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Abstract

In this paper, we address the calibration of a family of magnetic manipulation systems composed of several coils that are moved
around by serial robot manipulators. We show in this paper that the calibration of the whole system ultimately results in calibrating
the manipulator and coil separately up to an unknown rigid transformation. For calibration of the coil, we propose to use a model
that has not been used so far in the literature; a control-oriented model which is sufficiently accurate and computes the magnetic field
in real time. A protocol for calibrating the magnetic manipulation system using the Nelder-Mead algorithm to estimate the model
parameters is presented. Calibration was performed through simulations and validated experimentally on a physical system. It was
observed that the root mean square error was reduced by 37% after calibration of the physical system, indicating an improvement

in accurately estimating the magnetic model.
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1. Introduction

In the last decade, there has been noteworthy development
in the field of microrobotics, largely attributed to the advance-
ments of micro-fabrication techniques and microscopy [1]. Re-
searchers are exploring various ways and techniques in which
systems can be developed to perform microscale tasks. Micro-
robots have several applications in engineering as well as in
the medical field. These include micro-manipulation, micro-
assembly, performing minimally invasive surgical operations
and performing targeted diagnosis and drug delivery [2, 3, 4].
Applications such as minimally invasive surgery have several
benefits which include; reduction in recovery time, medical
complication and infection risks [5].

With the size of microrobots, there is difficulty in control-
ling them due to viscous forces dominating inertia forces at the
micro-scale. Therefore, building of robots in the microscale
has technical limitations to engineers since scaling down of
concepts and designs used in the macro-scale is difficult and
at times impractical. Engineers therefore have to abandon in-
tuition gained from designing in the macro-world and instead
rely on the physics governing microrobot design and analysis.
Descending in scale, it becomes more and more interesting to
eliminate energy storage elements and introduce remote actua-
tion rather than design a sophisticated microrobot. An efficient
way to control microrobots wirelessly is by use of magnetic
fields. In addition, magnetic fields are easy to produce, have
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Figure 1: Magnetic manipulation of a microrobot using two coils. Each coil is
being displaced by a UR3 (Universal Robot) serial robot.

limited interaction with the human body and are able to transfer
large amounts of power [6].

Electromagnetic coils are a suitable choice in generating
magnetic fields since they are inactive when powered down
[7]. By modulating the magnetic field, it is possible to gen-
erate a force and torque which can be used in the control of a
microrobot. In particular, higher dexterity and efficiency can be
achieved by modulating the magnetic field through both current
variation and motion of the coils as initially shown in [8] and
later exploited in [9, 10, 11]. The use of mobile coils present
several advantages over the use of stationary bigger coils when
a large footprint of the patient workspace is needed. Large coils
which are heavy may result in complexities in the structural de-
sign thereby making the manufacturing process more expensive
[12]. In addition, larger coils would have higher inductance
which would limit the control frequency, increase the power



consumption and the heat dissipated. Therefore, in a bid to
have a large workspace with minimal energy expenditure, it is
essential to use mobile coils and move them close to the area of
manipulation.

Consider a magnetic manipulation system having several
coils made by mobile serial robots as seen in Figure 1. For
highly accurate positioning and control of a microrobot through
magnetic manipulation, a control-oriented model that is fast and
accurate to compute the magnetic field is required [13]. Accu-
rate modeling of the magnetic field can be achieved using Finite
Element Models but this is too slow for control. For control,
one usually relies either on the simplified dipole model or on
prerecorded magnetic field. It has been shown in [14] that the
dipole model is accurate for distances far away from the mag-
net. These approaches are not perfectly suited to multi-mobile
electromagnetic manipulation. To perform multi-mobile elec-
tromagnetic manipulation closed-loop control, a control-oriented
model is needed, i.e. a model that provides a trade-off between
the computation time and accuracy. One such model based on
complete elliptic integrals has been shown in [15] to be suitable
for closed-loop control of magnetically actuated robots. A cost
effective way to improve this model further is through model-
based calibration [16, 17]. Calibration is a process through
which parameters to a given system model are identified and
adjusted such that the output of the model fits well to the actual
output of the system [18]. Through calibration of an electro-
magnetic system, the positioning accuracy of a microrobot can
thus be enhanced by adjusting model parameters rather than
altering the mechanical structure of the electromagnetic sys-
tem. In [19] a generic magnetic model based on a multi-source
spherical multipole expansion was calibrated using nonlinear
least squares. Although numerically efficient, the model used
in [19] was less grounded into physics as the model in [15] and
was also not assessed in close vicinity of the coils.

In this paper a model of the full multi-mobile magnetic ma-
nipulation system (including kinematics of the manipulator) is
presented. It is shown that the calibration of the system needs to
be split into several subsystems which eventually results in cal-
ibrating the coil and a reference rigid transformation only. The
coil was modelled using the control-oriented model which pro-
vides a trade-off between its accuracy and computation speed
[15]. Sensitivity analysis on the model to investigate the signif-
icance of the model parameters is also presented.

This paper is composed of six sections. We first present
the background on calibration in Section 2. Modelling of the
magnetic manipulation system is highlighted in Section 3. Sec-
tion 4 presents calibration of the mobile magnetic manipulation
system and Section 5 is devoted to the calibration results. Con-
clusions and perspectives are drawn in Section 6.

