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Abstract—The ADS-B is an air traffic monitoring technology
based on broadcasting messages to transfer information in be-
tween aircraft as well as between aircraft and ground stations. It
was created to increase the surveillance coverage as well as reduce
the cost of operation relative to traditional radars. However the
messages used to communicate under the ADS-B protocol are not
encrypted and thus are prone to false data injection attacks which
can, for example, modify the values of the messages’ components.
In this paper, a supervised deep learning strategy is designed to
detect attacks that modify components of ADS-B messages such
as altitude, ground speed, trajectory, latitude and longitude. A
false data generator based on a domain specific language was
used to attack ADS-B data and obtain a dataset containing
both normal and anomalous data for supervised learning. The
detection performance of two types of attacks were evaluated:
gradual attacks and waypoints attacks which diverge aircraft
trajectories to pass through specific waypoints. The experimental
results show that the proposed supervised deep learning strategy
is able to recall on average 99% of anomalies in ADS-B messages,
mainly property modification attacks.

Index Terms—anomaly detection, deep learning, false data
injection, supervised learning, ADS-B protocol

I. INTRODUCTION

Air transport is one of the driving forces behind interna-
tional economic growth. Its rising prevalence over the decades
is one of many indicators of increasing global living standards.
However the increase in air traffic can be a source of concern
notably because of multiple safety risks. These problems are
caused by the rapid growth of airspace crowding which can
start to outrun infrastructure and coordination evolution. To
prevent these kinds of risks the International Civil Aviation
Organization (ICAO) devised a strategy called the Global
Air Navigation Plan (GANP) which establishes the needed
modernization for the upcoming years. This can ensure the
airspace’s ability to withstand the growing air traffic. In
addition to that, the plan aims at conceiving more efficient
routes for aircraft resulting in a decrease in carbon emissions.
More concretely, GANP refers to the various steps needed
to continuously improve the global air navigation system in
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the following areas [1]: airport operations, interoperable sys-
tems and data, globally collaborative Air Traffic Management
(ATM), efficient flight paths. One of the most important tools
that can help improve the mentioned areas is the Automatic
Dependent Surveillance Broadcast (ADS-B) protocol.

The ADS-B is a surveillance technology able to give a much
more accurate 3D position of aircraft compared to traditional
radars. Based on this protocol, aircraft equipped with special
transponders are able to broadcast their information such as
the identification (or call sign), position, altitude, and velocity
in the form of ADS-B messages. Aircraft equipped, as well
as ground stations, are able to receive these types of messages
to obtain a precise image of the airspace [2]. This protocol
has many benefits. It can reduce total expenses relative to
traditional radar systems due to its lower operational cost.
In addition to that, ground stations can be located in hardly
accessible and remote areas due to their non mechanical
nature. The protocol can also be used in the process of finding
optimal flight levels to increase fuel savings [1], and thus helps
aircrafts to be more environmentally-friendly by reducing CO2
emissions. However, the ADS-B technology presents some
disadvantages such as the requirement for airplanes to have
special transponders and the inability to validate the position
with ground stations since the position is solely obtained on
board [2]. Finally the ADS-B messages are prone to false
data injections since the ADS-B protocol lacks encryption and
authentication for practical reasons.

In this paper is introduced a new supervised deep learning
anomaly detection strategy to detect ADS-B gradual attacks
as well as a another type of attack called waypoints attack
(forcing a flight to pass by specific predefined points). Gradual
attacks concern the following features: altitude, ground speed,
track, latitude and longitude. These gradual attacks are de-
tected whether they are separately inflicted (feature by feature)
or simultaneously (all the specified features are attacked). The
altitude and ground speed gradual attacks that we were able
to detect (75 feet altitude gradual attack, 1.8 knots gradual
ground speed attack) are harder to spot then those detected
in the literature (400 feet altitude gradual attack in [3], [4]
and 20 knots gradual attack in [4]). This research as well
as our previous one published in [5] are the only studies
which, to the best of our knowledge, use supervised learning
for ADS-B anomaly detection. Our research and [6] use the



same false data injection generator (with a domain specific
language) specifically devised for generating attacked ADS-
B datasets contrary to anything else found in the literature.
Finally we were able to detect gradual attacks on any of the
previously mentioned features using a meta-model made of
models trained on individual gradual attacks.

