle model (b) Vehicles’ powertrain structure

Ptra

PBAT

Pdc
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model is used in this study, the road slope 𝜃 takes zero. 

Table 8. Powertrain specifications of the vehicle models 

Category Item Specifications 

Vehicle Structural 

Parameters 

Vehicle mass 1360 kg 

Vehicle front surface 1.746 m2 

Tire radius 0.32 m 

Aerodynamic coefficient 0.3 

Rolling coefficient 0.0135 

Driveline efficiency 0.91 

Gravitational acceleration 9.81 m/s2 

PEMFC System 
Rated power 30 kW 

Maximum efficiency 50.3 % 

Lithium-ion Battery Pack Nominal energy capacity 6.4 kWh 

Electrical Machine 

Maximum power 150 kW 

Maximum torque 220 N∙m 

Maximum rotation speed 11000 rpm 

Others 
DC/DC converter Efficiency 0.90 

DC/AC converter Efficiency 0.95 

4.1.2 Fuel cell model 

Proton exchange membrane fuel cell (PEMFC) is used in the studied hybrid powertrain. As the core of 

PEMFC system, fuel cell stack converts hydrogen energy into useful electricity power (𝑃𝑠𝑡𝑎𝑐𝑘) via a 

series of electrochemical reactions. A fraction of electrical power generated by the stack is used in the 

auxiliaries around the stack (𝑃𝐴𝑈𝑋) (e.g. air compressor, etc.) to ensure the normal operation of the entire 

system. In this case, the actual output (net) power from PEMFC system (𝑃𝐹𝐶) equals to the difference 

between 𝑃𝑠𝑡𝑎𝑐𝑘 and 𝑃𝐴𝑈𝑋 . During the operation of PEMFC, the hydrogen mass consumption (𝑀𝐻2) can 

be calculated by [19]:  

MH2 = ∫
PFC(τ)

ηFCS∙LHVH2
dτ

t

0
          (11) 

Where LHVH2  is the lower heating value of hydrogen. Moreover, let 𝑃𝐻2 denote the theoretical power 

supplied by hydrogen, the efficiency of fuel cell system can be expressed as:  

𝜂𝐹𝐶𝑆 =
𝑃𝐹𝐶

𝑃𝐻2
=
𝑃𝑠𝑡𝑎𝑐𝑘−𝑃𝐴𝑈𝑋

𝑃𝐻2
         (12) 

More details about the modelling of auxiliaries’ power consumption can be found in [18]. As a result, 

the efficiency curve of the studied fuel cell system (FCS) is given Fig. 12. To enhance the operating 

efficiency of FCS, the FCS net power with the highest system efficiency (𝜂𝑚𝑎𝑥) is defined as the most 

efficient operating point, marked as  𝑃𝜂
𝑚𝑎𝑥. Besides, the operating range 𝑃𝐹𝐶 ∈ [𝑃𝜂

𝐿𝑂𝑊, 𝑃𝜂
𝐻𝐼𝐺𝐻], where 

the PEMFC system efficiency (𝜂𝐹𝐶𝑆) is higher than 47%, is defined as the FCS’s high efficiency area. 
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Fig. 12. Efficiency curves of a 30-kW PEMFC system efficiency. 

4.1.3 Battery model  

A simple but effective enough internal resistance model (R-int) is adopted to represent the behavior of 

a battery, with the equivalent circuit depicted in Fig. 13(a).  

 

Fig. 13. Modelling of battery: (a) equivalent circuit of the R-int model and (b) relationship of the internal resistance 

and OCV of a single cell with respect to its SoC.  

The state-of-charge (SoC) is a percentage indicator of the remaining battery capacity (in Ah) in contrast 

to its nominal one, as computed by: 

SoC(t) = SoC0 − ∫
ηBAT∙IBAT(τ)

QBAT
dτ

t

0
        (13) 

Where QBAT the nominal battery capacity, SoC0 the initial SoC, IBAT the battery current, ηBAT the 

battery efficiency (1 for discharge and 0.95 for charge). According to Kirchhoff’s voltage law, the DC 

bus voltage (Ud) can be calculated as: 

Ud = UOC − IBAT ∙ RBAT         (14) 

High Efficiency Area
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Where RBAT is the battery internal resistance and UOC the battery open-circuit voltage (OCV). Combine 

(14) with the expression of battery output power PBAT = Ud ∙ IBAT, battery current IBAT can be given as: 

IBAT =
UOC(SoC)−√UOC(SoC)

2−4∙RBAT(SoC)∙PBAT

2∙RBAT(SoC)
       (15) 

According to [20], UOC and RBAT can be respectively casted into a function of SoC. Fig. 13(b) depicts 

how the OCV and internal resistance change with SoC. Please note the displayed battery characteristics 

are extracted from the experimental-validated lithium-ion battery model from ADVISOR [10].  