2. Calibration background

Calibration has several phases which include; modelling,
measurement, parameter identification, error compensation and
finally validation [20]. The steps of calibration are described
briefly in the subsequent sub-topics with specific insight on
magnetic manipulation.

2.1. Modelling

The first step of calibration in this context is the formulation
of a mathematical model that describes the magnetic field. Sev-
eral models are in use for the computation of the magnetic field
[11]. Nonetheless, for real time control a model that is both ac-
curate and fast to compute is needed. It has been shown in [15]
that the magnetic model based on complete elliptic integrals is
accurate in the whole workspace area and takes less time to
compute as compared to existing magnetic models. Moreover,
when the coils are mobile, a kinematic model of the moving
structure is needed.

2.2. Measurement

This step involves collection of magnetic field measurement
data that will be used in the calibration process. This data is
obtained by measuring the magnetic field generated by the coil
in the workspace using a Hall effect sensor.

2.3. Parameter identification

Parameter identification can be defined as the numerical
procedure used to determine parameter values to the magnetic
model. This step has been addressed by several researchers and
various parameter identification algorithms have been used. In
this paper, we rely on the output error identification method
[20, 21] as shown in Figure 2.

Let £ define the set of parameters in the model, the aim is to
minimize the objective function generally defined from the root
mean square error (RMSE). The RMSE highlights the discrep-
ancy between the magnetic field computed from the model and
the one obtained from the measurement. To compute the de-
viation, €;, at a particular measurement configuration, i, in the
workspace, equation (1) is used:

€& =B T..&) - B(I,"T,) (1)

where B; is the estimated magnetic field from the model using

the control inputs (/ the current in the coil, *'T, the pose of the
coil in space) and the model parameters, £. B; is the measured
output.
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Figure 2: Calibration process through output error minimisation.

RMSE from several m points in the workspace is therefore
computed using equation (2):

RMSE = % 2)




The resulting cost function that needs to be minimized using
a numerical algorithm so as to obtain the optimal parameter

values &" is:
1 1 &
& =argmins | — ) el 3)
@ 2\m ,Z‘ l

Algorithms used in parameter identification include Sequen-
tial Quadratic Programming (SQP), Nelder-Mead, Levenberg-
Marquardt, genetic algorithm among many others [22].

2.4. Error compensation

Error compensation (also referred to as the correction step)
involves adjusting the parameter values in the control-oriented
model with the values obtained after parameter identification.
This is demonstrated by the arrow crossing the "Model’ box in
Figure 2.

2.5. Validation

This is the final step in the calibration process. It involves
comparison of the magnetic field obtained from the modified
model and the measured one. Measurement data used in this
step must be statistically independent from the data used in pa-
rameter identification. The error computed from equation (2)
should be as minimum as possible, so as to ascertain that the
model is valid. If the model is not validated, parameter identi-
fication is done again, or new measurement data are taken or a
new model of the electromagnetic system is formulated again.

3. Modelling of the magnetic manipulation system

3.1. Generic case
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Figure 3: Schematic of a magnetic manipulation system.

A generic case study will be first developed. A schematic
of a magnetic manipulation system is as shown in Figure 3.
It consists of several serial robots, each with a magnetic coil
attached to the end-effector. Further developing this generic
case study, each coil generates a magnetic field B;. The to-
tal field at a position configuration P in the world reference

frame for n coils, assuming the superposition theorem holds is
YB("P) = Z’}zl "B ;("P) [3]. To obtain B;, modelling of one
circular coil loop, the coil and the robotic manipulator needs to

be done.

3.2. Modelling of one circular coil loop

Consider a circular current loop of one coil in the spherical
coordinate system with loop radius a centered at O as shown in
Figure 4.
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Figure 4: Circular current coil loop.

The magnetic field in a point P of spherical coordinates
(1,8, ¢) computed using complete elliptic integrals is [15]:

_ Mol a* E(k)cos(6)
Bi(r,0) = 3 \/a2+r2+2arsin(6) a+r2=-2arsin(6)
By(r,6) =" L £(r6
o(r,9) T Ala*+r2+2arsin() f( ) (@)
By -0
_ E()(r*+a*cos(26)) K(k)
f(r’ 0) - [25in(9)(a2+r2—2arsin(«9)) - 2sin(0)]

where g is the vacuum permittivity, K(k) and E(k) are the
complete elliptic integral functions of first and second kind:

3 1
Kk) = f —df
0 V1 -—k%sin26

. ®)
Ek)= | V1 -K2sin26d0
0
and k is the modulus of the elliptic integral functions:
4arsing
? = (6)

a2 + r? + 2arsind

However, the expressions in equation (4) are not defined for
k = 0. When k << 1, the continuity is done by using [23]:
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With the continuity expression in equation (7), equation (4) is
simplified and the magnetic field for k << 1 becomes:

B (}" 0) — ,uola2 COS(0 (2a2+sin(@)ar+2r?)
e 4 R (a2+2§in(e)ar+r2)%2
Be(r, 9) — _poia sm(@) (a +s'm(9)ar—r )5 (8)
(a2 +2sin(Q)ar+r?)?2
B¢ = 0

In addition, note for consistency sake that when r >> a, the
expression in equation (8) is simplified into the dipole approxi-
mation [24].

