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ABSTRACT The control of a flexible beam using ionic polymer metal composites (IPMCs) is investigated
in this paper. The mechanical flexible dynamics are modelled as a Timoshenko beam. The electric dynamics
of the IPMCs are considered in the model. The port-Hamiltonian framework is used to propose an
interconnected control model of the mechanical flexible beam and IPMC actuator. Furthermore, a passive
and Hamiltonian structure-preserving linear quadratic Gaussian (LQG) controller is used to achieve the
desired configuration of the system, and the asymptotic stability of the closed-loop system is shown using
damping injection. An experimental setup is built using a flexible beam actuated by two IPMC patches to

validate the proposed model and show the performance of the proposed control law.
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I. INTRODUCTION

The port-Hamiltonian system (PHS) formulation and
passivity-based control have been widely used and demon-
strated to be effective for the modeling, analysis and control
of nonlinear systems [1], [2]. The classical port Hamiltonian
system was first introduced for the finite-dimensional system
described by ordinary differential equations [3] with appli-
cation to mechanical, electrical and chemical systems using
port energy variables. Later, the authors in [4] discussed
the infinite-dimensional port-Hamiltonian system with a new
geometric structure called Stokes—Dirac structures. The well-
posedness of the infinite-dimensional PHS was investigated
in [5], which shows that the passive propriety is very helpful
to prove the well-posedness of the PHS.

It is of great interest to use the PHS formalism for complex
multi-physics systems. Under the PHS framework, physical
natures are considered: energy conservation, dissipation and
energy exchanges between system components. The PHS en-
ables the direct and clear interconnection of different compo-
nents of the complex system via energy ports. Furthermore,
when associated with structure-preserving model reduction
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and passivity-based control techniques, the port-Hamiltonian
framework with physical interpretation is of great interest.
Many studies have been dedicated to passivity-based control
for multi-physics physical systems [6]-[10].

Ionic polymer-metal composites (IPMCs) are widely used
because of their core advantages: ease of fabrication, fast
response, large strain, and low actuation voltage [11]. Thus,
IPMCs have been increasingly used in various domains in
recent decades. Of particular interest is the application of
IPMCs in medical endoscopes. The use of smart material
provides additional degrees of freedom, which contribute
to the avoidance of irreversible damage and alleviation of
suffering. In [12], a micro-endoscope actuated by IPMCs
to drive the bending movement was proposed for endonasal
skull base surgery.

The proposed IPMC actuated endoscope system is com-
posed of two components: the electric dynamics of IPMCs
described by an ordinary differential equation and the me-
chanical flexible beam described by a set of partial dif-
ferential equations. Different physical properties of IPMC-
actuated endoscopes lead to a complex multi-physical sys-
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tem problem. Port-Hamiltonian modeling of an IPMC patch
actuator was proposed in [10]. The mechanical structure is
a polyethylene polytube, modelled as a flexible beam using
Timoshenko beam theory in a first approach. The complexity
of the multi-physics system motivates the use of the port-
Hamiltonian framework. Using the PHS formulation, all
physical properties of the complex system, such as the physi-
cal nature of IPMC actuators and the mechanical flexibility of
the beam, are considered. These components are considered
interconnected by the PHS formalism via the energy ports.

Many studies have been dedicated to the control of IPMC
actuators and flexible structures. The reader can find some
classical control analysis and control design methods for
flexible structures in [13], [14]. A reduced-order linear-
quadratic-Gaussian (LQG) controller was proposed in [15]
using an early lumping approach. However, the closed-loop
stability was not investigated, and only numerical results
were obtained. Of particular interest are the results in [16],
where a reduced-order LQG control design technique for
high-dimensional port-Hamiltonian systems was proposed.
The results are based on the LQG controller [17], [18]; then,
an equivalent port-Hamiltonian formulation and structure-
preserving model reduction were proposed. In [19], these
results were generalized to the infinite-dimensional case.
In [20], a nonlinear lumped parameter system of a flexible
structure using the PHS framework of a class of 1-D IPMC
actuated flexible structures was proposed. In that work, a
state feedback control law with a state observer for practical
implementation is proposed. However, with the increase in
number of links, the proposed model becomes very complex
and challenging to control design. To address these con-
straints, a classical passivity-based interconnection damping
assignment passivity-based control (IDA-PBC) method is
proposed based on a distributed parameter model in [21].
However, the early lumped approach is considered in the
previous work, i.e., and the control design is based on the
discretized model of the distributed parameter system. The
closed-loop stability has not been discussed when the de-
signed discretized state feedback control law is implemented
in the original distributed parameter system.