4.1.4 Electric machine model 

Electric machine (EM) is the supplier of vehicular propulsion power. Considering the vehicular 

maximum power/torque demands by the mission profiles, a 150-kW model is selected from the database 

of ADVISOR [10], with its rotation speed and torque operating ranges listed in Table 8. Moreover, the 

EM efficiency map, as shown in Fig.14, derived from ADVISOR is adopted to compute 𝜂𝐸𝑀 when the 

torque and speed requests from wheel side are specified.  

 

Fig. 14. Efficiency map of the studied electric machine (rated power @150 kW). 

4.2 Multi-mode predictive energy management strategy   

In face of changeable driving conditions in practice, energy management strategies (EMS) should be 

able to allocate power demands in multiple driving patterns. To this end, a multi-mode predictive EMS 

for FCHEV is devised, which can adapt to rapid-changing driving scenarios. Specifically, based on the 

Markov driving pattern recognizer (DPR) and the layer recurrent neural network (LRNN) predictor 

proposed in previous sections, model predictive control (MPC) is leveraged to derive the optimal power-

allocating decisions at each sampling period. 

Fig. 15 depicts the control framework of the proposed multi-mode EMS, which comprises a Markov 

DPR and a multi-mode MPC. In specific, the Markov recognizer, in the upper level, can periodically 
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refresh the pattern recognition results. Each identified pattern corresponds to one group of pre-optimized 

control parameters of MPC. Based on the speed-forecast results by LRNN and the adopted control 

parameters, MPC, in the lower level, takes the optimal control actions through solving a constrained 

optimization problem over each receding (prediction) horizon Hp. The sampling period ∆T is set as 1s. 

Following parts would detail the development of MPC-based EMS. 

 

Fig. 15. Control framework of the multi-mode energy management strategy. 

4.2.1 Model predictive control: a brief introduction 

Model predictive control is one of the most widely-used advanced control methods in multiple industrial 

sectors [21], which comprises the following three elements, as shown in Fig. 16. 
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Fig.16. Illustration of model predictive control framework. 

(a) Predictive Model: the term “model” in MPC refers to the control-oriented model (plant model), 

which is capable of representing the future dynamic behaviors of the real system (plant) according to 

the input information. The plant model is typically given in the form of state-space representation or 

transfer function, and the precision of system modelling can greatly affect the performance of MPC. 

(b) Rolling Optimization: MPC takes control actions via optimizing the performance index (quantified 
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by the cost function) over a finite time horizon. Specifically, with the plant state sampled at time instant 

t = k, MPC optimizes the performance index over the time horizon [k, k + Hp-1], where Hp > 1 is the 

length of prediction horizon. At the next time instant, the time horizon shifts forward to [k + 1, k + Hp] 

with the optimization performed again. In this way, the optimization is repeatedly conducted online. 

(c) Feedback correction: After obtaining the optimal control sequence, containing Hp elements, at time 

instant 𝑘, MPC only implements the first one to the real system while discards the others. This measure 

can prevent the control performance losses imposed by model distortion or disturbances in environment.  

To sum up, as displayed in Fig. 17, the MPC working flow includes three steps: (i) Future system state 

trajectory estimation, (ii) MPC performance index optimization over finite time horizon, and (iii) 

Application of the first optimal control element to the real system. Once the plant states are updated, 

step (i) to (iii) is sequentially carried out. Afterwards, the prediction horizon moves forward, the system 

states are resampled and the calculation (step (i) to (iii)) is repeated starting from the new states.  

Past Future

k k+1 k+2 k + Hp

Prediction Horizon: Hp

Control Horizon: Hm

k+Hm ......

Time 

step

Implemented 

control actions

Reference trajectory

Predicted output 

Past output

k th optimal control sequence

Past control input

k+1 th optimal control sequence

 

Fig.17. Representation of MPC working principle [6]. 

4.2.2 Multi-mode model predictive controller 

This subsection presents the design of the multi-mode predictive controller. 