3.3. Modelling of one coil

The magnetic coil is composed of many single loops. Fig-
ure 5 shows the actual coil and its schematic used in this case
study. Although the actual wiring is not perfectly known or
made, we assume a regular model as shown in Figure 6, where
d is the diameter of the copper wire used in the winding. Cop-
per wire is wound cylindrically as seen in Figure 5a. Loops of
wire wound in the radial direction are referred to as radial loops
and loops of wire along the axis are referred to as axial loops.
They are shown in the schematic of the coil in Figure 5b.
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Figure 5: (5a) Side view of the actual coil. (5b) Schematic representation of the
various parameters that need to be identified during the calibration phase.

For modelling and later calibration to be done on the coil,
information from the model given in equation (4) needs to be
extracted [25]. These comprises of: constants, measured vari-
ables and parameters to be estimated. From the model, the con-
stant is vacuum permittivity, x4, measured variables are the po-
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Figure 6: Side view of a regular model of the coil.

sition of the measurement point (obtained from r and 6) and the
parameters to be estimated are:

e External loop radius (R,).

e Wire radius (R,,).

e Number of loops radially (N,).
e Number of loops axially (N,).

These parameters need to be taken into account in equation
(4) so as to compute the total magnetic field in the coil. The
parameter values to the assumed regular model of the coil might
not be correct, hence the need for calibration to identify them.

Expressing the radius, a and height, dz of each loop as a
function of its index in the radial wiring, n, and axial wiring,
ng:

a(n,) = (R. — Ry) — 2R(n, — 1)) )

dz(ng) = 2R,(ng — 1)) + R, (10)

There is also need to compute r and 6 for each loop in the
coil:

r(Png) = (X2 + Y2 + (Z + dz(n,))?)? (1)
3 Z + dz(n,)
6(P,n,) = arccos(W) (12)

where P = (X,Y,Z)" are the coordinates of the point P in the
reference frame ¥, attached to the coil.
The magnetic field sum for each loop axially and radially in
the coil reference frame is then considered to compute the total
magnetic field:

Na Nr

‘B.(P) = Z—l Z—l B, (r(P,n,), 0(P, n,), a(n,))

. B Na Nr (13)
B@(P) - Z_:] Z—l B@(r(P’ I’la), G(P’ na)’ a(n,))

“By(P) =0



3.4. Modelling of the full multi-mobile magnetic manipulation
system

The multi-mobile electromagnetic manipulation system is

first subdivided into several arms. Figure 7 shows the schematic

representation of one arm in two configurations. ¥, is the
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Figure 7: Schematic of one arm of the magnetic manipulation system in a ref-
erence (0) configuration and in a generic (i) one.

world coordinate system attached to the static Hall effect sensor
used for calibration, F; the j’th robot base frame, ¥, the j’th
robot end-effector frame and ¥; is the j’th robot coil frame.
Expressing the magnetic field in the world frame at the origin
of ¥,, (measurement point):

wl’“;j(wo"') — Wch chj(f,n!j?w Tc_jl WO"') (14)
. - wO
where B = ol YO = ( | | are the projective coordinates of
vector B and point O , &, ; is the vector of coil model parame-
w oWy
tersand ¥ 7T,; = I;” i"*’ which is the pose of the coil frame

relative to the world frame given by the kinematic chain:
"Tej="TyFKM(q;.&, )T, (15)

where FKM is the forward kinematic model of the robot, ¢ s
the variable robot joint values and & 2.J° the constant kinematic
parameters to the robot. *7}; and eiT, ;j are also constant trans-
formations.

The total magnetic field at the origin of the Hall effect sen-
sor in the world frame from all the arms of the multi-mobile

electromagnetic system is therefore given by:

WB(WTbjs q]’ fg’jsej Tc‘js fmdﬁw O) =
n
DT B K " Tei()7 O) (16)
J=1
where "T,;(-) means that equation (15) is used to compute 7
using the variable ¢; and constant parameters "7}, eiT, ; and

g:g,j :

4. Calibration of the mobile magnetic manipulation system

Using equation (16) directly in the calibration cost function
would yield a high dimensional numerical problem. Careful
examination of the equation shows that the numerical problem
can be simplified.

4.1. Simplifying the calibration problem

4.1.1. Separate calibration of each arm

In building the model, we assumed as most researchers [3]
that the inter-coil magnetic interferences are neglectable and
that the superposition theorem holds. Additionally, since the
coils can be individually turned on and off, a reasonable cal-
ibration protocol is to turn them on one at a time. As a con-
sequence, only one term in equation (16) will be non-zero at
a time and each arm can thus be simplified in n subcalibration
problems for each m configuration.

1
argmin =

0T 9T e jiim i) 2

1 & ~ (i) N

— wB Y —wT, (D cig. D2

w 2B, = 00 B
(17

4.1.2. Robot forward kinematic calibration

To use the FKM, the robot needs to be calibrated. Cali-
bration of the serial robot necessitates moving it in its whole
workspace and taking measurements. Using directly equation
(16), a full calibration of both kinematic and magnetic parts of
the model is not possible. Indeed, the coils mounted on the end-
effector generate a magnetic field in a limited workspace (near
the coil). Measurements of the magnetic field in the serial robot
workspace which is significantly larger than the coil workspace
would be zero at most locations. To get relevant data on the
magnetic field, we are therefore restricted to a small workspace
i.e. near the coil. On that account, the calibration of the kine-
matic model of the robot needs to be done separately.