Unlike previous works, the proposed paper designs a
passivity-based optimal LQG control of the ODE-PDE cou-
pled system under the port Hamiltonian framework. The
PDE is used to address the structure’s flexible nature, and
the ODEs are used to describe the main dynamics of the
IPMC actuators. By choosing the weighting operators in
a special manner, the designed optimal LQG controller is
passive and has a Hamiltonian structure, which can guarantee
the asymptotic stability of the closed-loop system even when
we apply the reduced-order optimal controller on the original
PDE-ODE system. This stability issue is not considered in
previous works [15], [22]. Furthermore, the effectiveness of
the proposed control is validated by experimental results.
The control law is implemented on the experimental setup
to validate the effectiveness of the proposed method and
achieve the desired performance of the flexible structure in
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both mono-actuated and multi-actuated cases. Preliminary
results were reported in [22], where a passive LQG controller
was proposed for a mono-IPMC actuated flexible structure.
Only simulation results were presented.

In Section II, a PDE-ODE interconnected model in the
port-Hamiltonian framework of a one-dimensional IPMC
actuated flexible structure is presented. In Section III, an
LQG and damping injection-based reduced-order controller
is proposed to improve the dynamics of the flexible beam
system. The closed-loop stability analysis is also illustrated
in the same Section III. An experimental setup is applied to
validate the proposed model and the proposed control law
in Section IV. Some conclusions and perspectives of future
works are given in SectionV.

Il. IPMC ACTUATED FLEXIBLE BEAM

We modelled the IPMC actuated endoscope using the PHS
framework. The considered flexible endoscope is on the 1-D
spatial coordinate z from a to b, as depicted in Fig 1. The
IPMC actuator patches are attached to the endoscope and
subsequently actuated to control its configuration.

IPMC actuators

7/ |

»---—>
T End-effector

Inner tube
Flexible beam

FIGURE 1. Flexible structure actuated by IPMC

A. FLEXIBLE BEAM WITH DISTRIBUTED CONTROL

Endoscopes are used for high-frequency scanning tasks in
medical diagnosis. IPMC actuators are attached to the struc-
ture, which leads to a composite material structure for the
overall system. When a high-frequency mode is excited and
the composite material structure is considered, the shear de-
formation cannot be neglected [23]-[25]. Hence, the mechan-
ical behaviour of the endoscope is described by a distributed
Timoshenko beam model (PDE). An actual endoscope may
undergo large deflection. However, in the first instance, we
focus on small deformations and control design and keep the
modeling as simple as possible. An experimental setup is
used to validate the results, for which a Timoshenko beam
model is sufficient to handle the primary dynamical be-
haviour. The mathematical modeling for beams undergoing
large deflections can be found in [26] and its PHS formula-
tion in [27]. The extension of the linear beam model to the
large deflection case using the port Hamiltonian formulation
is direct.