4.2.2.1 Control oriented model 

Let  , 𝐮, 𝐲,𝐰 and  𝐫  respectively denote the state, control (input), output, disturbance and reference 

vector, a linear discrete-time system model is adopted, with the system variable definitions and the state-

space representation given as below:  

x(k + 1) = A(k)x(k) + Bu(k)u(k) + Bww(k) (a)

y(k) = Cx(k) (b)
      (16) 
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with 

{
 
 

 
 
x(k) = [SoC(k) PFC(k − 1)]

T

u(k) = ∆PFC(k) =
PFC(k)−PFC(k−1)

∆T

y(k) = [SoC(k) PFC(k − 1)]
T

w(k) = Pd(k)

       (17) 

Besides, the reference vector r(k) = [SoCref Pfcref(k)]
T

 includes the reference values of battery SoC 

and fuel cell power. Additionally, a first-order differential approximation of SoC dynamics [5] and the 

discrete form of DC-bus power balance can be denoted by (18) and (19), respectively. 

SoC(k + 1) = SoC(k) −
∆T∙ηBAT

Ud(k)∙QBAT
∙ PBAT(k)       (18) 

Pd(k) = PFC(k) ∙ ηDC/DC + PBAT(k)        (19) 

Combine (16)-(19), the system matrices A(k), Bu(k), Bw(k), C can be specified as: 

A(k) = [
1

∆T∙ηDC/DC∙ηBAT

Ud(k)∙QBAT

0 1
] Bu(k) = [

∆T∙ηDC/DC∙ηBAT

Ud(k)∙QBAT
1]
T

Bw(k) = [−
∆T∙ηDC/DC∙ηBAT

Ud(k)∙QBAT
0]
T

C = [
1 0
0 1

]    

    (20) 

4.2.2.2 Cost function and constraints 

The devised EMS intends to achieve three objectives: a) the saving of H2 consumption, b) the extension 

of fuel cell lifespan and c) the regulation of battery SoC. Note the second objective is transformed into 

limiting the power transients of FCS, since the steadier the fuel cell power is, the friendlier the operating 

conditions are, which will mitigate the degradation of FCS and thus contribute to a longer service time. 

Hence, at time step 𝑡 = 𝑘, the objective function 𝐽(𝑘) is expressed as below: 

J(k) = ∑ [𝛒1(k) ∙ 𝐂1(k + i) + 𝛒2(k) ∙ 𝐂2(k + i − 1) + 𝛒3(k) ∙ 𝐂3(k + i)]
Hp
i=1

with 

{
 
 

 
 𝐂1(k + i) = (

PFC(k+i−1)−Pref(k)

PFC
max )

2

𝐂2(k + i − 1) = (
∆PFC(k+i−1)

∆PFC
max )

2

𝐂3(k + i) = (
SoC(k+i)−SoCref

SoCmax−SoCmin
)
2

   (21) 

where 𝐂1 to 𝐂3 are the cost terms related to three EMS objectives, and PFC
max = 30 kW,∆PFC

max =

1 kW/s, SoCmax = 0.8  and SoCmin = 0.6. The major functions of 𝐂1 to 𝐂3 are specified as below: 

• 𝐂1 is adopted to urge fuel cell working towards the reference point Pref; 

• 𝐂2 is leveraged to limit the harsh power transients to mitigate the FCS performance degradation 

imposed by overlarge load dynamics [22]; 

• 𝐂3  is deployed to guarantee the SoC regulation performance. Since a non-plug-in vehicle 

configuration is adopted, the reference SoC value (SoCref ) is identical to the initial SoC value 
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(SoC0), so as to avoid battery over-discharge or over-charge, namely SoCref = SoC0 = 0.7. 

In addition, 𝛒 , 𝛒 , 𝛒  are three penalty coefficients, reflecting the weights on cost terms 𝐂1, 𝐂 , 𝐂3. The 

determination of 𝛒 , 𝛒 , 𝛒  and  𝐫𝐞𝐟 under different driving patterns will be detailed thereafter. 