4.1.3. Robot-world and hand-coil calibration

With the assumption that the robot is already calibrated,
what remains of importance is the calibration of the coil as well
as the robot base to world (*'T};) and hand-coil (¢T, ;) transfor-
mations. Determining these two transformations is a problem
similar to the simultaneous robot-world and hand-eye calibra-
tion problem in [26]. However, since we cannot compute or
measure the full 4 X 4 transformation "7,; but only the 3 x 1
magnetic field value at the sensor point B("T.j, we need to
adapt the calibration method to this partial information through
further simplification.

4.1.4. Simplified calibration problem

Taking into account all the considerations above, the re-
maining unknown parameters are the transformation "7 of the
J'th robot coil with respect to the sensor and §,, ; the magnetic
parameters to the j’th coil model. Keeping the idea of hand-eye
calibration [27], a ’relative’ model using relative displacement
of the coil with respect to a reference configuration instead of
an “absolute’ model is written. Consider configuration (0) and



(i) after motion of the robot arm in Figure 7, the relative model
is given by expressing T, j(’)(-) as:

" - . _l . _ . . .
YT ) =T T YT (g, €, )7 P Tei(q, " 6, )T
(18)
Thus,
wTCj(t)(.) - WTC],(O) EJ'TCJ,‘I (O)AT(i) ngcj (19)

where (VAT is the displacement of the end-effector from 7,

to F. j(i). For the experimental protocol, we propose to use
only pure translations such that AR = I, therefore, QAT =
I OaA¢ 0

o
duces again the complexity of the calibration. Under this pro-
tocol, equation (19) develops as:

) . Indeed, it makes it simpler for the user and re-

i T
o di ” I “R. OAt;
chd ff(,) — ch(O) J @) (20)
0 1
and thus:
T
wen diff, =1 I —-9R.. At), .. ©)-!
T () =(0 1’ ) T,
_ WchT(O) _ejRCjT (O)At(l‘) _ chjT(]) Wtcj(O)
0 1
(21

Since we have the computer aided design (CAD) values of
the mounting brackets of the coil to the end-effector, we can
reasonably estimate the hand-coil transformation up to an accu-
racy which is in the order of magnitude of the FKM accuracy.
Depending on the machine used in the fabrication of the mount-
ing brackets, the hand-coil transformation accuracy can even be
better.

The error on “/R,;' ©At, is therefore of the same order
of magnitude as the error on A¢. It can be noticed that /;
vanishes and only “/R,; is needed. We can then use the CAD
values for ijL._,-T. Moreover, in most set-ups, “/R,; will be a 5
rotation or the identity. Consequently, removing the projective
notation the calibration becomes:

1 S w ) w cip @
_ — > I"B" - "R./"/B;" &,
argmin = m= (22)

(T 8,) in T 0f w, (©
(_e_]RCj (O)At(i) _ Wch( ) wtcj( )))”2

where "B" is the measured magnetic field at configuration
(i) of the robot using the Hall effect sensor and “/B j(’) is the
estimated magnetic field at configuration (i) using the model.
The values to "7 j(O) and &, are estimated through calibration.

4.2. Sensitivity analysis of the coil parameters

The coil model has many parameters and not all of them
may have a major influence on the output variability. In a bid
to understand the significance of each parameter, a sensitivity
analysis was conducted. This is a fundamental step before cali-
bration [28]. The elemental approach to performing sensitivity

analysis is utilizing partial differentiation and the simplest one,
varying one factor at a time (OAT). Depending on the nature of
the model, partial differentiation may become so complex ren-
dering implementation impractical. OAT is referred to as ’local
sensitivity’ since the analysis is only done for the selected point
estimates and not the entire distribution space. Another ap-
proach to sensitivity analysis is through factorial designs. Using
factorial designs for sensitivity analysis involves choosing a pa-
rameter distribution space and implementing the model for all
combinations in the distribution space. However, as the num-
ber of parameters and size of the distribution space increases,
so does the number of runs. Nevertheless, the same information
can be obtained through fractional factorial design approaches
such as Box-Behnken and Taguchi [29]. For this research, fac-
torial design was used, it has the following advantages:

e Parameter interaction effects are able to be analysed and
assessed. This leads to good understanding of how the
output response changes with the input parameters.

e Output response analysis is able to be done at different
parameter levels yielding valid conclusions over a wide
range of experimental conditions.

A full factorial design with seven levels of unitary step for the
parameter distribution space as shown in Table 1 was done us-
ing Minitab 17 Statistical software.

Parameter distribution
space
48E — 03m to 54E — 03m
46E — 05m to 52E — 05m
45t0 51
22 to 28

Parameter

External loop radius (R,)
Wire radius (R,,)

Number of loops axially (N,)
Number of loops radially (N,)

Table 1: Parameter distribution space used in factorial design.

It was done using simulation data based on the complete
elliptic integral model given in equation (13). To draw conclu-
sions from the sensitivity analysis, main effects and interaction
effects plots were studied. The main effects plot given in Figure
8a describes how the RMSE, defined in equation (2) changes
as the value of one parameter is varied. The x-axis on the plot
highlights the distribution space through which each parameter
is swept across.