The remainder of this paper is organized as follows. Sec-
tion 2 presents a summary of related studies. The next section
details the anomaly detection process (data generation as well
as the detection process). Section 4 presents the experimental
results of the proposed detection strategy. Finally some con-
clusions are drawn regarding detection strategies.

II. RELATED WORKS

There are many studies in the field of ADS-B anomaly
detection using mainly unsupervised and semi-supervised
learning techniques. Obviously, the lack of datasets providing
examples of attacks explains why works in a supervised setting
are rare. This work, which takes place in this latter context, is
thus different from this point of view from the research works
reviewed thereafter.

The authors in [3] used semi-supervised learning to detect
anomalous ADS-B messages. They based their technique on
a LSTM encoder-decoder architecture. Normal sequences of
messages can be easily reconstructed with this architecture as
opposed to anomalous messages which cannot be successfully
reconstructed (i.e. a high reconstruction error indicates an
attack). In [7] sequences of ADS-B messages are transformed
into sequences of images in which the dimension of shapes
and colors represent features such as latitude, longitude and
altitude. Since these images evolve relative to time, they can be
treated as videos, and for this reason a Convolutional-LSTM
encoder-decoder is used for anomaly detection. The authors
in [4] used a model that learns to predict the next message
from a window of successive messages. If the prediction is
far from the observed message, an anomaly is detected. The
model that they used is composed of a LSTM layer containing
14 units followed by a fully-connected layer of 7 units, with
one output for each message feature.

In [8] a hidden Markov model is used, where hidden states
are associated with normal historical ADS-B data and other
ones for the observed ADS-B data. To obtain the parameters
of the model in a dynamic manner a sticky hierarchical
Dirichlet process is used. The authors in [9] were able to
detect anomalies by comparing the observed flight relative to
the estimated optimal waypoint route: if it is far enough it
is considered as a potential anomaly. Using this technique, a
route is divided into multiple segments bounded by reference
waypoints. Then the points in each segment are partitioned into
two clusters using Agglomerative Hierarchical Clustering. The
route passing by the centroids of clusters which are the closest
to reference waypoints is considered as the optimal.

In [10] a set of flights is clustered using DBSCAN. Then
50 points are sampled from each flight. After that, in each
cluster an autoencoder is used which takes 50 input data points
for each flight to detect anomalies based on the magnitude of

the reconstruction error. This work uses thus a combination
of clustering and an auto-encoder architecture, which is the
deep learning model mainly considered in works studying the
detection of spoofing attacks targeting the ADS-B system.

All these mentioned papers are not based on supervised
learning which was an incentive for the authors of this paper
to choose these conditions. In a previous work, published in
[5], a first evaluation of the interest of supervised training for
the detection of attacks on the ADS-B protocol was completed.
However only one type of anomalies was used for detection
(random punctual altitude changes). In this paper, which does
not only target the altitude feature, two more types of attacks
(gradual attack and waypoints attack) are tested for anomaly
detection and a different detection strategy is also introduced.

III. DETECTION OF FALSE DATA INJECTION

A. Generation of Labeled Attacked ADS-B Messages

As highlighted previously, anomaly detection in the litera-
ture uses only semi-supervised and unsupervised learning. In
this paper we propose a technique to detect anomalies using
labeled messages (supervised anomaly detection) to train a
deep learning model. These messages are obtained thanks
to a software, called FDI-T (which stands for False Data
Injection Testing framework), designed by colleagues in our
laboratory, allowing the generation of false air traffic data [11],
[12]. This software implements an alteration process making
it possible to define various scenario attacks according to
alteration directives. Fig. 1 gives an overview of the alteration
process. It consists of 5 items which are detailed below.