Moreover, the control horizon length of MPC is set identical to the prediction horizon length, where Hp 

is set at five steps. Within each receding horizon, following constraints should be enforced: 

{
  
 

  
 
SoC ≤ SoC(k + i) ≤ SoC̅̅ ̅̅ ̅ (a)

PFC ≤ PFC(k + i − 1) ≤ PFC̅̅ ̅̅ (b)

∆PFC ≤ ∆PFC(k + i − 1) ≤ ∆PFC̅̅ ̅̅ ̅̅ (c)

PBAT ≤ PBAT(k + i) ≤ PBAT̅̅ ̅̅ ̅̅ (d)

w(k + i) = Pd
∗(k + i), i  1 (e)

       (22) 

where constraint (22a) guarantees the battery operation safety, where SoC = 0.55, SoC̅̅ ̅̅ ̅ = 0.85. If SoC 

< 0.6 or SoC > 0.8, the EMS emergency working mode will be activated to enforce SoC return to the 

desired operating range [0.6, 0.8] as soon as possible. In addition, the operating boundaries for PFC, 

∆PFC and PBAT  are indicated by constraints (22b)-(22d), where PFC = 0W ,  PFC̅̅ ̅̅ = 30 kW ,  ∆PFC̅̅ ̅̅ ̅̅ =

−∆PFC = 1 kW, PBAT = −50 kW and PBAT̅̅ ̅̅ ̅̅ = 100 kW . Constraint (22e) assigns the 𝑘𝑡ℎ disturbance as 

the forecasted power demand [Pd
∗(k + 1),… , Pd

∗(k + Hp)], which is derived based on the speed-forecast 

results 𝑉𝑘
∗ = [𝑣𝑘+1

∗ , … , 𝑣𝑘+Hp
∗ ] by LRNN and the vehicles’ dynamics (9) and (10).  

It should be noted that since a quadratic performance index J(k) is adopted as the MPC cost function, 

the kth control actions U∗(k) = [u1
∗(k), … , uHp

∗ (k)] can be derived by minimizing (21) with respect to 

linear constraints (22). Such a problem can be converted into a quadratic programming (QP) problem, 

and thus can be solved using the open-source solver qpOASES [23]. Thereafter, only the first element 

of U∗(k) is implemented to vehicle model, while the others are abandoned.  

4.2.2.3 Multiple working modes and parameter design of energy management strategy 

To adapt to changeable driving scenarios, multiple EMS working modes are defined and the switching 

of working mode is accomplished via using different sets of MPC control parameters. In specific, we 

consider the following EMS working modes:  

Normal working stage. Based on the power demand under urban/suburban/highway scenarios, three 

groups of control parameters for MPC are tuned in offline. Then, with the periodically renewed DPR 

results, one group of well-tuned parameters is picked for real-time control to deal with related driving 

conditions. The offline parameters tuning process will be introduced afterwards. 

SoC emergency stage. If SoC < 0.6 or SoC > 0.8, 𝛒  is increased to ten times of the normal value to 

enforce SoC return to [0.6,0.8]. If SoC emergency incident occurs, the setting of control parameters is 



29 
 

turned to the “SoC emergency” mode and keeps unchanged until the next pattern updating moment.  

Start-up stage. Without available recent driving information, the pattern identification result is set to 

“unrecognized” over the first sampling window ( 𝑡 ∈ [1,150] ). In the start-up stage, the control 

parameters for MPC are tuned to make battery as the primary energy provider, whereas the fuel cell only 

starts to work in case SoC < 0.6. 

• Flowchart of parameter tuning for model predictive control  

The performance of MPC relies highly on its control parameter settings, namely (𝛒 , 𝛒 , 𝛒 ) and  𝐫𝐞𝐟. 

To obtain the suitable parameter setting of each driving pattern, the flowchart of parameter tuning is 

shown in Fig. 18, including four steps: (i) dynamic programming (DP) is executed over each type of 

mission profile to extract the global-optimal results. (ii) Related  𝐫𝐞𝐟  is attained based on the statistical 

distributions of the DP-extracted fuel cell working points. (iii) Given the fuel cell reference power and 

weighting coefficient candidates, several performance metrics of MPC-based EMS (e.g. hydrogen 

consumption, SoC final value etc.) over the identical driving cycles are compared versus DP-optimized 

results. (iv) According to the performance discrepancies, 𝛒 , 𝛒 , 𝛒  are tuned via trials and errors. 

 

Fig. 18. Flowchart of MPC control parameter tuning process. 

• Selection of fuel cell reference working points 

With the entire driving cycle information beforehand, DP can obtain the global optimal power-allocating 

effect, which offers a benchmark for the selection of fuel cell reference working points. Considering the 

various power demand features, the objective functions of DP vary under different driving scenarios. 