How parallel the graph of a parameter is to the x-axis, in-
dicates the degree of variability in the model’s output due to
the considered distribution space of that parameter. The steeper
the slope, the greater the degree of variability due to that in-
put parameter. As seen from the plot, the external radius has
the greatest main effect and the wire radius has the least main
effect. However, to make a valid conclusion on the most influ-
ential parameter, the interaction effects between the parameters
need to be analysed. The interaction effects plot is shown in
Figure 8b.

In examining the interaction effects plot, lines for two pa-
rameters that appear to intersect indicate presence of interaction
while lines that appear to be translated and not overlap indicate



Main effects plots for root mean square error (RMSE)
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Figure 8: (8a) Main effects plot. How parallel the graph of a parameter is to the x-axis, indicates the degree of variability in the model’s output due to the considered
distribution space of that parameter. (8b) Interaction effects plot. Lines for two parameters that appear to intersect indicate presence of interaction while lines that
appear to be translated and not overlap indicate no interaction between the parameters.

no interaction between the parameters. It can be observed that,
there is no interaction between the external radius and number
of loops radially. However, there is a strong interaction be-
tween the external radius and wire radius and the number of
loops axially and radially. The strong interaction between the
external radius and wire radius can be attributed to the fact that
the equation used in obtaining the external radius is a function
of the wire radius. Hence, only one of them can be used in prac-
tice. The model can be simplified by excluding the wire radius
because its value can be obtained from measurement data of the
manufacturer.

4.3. Numerical solver selection

For parameter identification, several algorithms and opti-
mization methods have been put forth. These algorithms could
be categorized into; gradient methods, gradient-free methods
and genetic based methods [30]. One algorithm from each of
these categories was selected for this case study. Sequential

used to solve optimization problems in which the objective func-
tion is discontinuous, stochastic, non-differentiable or nonlinear
[32]. To analyse the performance of these algorithms, the met-
ric used was the root mean square error (RMSE).

To select which parameter identification method to use, cal-
ibration was first performed using the three different algorithms
using simulated data; sequential quadratic programming (SQP)
implemented as fmincon in MATLAB, Nelder-Mead algorithm
implemented as fminsearch in MATLAB and genetic algorithm.
Calibration was done using simulation data on a 5x5X5 regular
grid.

Simulation data was obtained numerically from the model
based on complete elliptic integrals in order to assess the con-
vergence properties of each algorithm. The starting values in
implementing the algorithms were the same for all the solvers.
Table 2 shows the results of the RMSE percent reduction after
calibration using each of the numerical algorithms.

quadratic programming (SQP), Nelder-Mead algorithm and ge- SQP Genetic Nelder-Mead
netic algorithm, all implemented in MATLAB 2019a were con- algorithm | algorithm
sidc?refi fqr calibration. SQP is an effective mthod used in the RMSE ) 88.4830% | 94.1784% 96.4259%
optimization of small and large problems having pronounced % reduction

non-linearities [22]. Nelder-Mead algorithm has been used in
parameter estimation where the values of the function are un-
certain and subject to noise [31]. Genetic algorithm has been

Table 2: Algorithm comparison using simulated data.



It is observed from Table 2 that Nelder-Mead algorithm has
the best performance when comparison is done using the per-
centage reduction of the RMSE. This is followed by genetic
algorithm and finally SQP. The performance of SQP could be
attributed to using the numerical Jacobian. A lower RMSE in-
dicates that the magnetic field computed by the model closely
matches the measured magnetic field. It is desirable that the
RMSE is as small as possible. In every calibration done using
simulation data, the Nelder-Mead algorithm outperformed the
other two. Nelder-Mead algorithm is an unconstrained direct
search algorithm. Unlike more traditional optimization meth-
ods that use information about the gradient or higher deriva-
tives to search for an optimal point, a direct search algorithm
searches a set of points around the current point, looking for
one where the value of the objective function is lower than the
value at the current point. Direct search methods are used to
solve problems for which the objective function is not differen-
tiable, or is discontinuous. The Nelder-Mead method has a rec-
ommendable performance in the vicinity of the local or global
minimum since the intensive computation of the first and sec-
ond derivative can be avoided [30].

5. Calibration results

5.1. Simulation of the coil calibration

For simulation purposes the transformation matrix 7, j(o)
in equation (22) was dropped and calibration done only on the
parameters to the coil model, £,,. Data used for the simulation
was obtained numerically from the model based on complete
elliptic integrals proposed in [15] which was shown to be close
and accurate enough in computing the magnetic field. Valida-
tion was done using simulated data on a 20 X 20 x 20 regular
grid with similar dimensions as the one used for calibration.
The ground-truth values, the parameter values before (values
used to initialize the numerical algorithm) and after calibration
are given in Table 3.

the data it uses and by it’s mere definition. Table 4 shows the er-
rors obtained after calibration while Table 5 shows the percent
reduction. As expected, the errors after calibration are less than
before calibration indicating an improvement in the parameter
estimation of the magnetic model.

Absolute error Before Alfter
calibration calibration

Maximum error(T) 0.0049 0.0033

Root mean square error(T) | 1.1000E — 03 | 4.2622F — 04

Table 4: Absolute errors before and after calibration using numerical data.

Relati Before After Percent
clallve error calibration | calibration | reduction

Maximum 0.0097 0.0066 | 33%

CIror

Root mean 0.0027 0.0008 | 64%

square error

Table 5: Reduction of relative errors after calibration using numerical data.