VOLUME , 2016
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The flexible beam is defined on the 1-D spatial domain
z € |a, b] and driven by the distributed bending moment, de-
noted by u4.This bending moment is generated by the IPMC
patches when we apply the applied voltage. We consider the
Timoshenko beam model [28], [29] with distributed input
and power conjugate output y4 under the port Hamiltonian

framework to be described as:
{ & = (J—R)Lx+ Buy 0

Yo = B'Lx

where 7 = (P12 + Py) is a skew symmetric differential
operator on the state space X = L?([a,b]; R*)! and
01 0 O 0 0 0 -1
100 0 o oo o
P=looo1| ®=looo o | @
0 0 1 0 1 0 0 O
The state wvariable vector of the system z =

[21, 22,73, 14)7 € X is defined as follows: 71 = %“’(z t) —

¢(z,t) is the shear strain, 75 = p(2) 2% (z,1) is the transverse
momentum dlstrlbutlon, ‘Z (z,t) is the angular strain, and
z, = 1,2 57 % (z,t) is defined as the angular momentum
distribution for z € (a,b), ¢ > 0 with transverse displace-
ment w(z,t) and rotation angle of the beam ¢(z,t). We
consider the total mechanical energy of the flexible beam as

a Hamiltonian, which is defined by the energy variables:
Hy(z) = 2 f Ka:l + 137% + ElZz% + i La2)dz
= 3 f (z)dz.

The energy of the flexible beam can also be presented in the
norm form as Hy(z) = 3 || = ||% with the operator £, which
is defined as

3)

E:diag{K % EI i}

The coefficients p and I, are the mass density and mass
moment of area, respectively. £/, K and I are the Young’s
modulus, shear modulus, and moment of area, respectively.

Let us define the dissipation operator as:

0 0 0 0
o R 0 0
R=10 0 0 o

0 0 0 R,

where constants R, and R, represent the translational and
angular viscous fractions, respectively.

An important advantage of the port Hamiltonian formu-
lation (1) is that one can prove the existence of a solution
only by a proper parametrization of the co-energy variable
Lx(z,t) at the boundary a and b [5] and a simple matrix
condition. The boundary port variables can be defined by

g-al i o

Lx(a,t)
'72([a, b]; R™ denotes the vector space of 2 integrable functions.
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From [5, Theorem 4.1], we can choose the boundary input as

w=Wpg [fﬂ 5)

where W is full rank and W EWE > 0with X = [? é] ,

then the operator Az = (J — R) Lz with domain
{f 8] = KerWp }
€o

generates a contraction semigroup on X.

In the following, we consider the boundary condition
according to Fig. 1. The flexible beam is clamped at one
side (a) and free at the other side (b). Thus, at the fixed side,
the velocity and angular velocity are zero; at the free side,
the force and moment are zero. The boundary conditions are
defined as the boundary input:

D(A) = {ﬁx € H' ([a,b];RY)

T

up = [v(a) w(a) F(b) T(b)] . (6)
where the matrix W g is chosen as:
-1 0 0 0 1 0 0 O
1 0O 0 -1 0 0 0 1 0
WB_%01000100(7)
0O 0 0 1 0 0 0 1

which satisfies the condition WpXW1 > 0.

According to the boundary conditions, the power conju-
gate outputs at the boundary are the reaction forces F'(a) and
T'(a) at the fixed side and the velocity and angular velocity at
the free side.

y = [F(a) T(a) —v(b) —w®)] .  @®

The distributed control of the beam is defined as follows.
The input mapping over the spatial domain is denoted bt
B :Cl— X;uq € C'is the distributed moment density
applied to the beam?, and y; € C is the distributed angular
velocity, which is the power-conjugated output of u,4. Each
distributed input is defined over the i—th interval on the spa-
tial space Ip; = [ov;, 5;] and denoted by operator b; (z)ug;(t),
where b;(z) = 1if z € I;; and b;(z) = 0 elsewhere and
the index ¢ € {1,2,--- ,m} with m actuators attached to the
beam. The mean angular Velomty is the output over the same
intervals fg; = yq; = f bi( x4dz Hence, we define the
distributed input of the ﬂex1ble 6eam as:

0
0
Bug = 0 ud(t) ©)]
b(2)
where B : C™ — X, b(z) [b1(2), -+ ,bm(2)] and
ug(z) = [uai(2), -, uam(2)]T. We define its power con-

jugate variable as the output variable as y; = B*Lx. Then,
the energy balance of the system can be computed as: % <