Specifically, the optimization objective in urban regions is to limit the power transients of fuel cell (the 

summation of fuel cell power variation along the trip) against the fast-dynamic power requests to 

prolong the lifespan of FCS. In comparison, under suburban and highway regions, the objective is to 

improve the average fuel cell working efficiency to save H2 consumption. Additionally, during the 
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optimization, the constraints for DP and MPC based strategies are the same. Fig. 19(a)-(c) show the DP-

optimized results over three driving patterns, with the related distributions of fuel cell power depicted 

in Fig. 19(d). In urban pattern, the optimal fuel cell working points are located in the range of [1.5, 2.3] 

kW. The optimal fuel cell working range, in suburban, is [6.0, 7.0] kW, whereas the optimal fuel cell 

power range is [13.5, 15.5] kW in highway pattern. Thus, the reference fuel cell power (Pref) is set to 

the corresponding average values, specifically, 1.78 kW for urban, 6.80 kW for suburban and 14.40 kW 

for highway.  

 

Fig. 19. DP-based optimization results under three driving patterns: (a1)-(a3) DP results under urban scenarios; 

(b1)-(b3) DP results under suburban scenarios; (c1)-(c3) DP results under highway scenarios; (d) distribution of 

fuel cell working points under three driving patterns. 

• Tuning results of penalty coefficients  

According to the Pref obtained previously, Fig. 20 depicts the tuning results of MPC penalty coefficients. 

Please note the non-tuned MPC uses the initial penalty coefficient setting (e.g. 𝛒1 = 𝛒2 = 1, 𝛒3 =

PFC_UB_ave = 1.78 kW

PFC_SUB_ave = 6.80 kW PFC_HW_ave = 14.40 kW

(a1)

(a2)

(a3)
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1000), which intends to keep battery working in charge-sustaining mode. As shown in Fig. 20(a), with 

the tuned penalty coefficients (red curve), the power transients of fuel cell in urban pattern is greatly 

declined versus MPC with non-tuned coefficients (green curve). Likewise, as given in Fig. 20(b) and 

(c), with tuned coefficients, the fuel cell power transients are limited in a relatively narrow range. 

 

Fig. 20. EMS performance comparison before/after MPC penalty factor tuning: (a) urban scenarios; (b) suburban 

scenarios; (c) highway scenarios; (d) fuel economy discrepancy vs. DP benchmark; (e) fuel cell power dynamics 

discrepancy vs. DP benchmark. 

Table 9. MPC Performance Gaps versus DP benchmark before/after parameter tuning 

 Urban (UB) Suburban (SUB) Highway (HW) 

DP MPC-T MPC-N DP MPC-T MPC-N DP MPC-T MPC-N 

 𝐨𝐂𝐍 0.7000 0.7021 0.7032 0.7000 0.7123 0.7102 0.7000 0.7021 0.7131 

𝐦𝐞𝐪𝐮,𝐇 (g) 135.10 135.20 135.71 418.30 418.90 422.29 1302.50 1302.71 1313.62 

|∆ 𝐟𝐜̅̅ ̅̅ ̅̅ |̅̅ ̅̅ ̅̅ ̅̅  (W/s) 1.41 1.42 35.29 13.32 13.43 83.39 11.01 12.23 106.42 

Opt. MPC 

parameters 

(𝛒 , 𝛒 , 𝛒 ) (1,2,100)  (1,1,60) (1,0.2,54) 

 𝐫𝐞𝐟 1.78 kW 6.80 kW 14.40 kW 

Compared to DP benchmark, the performance gaps by MPC-based strategies are given in Table 9. The 

acronym “MPC-N” and “MPC-T” represent MPC with non-tuned and tuned penalty coefficients, 

respectively, and mequ,H2  is the equivalent hydrogen mass consumption, which takes the final SoC 
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deviation against the initial value (0.7 in our case) into consideration, as calculated by: 

mequ,H2 = ∫
PFC(τ)

ηFCS∙LHVH2
dτ

t

0
+
∆SoCN∙EBAT∙3600

η̅FC∙LHVH2
       (23) 

where EBAT is the nominal energy capacity of battery pack (6.4 kWh), ∆SoCN = SoC0 − SoCN, and 

η̅FC the average fuel cell working efficiency. As depicted in Fig. 20(d), with the tuned penalty 

coefficients, the largest performance deviation on mequ,H2  versus DP benchmark is merely 0.14%. In 

addition, as depicted in Fig. 20(e), the average fuel cell power transients caused by MPC-N strategy is 

6.259 to 26.999 times of DP benchmark. In contrary, with the tuned parameters, this ratio has reduced 

sharply to 1.008 to 1.111 times of DP basis. Hence, it is confirmed that the penalty coefficients of MPC 

are well tuned, with the optimized parameters listed in Table 9.  