Maximum error is the maximum deviation between the com-
puted magnetic field and the measured magnetic field. A typical
location of where the maximum error might be pronounced is
on the sides of the coil as opposed to the interested workspace
whose dimension is 100mm by 100mm by 50mm. This can be
observed in Figure 9.

Table 6 shows the errors obtained in the interested workspace
after calibration while Table 7 shows the percent reduction.

g::;lmd Before After
calibration calibration
values
External loop 51 48 50.069
radius (mm)
Wire radius (mm) 0.49 0.46 0.4521
Number .of 48 45 52
loops axially
Number of
loops radially 2 22 23

Table 3: Ground-truth values, parameter values before and after calibration
using simulation data.

The following statistical metrics were then studied; maxi-
mum error, RMSE and relative error. For a better cross-validation,
an additional metric was used, the angular deviation between
the measured and modelled fields. The angular deviation is in-
dependent from the metrics used for the identification, both by

Absolute error Before After
calibration calibration

Maximum error(T) 7.7020E — 04 | 4.0204E — 04

Root mean square error (T) | 4.7405E — 04 | 1.8549E — 04

Table 6: Absolute errors before and after calibration using numerical data in
the interested workspace.

Relative error Before After Percent
clative error | alibration | calibration | reduction

Maximum 0.0027 0.0014 48%

error

Root mean 0.0017 0.0006 65%

square error

Table 7:
workspace.

Reduction of relative errors after calibration in the interested

A small RMSE indicates a tight fit of the model to the mea-
surement data. A small as possible RMSE is desired. It is ob-
served that after calibration the RMSE was reduced by 65%. To
get a more precise look of where the deviations are, a colourmap
of the relative errors and angular deviation in the workspace was
plotted. Plots of the relative error in the XZ and the XY plane
are as shown in Figure 9a and Figure 9b respectively. Relative
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Figure 9: Relative errors after calibration using simulated data.

error is the deviation divided by the measured magnetic field at
a particular point in the workspace. A higher relative error value
indicates a huge deviation at that particular point. From Figure
9a, it is seen that there is a huge magnitude of relative errors
on the sides of the coil as opposed to the rest of the workspace.
Regardless of the huge errors on the side of the coil, it is not a
point of concern since the microrobot during magnetic manip-
ulation will not be placed at that location

Plots of the angular error in the XZ and the XY plane are
as shown in Figure 10a and Figure 10b respectively. The an-
gular deviation illustrates the error between the orientation of
the computed field and the measured one. An angular deviation
induces an error on both the computed force and torque exerted
on the robot during manipulation. It is preferable to have the
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Figure 10: Angular errors after calibration using simulated data.

angular deviation as low as possible. From the colourmap plot
in Figure 10a, a comparison can be drawn to the colourmap
plot of relative errors discussed in an earlier paragraph. Major-
ity of the huge magnitude of errors are on the sides of the coil
as opposed to the interested workspace. As has been discussed,
the huge errors on the side are not a point of concern during
magnetic manipulation since the robot will not be placed at that
particular location.

5.2. Experiment

For the physical experiment, magnetic field measurement
data was collected in a 5 X5 x 5 as well as in a 8 X 8 X 8 equally
spaced grid. To generate the measurement grid, the coil was
translated in its X, ¥, Z direction with the help of a serial robot



(Universal robot 3) arm while the sensor was held in a fixed po-
sition on the worktable as shown in Figure 11. The former grid
was used for calibration while the latter for validation. The data
was collected in a workspace of length, 100mm, width 100mm
and height, 50mm. This workspace is close to the coil and is the
area of interest in magnetic manipulation.

Serial robot

Hall effect sensor

b

Figure 11: (11a) Experimental setup showing the serial robot, coil and Hall
effect sensor. (11b) Zoom on the Hall effect sensor and coil.

Measurement data was collected using a Hall effect sensor,
THM1176 from Metrolab. It is a 3-axis Hall magnetometer that
has a range from 100uT to 14T . The sensor also simultaneously
measured the magnetic field in all the three axes (X, Y, Z). Cur-
rent was provided to the coil through a power supply and to as-
certain that the right current magnitude was being delivered to
the coil, a multimeter was connected in the circuit. EZMag3D
software from Metrolab was then used in data acquisition of the
magnetic field from the sensor.

Parameter identification using equation (22) was done in
MATLAB using the Nelder-Mead algorithm. Parameters of
the magnetic coil, €, and the transformation matrix 7, j(()) ob-
tained from physical measurements used to initialize the algo-
rithm and the values after calibration are given in Table 8.

10

Parameter Parameter
values values
from physical after
measurements calibration
External loop
radius(mm) 46.5 53.32
Wire radius(mm) 0.30 0.346
Number of loops
axially 115 110
Number of loops
radially >4 46
Translation in
the X-axis (mm) —42.0 —31.78
Translation in
the Y-axis (mm) —26.0 —3620
Translation in
the Z-axis (mm) 17.0 22.00
Rotation in
the X-axis (rad) 1.57 1748
Rotation in 0 0
the Y-axis (rad)
Rotation in 0 0
the Z-axis (rad)

Table 8: Parameter values before and after calibration.

Similarly to the simulation results, Table 9 shows the er-
rors obtained after calibration while Table 10 shows the percent
reduction. On performing validation, it was observed that the
RMSE between the model and measurements was reduced by
37% after calibration.