First, ADS-B messages are downloaded from the OpenSky
Network (opensky-network.org) [13], a community-based re-
ceiver network which continuously collects air traffic surveil-
lance data. For the sake of having balanced datasets (50%
attacked messages, 50% not attacked messages) half of the
recordings are totally attacked and the other half is not touched
at all. Second, in order to realize attacks on ADS-B data, di-
rectives (or instructions) in a domain specific language (DSL)
are used to describe the alterations to be performed on the
original recorded data. Each instruction is then processed by
FDI-T (third item) to call the alteration engine in charge of the
specified alteration (fourth item). Finally, the resulting altered

Fig. 1. Alteration process overview - image drawn from [12].



data are recorded. Note that the FDI-T software has also been
used to acquire ADS-B datasets to test anomaly detection AI
models in another work done in our laboratory [6]. In this work
two types of attacks were considered for anomaly detection:
gradual attacks and waypoints attacks.

A gradual attack of ∆x to a feature x in ADS-B messages
means that ∆x, 2∆x, 3∆x, etc. are added to the feature x
in the first, second, third,... message respectively. For the case
of gradual attacks detection, attacks are separately inflicted
on altitude, ground speed, track, latitude and longitude, i.e.:
gradual attack of 75 feet, 1.8 knots, 0.9 degrees, 4.88× 10−3

degrees, 1.28 × 10−2 degrees for the altitude, ground speed,
track, latitude, longitude respectively. These values are com-
puted by finding the mean difference of the features in non
attacked messages. The following DSL instruction was used
for the gradual attack of ∆x = 75 feet targeting the altitude:

“alter all planes at 0 seconds with values ALTITUDE ++= 75”.

The other features were gradually attacked in the same manner.
Another type of attack tested for detection is the waypoints

attack. A waypoints attack is an attack in which the trajectory
is deviated (using an Akima interpolation [14]) to pass by
specific selected points with known latitude, longitude and al-
titude. An example of a waypoints attack on a flight connecting
two US cities is shown in Fig. 2 and is also presented in detail
in Fig. 6 which will be explained in Section IV.

(a) Before the attack

(b) After a waypoints attack

Fig. 2. Screenshots of the ADS-B false data injection software.

B. Meta-messages Generation and Detection

In order to detect attacks, the process described in Fig. 3 is
followed. First ADS-B messages corresponding to 120 ran-
domly chosen flights are downloaded from the OpenSky
Network. These flights are not restricted to a specific area, they
are dispersed all over the globe and contain all of the different
phases of flight: take off, climb, cruise, descent and landing.
Since the features that will be used for anomaly detection are
distributed among multiple categories of messages (Identifi-
cation, Position and Velocity messages), these messages are
combined into meta-messages (as can be seen in Fig. 4).

In other terms, messages are vectors with missing data
and the process of combining consecutive different types of
messages into meta-messages is just filling missing features
from previous messages. Then the difference for all the meta-
messages between two consecutive meta-messages is com-
puted as seen in Fig. 5. This process is applied to all the flight
data gathered in the first step. Among the obtained differences
of meta-messages from the 120 flights of the dataset, the
messages of 100 flights are used to train a model to detect
ADS-B anomalies and the remaining 20 flights to test it.

Finally for the detection of anomalies a LSTM is trained.
A Long Short-Term Memory (LSTM) is a special kind of
recurrent neural networks (RNN) created to tackle the problem
of vanishing gradients that a regular RNN suffers from [15].
The input of our LSTM is a look back window of differences
of meta-messages, where the number of time steps is defined
by the lookback value. Its output is one dense neuron with
a linear activation function which captures the state of the
window, i.e. either a normal or an attacked window.

The choice of the LSTM architecture used in this study is
based on the result of our previous work [5] which focused
only on the detection of random point changes in altitude.
Indeed this work concluded that an LSTM containing in-
termediate layers of 64 units and 32 units, trained with a
”nadam” optimizer, gives the best performance for ADS-B
anomaly detection compared to other architectures such as the
Bidirectional LSTM, 1D Convolutional Neural Network, and
so on. Note that in our case, scaling should not be applied on
the data or it will deteriorate the detection performance.