4.2.3 Energy management strategy performance validation 

In this subsection, Software-in-the-Loop (SIL) simulation is used as a tool to verify the performance of 

the proposed multi-mode energy management strategy. 

4.2.3.1 Description of the software-in-the-loop testing platform 

SIL testing is one of the important simulation-based tools for initial prototyping before the integration 

of any actual hardware; it is used to further validate the performance of control strategies [24], [25]. The 

major task of SIL testing is to justify the behavior of the generated code (functional), and gives further 

proofs of the generated code running on the embedded target (embeddability). In this study, a SIL testing 

platform is set up (see Fig. 21), which allows the proposed strategy to be tested in the dSPACE hardware 

(MicroAutoBox II 1401/1511 [26]), thereby further verifying its functionality and real-time suitability. 

 

Fig. 21. (a) Block diagram and (b) real picture of the SIL testing platform.  

The SIL platform comprises hardware and software subsystems, wherein the hardware subsystem 

includes a DC power supply, a host PC and a dSPACE MicroAutoBox II real-time system. The software 

subsystem contains the vehicular powertrain model and the control algorithms (PEMS) developed in the 

MATLAB/Simulink environment, which are compiled into C code and downloaded into the 
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MicroAutoBox II. Besides, the dSPACE ControlDesk software is installed in the host PC as the human 

machine interface (HMI) to calibrate the model parameters and to capture the experimental data during 

the online simulation. The host PC and the MicroAutoBox II is connected via a network cable through 

the Ethernet interface, and the data communication between them is enabled by the dSPACE real-time 

interface (RTI) module.  

In SIL testing, the proposed control strategy has been successfully executed in real-time under three 

sampling period settings, namely 1.0s, 0.5s and 0.2s, meaning the required computational hardware 

expense is far from reaching the upper limits of the target CPU, thus proving that the resulting 

computation burden is acceptable for online applications. To avoid the repetitive illustrations, only the 

testing results at the sampling period of 1.0s are presented in the following parts. 

4.2.3.2 Description of the benchmark energy management strategies 

Upper benchmark: as expressed by (24), the global optimal result is derived by dynamic programming 

(DP), which intends to minimize the H2 consumption over the given driving cycles. The global-optima 

searching can only be finished in offline due to the demand of full cycle information beforehand. 

min
∆PFC∈μFC

∑ [
PFC(k)

ηFCS(PFC)∙LHVH2
]N−1

k=0 ∙ ∆T  

Subject to 

{
  
 

  
 
0.6 ≤ SoC(k) ≤ 0.8 (a)

0 ≤ PFC(k) ≤ 30 kW (b)

−1 kW/s ≤ ∆PFC(k) ≤ 1 kW/s (c)

−50 kW ≤ PBAT(k) ≤ 100 kW (d)

SoC0 = 0.7, PFC0 = 0 W (e)

SoCN = 0.7 (f)

        (24) 

Where ∆PFC is deemed as the manipulated variable. μFC is the feasible region of  ∆PFC in discretized 

domain, where the grid resolution is 1 W/s. Constraints (24a)-(24d) respectively indicate the operating 

boundaries for SoC, PFC, ∆PFC and PBAT. In addition, (24e) defines the initial status of SoC and FC 

power, and (24f) poses a terminal constraint on battery SoC.  

Lower benchmark is a single-mode MPC-based strategy, wherein the reference fuel cell power is set 

to the most efficient system working point (Pref = Pη
max, as shown in Fig. 13). Furthermore, to deal with 

the unpredictable driving scenarios, the penalty coefficients are set to the initial configuration (the same 

as the non-tuned MPC controller in subsection 4.2.2.3, 𝛒1 = 𝛒2 = 1, 𝛒3 = 1000), with the purpose of 

keeping battery working in charge sustaining mode to the utmost extent, so as to ensure the operation 

safety of the hybrid propulsion system. 

4.2.3.3 Evaluation results on multi-pattern testing cycles 
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Five combined testing cycles are adopted for performance validation, with the evaluation results over 

testing cycle I detailed in Fig. 22.  

 

Fig. 22. Evaluation results over testing cycle I: (a) speed and driving pattern information; (b) battery SoC 

trajectories; (c) fuel cell power comparison; (d) influences of pattern recognition errors on fuel cell power.  