Absolute error Before After
calibration calibration

Maximum error(T) 0.0092 0.0074

Root mean square error(T) 0.0043 0.0027

Table 9: Absolute errors before and after calibration using experimental data.

Relative error Before After Percent
clative error | alibration | calibration | reduction

Maximum 0.0885 0.0674 23%

error

Root mean 0.0414 0.0260 37%

square error

Table 10: Reduction of relative errors after calibration using experimental data.

Plot of the relative error and the angular deviation in the in-
terested workspace are as shown in Figure 12 and Figure 13 re-
spectively. The magnitude of errors obtained using experimen-
tal data was observed to be much greater than those obtained
using simulation data. This may be attributed to the positioning
accuracy of the serial robot and numerical errors that may have
arisen during processing of the collected data.
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Figure 12: Relative errors after calibration using experimental data.

6. Conclusions and perspectives

A calibration protocol used to calibrate a magnetic manip-
ulation system with multiple mobile coils has been presented.
The magnetic manipulation system was subdivided and each
coil calibrated separately assuming the superposition theorem
holds and that the robotic arms are perfectly calibrated. A control-
oriented magnetic model based on complete elliptic integrals
with its continuity extension was used. The protocol involved
identifying model parameter values to the electromagnetic sys-
tem by use of the Nelder-Mead algorithm. Calibration was
performed on both numerically generated data, as well as data
measured from a physical system. It was observed that the root
mean square error was reduced after calibration indicating an
increase on the model accuracy. A minimum as possible value
of the root mean square error is desired. In this research, it

11
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Figure 13: Angular errors after calibration using experimental data.

was assumed that the kinematic parameters to the serial robot
were perfectly known. In a case where they are not known, the
serial robot needs to be decoupled from the coil and its cali-
bration done separately. It was also assumed that the superpo-
sition theorem holds and that there are no couplings between
the electromagnets. This assumption might not always be true
especially when the coils are too close to each other and could
open up further research paths related to electromagnetics. In
future works, advanced control strategies to magnetically navi-
gate surgical instruments in relevant medical procedures will be
developed. The capabilities of our magnetic manipulation sys-
tem will also be improved by introducing ferromagnetic-cores
in the coils so as to achieve stronger magnetic fields. The in-
troduction of such cores would necessitate modification of our
control-oriented model.



7. Acknowledgements

This work is part of Multiflag project (ANR-16-CE33-0019)

funded by the French National Research Agency (ANR). It was
also supported by EIPHI Graduate School (Contract No. ANR-

17-EURE-0002), by Région Bourgogne Franche-Comté through

the COErCIVe project and by the Grand Prix Scientifique 2018,
Fondation Charles Defforey, Institut de France.

References

(1]

[2]

[3]

[4]

(3]

[6]

[7]

(8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

M. Kim, A. A. Julius, U. K. Cheang (Eds.), Microbiorobotics: biolog-
ically inspired microscale robotic systems, Micro & nano technologies
series, Elsevier, Amsterdam, 2017.

J. Sikorski, C. M. Heunis, F. Franco, S. Misra, The ARMM System:
An Optimized Mobile Electromagnetic Coil for Non-Linear Actuation of
Flexible Surgical Instruments, IEEE Transactions on Magnetics 55 (9)
(2019) 1-9. doi:10.1109/TMAG.2019.2917370.

J.J. Abbott, E. Diller, A. J. Petruska, Magnetic Methods in Robotics, An-
nual Review of Control, Robotics, and Autonomous Systems 3 (1) (2020)
57-90. doi:10.1146/annurev-control-081219-082713.

B. J. Nelson, I. K. Kaliakatsos, J. J. Abbott, Microrobots for minimally
invasive medicine, Annual review of biomedical engineering 12 (2010)
55-85, publisher: Annual Reviews.

M. J. Mack, Minimally Invasive and Robotic Surgery, JAMA 285 (5)
(2001) 568. doi:10.1001/jama.285.5.568.

J. Sikorski, A. Denasi, G. Bucchi, S. Scheggi, S. Misra, Vision-Based 3-D
Control of Magnetically Actuated Catheter Using BigMag—An Array of
Mobile Electromagnetic Coils, IEEE/ASME Transactions on Mechatron-
ics 24 (2) (2019) 505-516. doi:10.1109/TMECH.2019.2893166.

L. Yang, X. Du, E. Yu, D. Jin, L. Zhang, DeltaMag: An Electromagnetic
Manipulation System with Parallel Mobile Coils, in: 2019 International
Conference on Robotics and Automation (ICRA), IEEE, Montreal, QC,
Canada, 2019, pp. 9814-9820. doi:10.1109/ICRA.2019.8793543.

B. Veron, A. Hubert, J. Abadie, N. Andreff, Dealing with redundancy of
a multiple mobile coil magnetic manipulator: A 3rpr magnetic parallel
kinematics manipulator, in: ARK, 2016, pp. 201-208.

J. Sikorski, I. Dawson, A. Denasi, E. E. Hekman, S. Misra, Introducing
BigMag — A novel system for 3D magnetic actuation of flexible surgical
manipulators, in: 2017 IEEE International Conference on Robotics and
Automation (ICRA), IEEE, Singapore, Singapore, 2017, pp. 3594-3599.
doi:10.1109/ICRA.2017.7989413.