IV. EXPERIMENTAL RESULTS

The detection performance of our technique is computed in
terms of Recall, Precision and F-score. The Recall also called
Sensitivity and True Positive Rate (TPR) represents the frac-
tion of detected attacked messages relative to the total number
of attacked messages. The Precision denotes the proportion of
detected attacked messages that are correctly identified as real
attacks. Finally the F-score is the the harmonic mean of the
precision and recall [16].

In order to train and test the LSTM model on GPUs, the su-
percomputer facilities of the “Mésocentre de Franche-Comté”
were used. Our code is based on the Keras Python library.
First the architecture is trained for 10 epochs, 50 epochs and
100 epochs in order to test the effect of the number of epochs
on the detection performance as seen in Table I. The attack
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used for this assessment is a gradual attack of the longitude
equal to 1.28× 10−2 degrees.

Since the performance did not increase considerably,
10 epochs can be enough to have a good detection performance
for the following tests while having the shorter training time.
Indeed the training time is proportional to the number of
epochs and an epoch takes 14 seconds to be completed (for
example it takes 2.33 minutes to finish 10 epochs). The
difference between training times is not negligible especially
due to the following need to also train models for the gradual

TABLE I
EVALUATION OF THE STACKED LSTM USING DIFFERENT NUMBERS OF

EPOCHS (LAYERS OF 64 AND 32 UNITS - LOOKBACK VALUE OF 10)

Epochs %Precision %Recall %F-score
10 99.89 99.70 99.80
50 99.94 99.65 99.79
100 99.94 99.82 99.88

attacks targeting other features. Lookback values of 5, 10 and
20 were tested in the detection of average gradual attacks.
Their results are summarized in Table II. It can be noticed
that when the lookback value is increased, most of the time
the F-score also increases. However this gain in F-score is
minor. For this reason a lookback value of 10 was used for
the following tests balancing in this manner the training time
and the detection performance. In order to compare the gradual
attack detection with other previous works [3], the altitude was
attacked gradually by 400 feet. Our detection performance
in terms of True Positive Rate (TPR) and False Positive
Rate (FPR) compared to the best performance obtained in [3]
using one detection window with a lookback equal to 15 is
summarized in Table III. FPR, also called Fallout, represents
the proportion of detected attacked messages that are in reality
not attacked [16]. It is clear that using our technique, a
considerable detection performance improvement is obtained
(40.93 increase in %TPR and 3.84 decrease in %FPR).
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TABLE II
EVALUATION OF THE STACKED LSTM USING DIFFERENT LOOKBACKS