As depicted in Fig. 22(a), the testing cycle I comprises urban, suburban and highway scenarios, with the 

real driving pattern marked with black solid format and the pattern recognition result displayed in red 

dashed format. On this testing cycle, 97.05% DPR precision can be attained, with the errors largely 

imposed by the latency in pattern-switching stages. Fig. 22(b) shows the SoC trajectories of three 

strategies, where, in urban scenarios, DP charges battery to response the peaking power requests in the 

upcoming suburban and highway scenarios. The multi-mode MPC strictly restricts battery SoC varying 

around 0.7 in urban scenarios, whereas the battery power is used in a more flexible way in other 

scenarios. Additionally, the single-mode MPC maintains SoC firmly 0.7 over the entire trip. As shown 

in Fig. 22(c), DP uses fuel cell power at different levels in multiple driving patterns with few transient 

loadings. Likewise, the multi-mode MPC controls fuel cell operating at different reference points in a 

stable way. In contrary, the single-mode MPC leads to more fuel cell transient loadings and start-stop 

cycling. Fig. 22(d) shows how DPR errors affect the output power of fuel cell. The outcome of a multi-
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mode MPC assisted by real driving-pattern information (100% precision) is plotted in black dashed 

format. In terms of multi-mode MPC with pattern recognition results (red curve), the fuel cell power 

switching latency can be seen at each pattern-shifting moment. Their performance deviation on fuel cell 

power is neglectable if external driving conditions are stable. 

Table 10 lists the numerical results on five testing cycles. The acronym “MPC-S” represents the single-

mode MPC, “MPC-R” and “MPC-M” respectively stand for the multi-mode MPC assisted by real 

driving pattern and pattern-recognition results. As the upper benchmark, DP leads to the least H2 

consumption mequ,H2 and the smallest power transients of fuel cell |∆PFC̅̅ ̅̅ ̅̅ |. Compared with the MPC-S 

strategy on five testing cycles, the MPC-M strategy can respectively reduce mequ,H2 by 2.07% to 3.26% 

and |∆PFC̅̅ ̅̅ ̅̅ | by 87.75% to 88.98%. This implies the improved fuel efficiency and the decreased risk of 

fuel cell degradation by harsh transient loadings. In addition, it can be seen that the DPR errors can 

enlarge mequ,H2 by 0.06% to 1.30%, if comparing the outcomes of MPC-R and MPC-M strategies. 

Table 10. Numerical control performance on five combined testing cycles. 

Type Road information Metrics DP MPC-R MPC-M MPC-S 

Combined Cycle I 

(CYC_I) 

Type: “UB + SUB +HW +UB” 
 𝐨𝐂𝐍 0.7000 0.6998 0.6844 0.7010 

𝐦𝐇  (g) 
474.30 

479.21 480.50 502.10 

DPR accuracy = 97.05% 
𝐦𝐞𝐪𝐮,𝐇  (g) 479.50 486.02 501.72 

|∆ 𝐟𝐜|̅̅ ̅̅ ̅̅ ̅̅ (w/s) 9.07 9.87 9.99 89.71 

Combined Cycle II 

(CYC_II)  

Type: “UB + SUB +HW +SUB” 
 𝐨𝐂𝐍 0.7000 0.7149 0.7133 0.7030 

𝐦𝐇  (g) 
552.10 

566.10 566.51 576.1 

DPR accuracy = 96.26% 
𝐦𝐞𝐪𝐮,𝐇  (g) 560.84 561.85 575.03 

|∆ 𝐟𝐜|̅̅ ̅̅ ̅̅ ̅̅ (w/s) 8.89 9.58 9.63 87.40 

Combined Cycle III 

(CYC_III)  

Type: “UB + SUB +HW +SUB+UB” 
 𝐨𝐂𝐍 0.7000 0.7067 0.7086 0.7012 

𝐦𝐇  (g) 
488.90 

503.7 504.60 512.70 

DPR accuracy = 96.24% 
𝐦𝐞𝐪𝐮,𝐇  (g) 501.34 501.63 512.25 

|∆ 𝐟𝐜|̅̅ ̅̅ ̅̅ ̅̅ (w/s) 9.85 10.03 10.59 86.48 

Combined Cycle IV 

(CYC_IV) 

Type: “UB + SUB +HW +UB” 
 𝐨𝐂𝐍 0.7000 0.7055 0.7066 0.7012 

𝐦𝐇  (g) 
527.02 

541.10 542.05 553.62 

DPR accuracy = 94.95% 
𝐦𝐞𝐪𝐮,𝐇  (g) 539.14 539.66 553.18 

|∆ 𝐟𝐜|̅̅ ̅̅ ̅̅ ̅̅ (w/s) 8.27 8.83 8.95 79.27 

Combined Cycle V 

(CYC_V) 