R. Chen, D. Folio, A. Ferreira, Study of robotized electromagnetic actua-
tion system for magnetic microrobots devoted to minimally invasive oph-
thalmic surgery, in: 2019 International Symposium on Medical Robotics
(ISMR), IEEE, 2019, pp. 1-7. doi:10.1109/ISMR.2019.8710208.

R. Chen, D. Folio, A. Ferreira, Mathematical approach for the design
configuration of magnetic system with multiple electromagnets, Robotics
and Autonomous Systems 135 (2021) 103674.

C. Chautems, B. J. Nelson, The tethered magnet: Force and 5-DOF
pose control for cardiac ablation, in: 2017 IEEE International Confer-
ence on Robotics and Automation (ICRA), IEEE, 2017, pp. 4837-4842.
doi:10.1109/ICRA.2017.7989562.

S. Chowdhury, W. Jing, D. J. Cappelleri, Controlling multiple micro-
robots: recent progress and future challenges, Journal of Micro-Bio
Robotics 10 (1-4) (2015) 1-11. doi:10.1007/s12213-015-0083-6.

A. J. Petruska, J. J. Abbott, Optimal permanent-magnet geometries for
dipole field approximation, IEEE Transactions on Magnetics 49 (2)
(2013) 811-819. doi:10.1109/TMAG.2012.2205014.

M. Etievant, A. Bolopion, S. Regnier, N. Andreff, An Improved Control-
Oriented Modeling of the Magnetic Field, in: 2019 International Confer-
ence on Robotics and Automation (ICRA), IEEE, Montreal, QC, Canada,
2019, pp. 6178-6184. doi:10.1109/ICRA.2019.8793679.

R. Bernhardt, S. L. Albright (Eds.), Robot calibration, 1st Edition, Chap-
man & Hall, London ; New York, 1993.

R. Johansson, System Modeling and Identification, Information and sys-
tem sciences series, Prentice Hall, 1993.

A. Elatta, F. L. Zhi, Y. Daoyuan, L. Fei, L. Pei Gen, An Overview of
Robot Calibration, Information Technology Journal 3 (1) (2004) 74-78.
doi:10.3923/itj.2004.74.78.

12

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

A. J. Petruska, J. Edelmann, B. J. Nelson, Model-Based Calibration for
Magnetic Manipulation, IEEE Transactions on Magnetics 53 (7) (2017)
1-6. doi:10.1109/TMAG.2017.2653080.

L. Ljung, System identification: theory for the user, 2nd Edition, Prentice
Hall information and system sciences series, Prentice Hall PTR, 1999.

T. Soderstrom, P. Stoica, System Identification, Prentice-Hall, Inc., USA,
1988.

J. Nocedal, Wright ,Stephen J, Numerical Optimization, Springer Series
in Operations Research and Financial Engineering, Springer New York,
2006. doi:10.1007/978-0-387-40065-5.

R. Schill, General relation for the vector magnetic field of a circular cur-
rent loop: a closer look, IEEE Transactions on Magnetics 39 (2) (2003)
961-967. doi:10.1109/TMAG.2003.808597.

I. S. Grant, W. R. Phillips, Electromagnetism, 2nd Edition, The Manch-
ester physics series, Wiley, Chichester [England] ; New York, 1990.

P. Renaud, N. Andreff, J.-M. Lavest, M. Dhome, Simplifying
the kinematic calibration of parallel mechanisms using vision-based
metrology, IEEE Transactions on Robotics 22 (1) (2006) 12-22.
doi:10.1109/TRO.2005.861482.

R. Horaud, F. Dornaika, Hand-eye calibration, The Interna-
tional Journal of Robotics Research 14 (3) (1995) 195-210.
doi:10.1177/027836499501400301.

N. Andreff, R. Horaud, B. Espiau, Robot hand-eye calibration using
structure-from-motion, The International Journal of Robotics Research
20 (3) (2001) 228-248. doi:10.1177/02783640122067372.

S. Ray, J. Mukherjee, S. Mandal, Modelling nitrogen and carbon cycles in
Hooghly estuary along with adjacent mangrove ecosystem, in: Develop-
ments in Environmental Modelling, Vol. 27, Elsevier, 2015, pp. 289-320.
doi:10.1016/B978-0-444-63536-5.00013-2.

J. Ochoa Robles, S. De-Leén Almaraz, C. Azzaro-Pantel, Design of
experiments for sensitivity analysis of a hydrogen supply chain design
model, Process Integration and Optimization for Sustainability 2 (2)
(2018) 95-116. doi:10.1007/s41660-017-0025-y.

Betsaida Lo-Amni Fernandez Difo, Automated Calibration for Numerical
Models of Riverflow, Ph.D. thesis, University of Stuttgart - Institute for
Modelling Hydraulic and Environmental Systems (Nov. 2016).

J. Larson, M. Menickelly, S. M. Wild, Derivative-free op-
timization methods,  Acta Numerica 28 (2019) 287-404.
doi:10.1017/S0962492919000060.

F. Tao, L. Zhang, Y. Laili, Configurable Intelligent Optimization Algo-
rithm, Springer Series in Advanced Manufacturing, Springer International
Publishing, Cham, 2015. doi:10.1007/978-3-319-08840-2.