FOR THE DETECTION OF GRADUAL ATTACKS

Feature attacked Lookback %Precision %Recall %F-score
5 99.35 99.43 99.39

altitude 10 99.63 99.76 99.69
20 99.93 99.69 99.81
5 98.86 99.48 99.17

ground speed 10 99.23 99.60 99.42
20 99.29 99.68 99.49
5 96.91 99.15 98.02

track 10 97.46 99.45 98.44
20 97.52 99.50 98.49
5 99.90 98.18 99.03

latitude 10 99.67 98.91 99.29
20 99.72 98.97 99.34
5 99.83 99.01 99.41

longitude 10 99.89 99.70 99.80
20 99.60 98.95 99.27

TABLE III
DETECTION PERFORMANCE COMPARED TO HABLER & SHABTAI

(MOSCOW DATASET) FOR 400 FEET GRADUAL ALTITUDE ATTACKS

%TPR %FPR
Proposal 99.97 2.95 × 10−2

E. Habler and A. Shabtai 59.04 3.87

Now a meta-model is tested. It uses the different models
trained separately and detects the presence of an attack if
at least one of the previously mentioned features (altitude,
ground speed, etc.) is attacked. The performance of this meta-
model is summarized in Table IV. The F-score obtained is
96.09% at worse with a Precision of 93.15% which is still
good but a little worse than individual models as seen in the
previous tables. The reason for the decrease in F-score is the
slight loss of Precision which is caused by the False Positives
of the different models adding up. In order to remedy the
loss of Precision, we then considered an attack detected if a
certain percentage of windows (and above) from a sequence of
windows is attacked: the obtained performance is summarized
in Table V. Note that it was considered that a given percentage
of attacked windows (95% and above) from a sequence of
windows need to be attacked instead of the whole sequence to
prevent eventual False Negatives from deteriorating the Recall.
Using this technique, the Precision becomes at worse 99.44%
instead of 93.15% and the F-score 97.18% instead of 96.09%.
Although a better Precision was obtained, there was a small
decrease in Recall which highlights a slight trade-off between
Recall and Precision using this technique.

For the waypoints attack as seen in Fig. 6, using the
same technique, a good detection performance was also
reached: Precision=98.77%, Recall=97.39%, F-score=98.08%.
However, all the results presented so far were obtained using
one training set and one testing set for each result. This way
of obtaining the performance is not always enough since deep
learning models can give unstable results. For this reason a
stratified 6-fold cross-validation was applied whose results are
shown in Table VI. This table shows the mean and standard
deviation of the Precision, Recall and F-score for gradual and
waypoints attacks. The mean F-score is in the order of 99%
and its worst standard deviation is 0.4420 hence our technique
is stable enough to detect the previously mentioned anomalies.

TABLE IV
EVALUATION OF A META-MODEL

FOR THE DETECTION OF GRADUAL ATTACKS

Feature attacked %Precision %Recall %F-score
altitude 93.58 99.80 96.59

ground speed 96.50 99.70 98.07
track 96.49 99.53 97.99

latitude 93.15 99.22 96.09
longitude 93.18 99.77 96.36

all features 96.97 100 98.46

TABLE V
EVALUATION OF A META-MODEL FOR THE DETECTION OF GRADUAL
ATTACKS USING SEQUENCES OF 100 WINDOWS, WHERE AN ATTACK

IS DETECTED IF AT LEAST 95 OF THEM ARE ATTACKED

Feature attacked %Precision %Recall %F-score
altitude 99.49 98.85 99.17

ground speed 99.73 98.57 99.15
track 99.72 97.14 98.41

latitude 99.44 95.02 97.18
longitude 99.46 98.73 99.09

all features 99.76 100.0 99.88
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Fig. 6. Waypoints attack where ∆Latitude = 4.88 × 10−3 degrees, ∆Longitude = 1.28 × 10−2 degrees, ∆Altitude = 75 feet.

TABLE VI
EVALUATION OF THE STACKED LSTM

USING A STRATIFIED 6-FOLD CROSS-VALIDATION

Feature attacked %Precision %Recall %F-score
altitude 99.92 ± 0.0130 99.83 ± 0.0294 99.88 ± 0.0114

ground speed 99.77 ± 0.0301 99.74 ± 0.0178 99.76 ± 0.0120
track 99.45 ± 0.0941 99.41 ± 0.1680 99.43 ± 0.0648

latitude 99.41 ± 0.3280 99.26 ± 0.5940 99.34 ± 0.4420
longitude 99.89 ± 0.0482 99.66 ± 0.1320 99.78 ± 0.0728

waypoints - Fig. 6 98.42 ± 2.23 99.08 ± 0.154 98.73 ± 1.08

V. CONCLUSION

A supervised deep learning strategy to detect false data
injection attacks aiming at altering properties of messages
in the ADS-B protocol has been presented. This strategy
was evaluated for the identification of gradual attacks and
waypoints attacks created using a false data generator. The
effects of the number of training epochs and the lookback
value on the detection performance were tested. It was found
that only a minor improvement of the detection performance
results from increasing the number of training epochs and the
lookback value. We were able to detect gradual attacks of
the altitude, ground speed, track, latitude and longitude using
individual models trained on each individual attack, as well
as using one meta-model made of these individual models.
In addition to that the strategy was successful in detecting
waypoints attacks.
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