Type: “UB + SUB +HW +UB” 
 𝐨𝐂𝐍 0.7000 0.6956 0.6966 0.7011 

𝐦𝐇  (g) 
450.40 

458.50 459.50 476.60 

DPR accuracy = 96.61% 
𝐦𝐞𝐪𝐮,𝐇  (g) 460.08 460.73 476.25 

|∆ 𝐟𝐜|̅̅ ̅̅ ̅̅ ̅̅ (w/s) 9.89 10.41 10.53 93.09 

As a conclusion, in contrast to single-mode strategy, the presented multi-mode strategy can lead to i) at 

least 87.00% reduction of power transient of fuel cell and ii) over 2.07% reduction of H2 consumption. 

Hence, under changeable driving scenarios, the FCS’s operating and maintenance costs could be highly 

mitigated via the proposed strategy. This should be deemed as the major benefit concerning the actual 

implementation of the devised multi-mode energy management strategy. 

5. Conclusion 

This chapter develops a predictive energy management strategy (PEMS) for fuel cell hybrid electric 
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vehicle (FCHEV). Compared to traditional control strategies, the proposed one especially concentrates 

on the combination of driving predictive information and real-time optimization framework, so as to 

further improve vehicle’s economic and durability performance. To this end, two driving prediction 

techniques are designed firstly:  

i) a layer recurrent neural network speed predictor is proposed to estimate vehicle’s upcoming 

speed profiles over each receding horizon;  

ii) a Markov driving pattern recognizer is devised to differentiate real-time driving patterns, which 

establishes a solid basis for the realization of multi-mode energy management framework.  

On this basis, combining the driving prediction techniques with the model predictive control (MPC) 

framework, a multi-mode PEMS is developed for a midsize sedan powered by fuel cell and battery, 

aiming at splitting power demand under changeable driving patterns. In order to verify the effectiveness 

of the proposed strategy, a Software-in-the-Loop (SIL) platform is established based on the dSPACE 

MicroAutoBox II real-time system. Validation results show that the proposed control strategy can be 

properly embedded into and correctly executed on the target hardware with the predefined objectives 

achieved, thus verifying the EMS’s functionality and real-time suitability. This also justifies the 

possibility of the proposed strategy being integrated into the onboard electronic control units for real 

implementations. 

It should be mentioned that the application scenarios of the proposed predictive energy management 

framework can also adapt to the change of vehicle models or mission profiles. For example, with the 

help of an online-learning enhanced Markov speed predictor [27] and an adaptive battery SoC reference 

generator, a PEMS has been designed for a midsize plug-in FCHEV, which can optimally deplete battery 

energy under multiple driving patterns for better fuel economy [28]. Moreover, combine the fuzzy C-

means clustering enhanced Markov predictor and the battery energy planning approach, an integrated 

PEMS is devised for a light-duty plug-in FCHEV dedicated to postal delivery [29], where the GPS-

collected real-world driving data in urban routes has been used to verify the effectiveness of the proposed 

strategy. To sum up, the devised predictive energy management framework has good versatility, making 

it capable of adapting to multiple application scenarios. 

Despite the progresses regarding the energy management strategies for fuel cell electric vehicles in this 

chapter, further intensive studies should be conducted to improve the energy distribution performance. 

Specifically, future works would concentrate on the following perspectives: 

• This chapter only focuses on retarding the fuel cell degradation imposed by harsh power transients, 

whereas other factors that may compromise the durability of fuel cell systems are not considered, 

such as working at extremely high/low loadings, frequent start-stop cycling, etc. In future works, it 

is expected to systematically consider these degrading factors by quantifying them within the cost 
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function when making power-allocating decisions [30].  

• Powertrain component sizing plays an important role in vehicle’s drivability and economic 

performance. In future works, a co-optimization framework for fuel cell hybrid electric vehicles 

considering the component degradations will be developed, which can simultaneously optimize the 

sizing parameters and the vehicle’s total ownership cost given the desired driving profiles. 

• Due to the abundant historical driving database of the postal-delivery vehicles, the past driving 

experience is useful in guiding future energy distributions. Therefore, it is expected in future works 

to develop a data-driven approach (e.g. deep neural networks) to plan the future usage of onboard 

electricity energy for further improving the fuel economy performance when charge-depleting mode 

is involved. 
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