T
Yq Ud-

2C¢ is an i-dimensional complex space.
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B. IPMC ACTUATOR MODEL

The dynamics of IPMC actuators can be separated into three
different physical phenomena: the electric part, the diffusion
phenomena and the mechanical deformation dynamics. The
first part comes from the electric distribution over the double
electric layers between the electrodes. The diffusion phenom-
ena are the water molecules and caution flux due to differ-
ent potentials caused by the applied voltage on the double
electric layers. The last dynamics of the actuators are the
mechanical contributions due to their flexible structure. The
main physical deformation induced by the applied voltage is
mainly caused by the diffusion of cation flux between the
double electrode layers (see Fig 2) [11].

In this work, we assume that the IPMC actuator and
beam are perfectly interconnected. Hence, the mechanical
contribution of the IPMC patch is assumed to be a part of the
Timoshenko beam model. The IPMC electric dynamics are
modelled by a simplified lumped RLC control-oriented mode
[30]. The torque generated by the IPMC patch is proportional
to the applied voltage.

The port-Hamiltonian formulation of the equivalent elec-
trical model is given by:

Cation ®

Water molecule & &

Equivalent system

FIGURE 2. Physical principle of the IPMC actuator and its simplified electrical
model

. _Rl _-Im OH, I’m 0

a = t a

il PSR e N R T (10)
— OHg _ OHg,

y= [Im 0] 2y Yo = [0 Im] o2

T

with the state variables vector x, = ?|  where @ is the

electric flux and @ is the charge of the capacitor for each
IPMC equivalent electrical model:

T m
p=[p1- - pm] €R™,

Q=1[Qi - Qu]" eR™

We define the dissipation matrices R; € R™*" and Ry €
R™*™ of the IPMC actuator with resistances r1; and r9; of

4

each equivalent IPMC model:

T11 0 0
0 rig --- 0
Ri=1| . . . - an
L 0 0 Tim |
- 1 -
o 0 0
0 TL 0
Ro=| . 7 . |- 12)
0 o ... 1

T2m -
The Hamiltonian of the m IPMC actuators is their electric
energy defined as:

Ho=-2 +>L (13)

with capacitance matrix C' € R™ and inductance matrix L €
R™:

c; 0 - 0
0 Cy - 0
C= . . . ) (14)
i 0 C
[ Ly 0 0
0 Ly --- 0
L=1| . . ) . (15)
0O 0 - L,

The input variable u is the applied voltage on two elec-
trodes of the actuators, and u, is the current input, which
is generated from the mechanical deflection of the actuator
structure. From the power conjugate viewpoint, their associ-
ated outputs are the current y = 881:; < over inductance L and
voltage y, = 88%” of capacitor C.

According to the state variables and input-output defini-
tions, the interconnection relation between the flexible beam
dynamics and the IPMC patch dynamics is defined as:

B, 0 -~ 0
ugl |0 +k| [y k= 0 hky - 0
ug| |k 0] |yl | ¢+ .
0 0 - k,

The bending moments generated by the IPMC actuators
are proportional to voltage y, with constant coefficients k;.
Since the interconnection is power conservative, the applied
current u, on the capacitor is caused by flexible structure
movement.

Considering the IPMC actuator equation (10) and flexible
equation (1), using the power preserving interconnections,
the total system is defined by:

0
. J-R Bk}aH
kK'B* J-—R 0 (16)
J-R
y = [0 In O] 55,

VOLUME , 2016
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where u,y € R™, x = [z, 2,]T

s

[0 -1, Ry 0
J_R_[Im 0]_[0 RJ’

where 0 is the zero matrix with the appropriate dimen-
sion. The state space of the coupled system is X =
L?([a,b]; R*) x R2™,

Due to the energy-preserving interconnections (II-B), the
energy of the interconnected system can be rewritten as the
sum of the energies of the two parts:

H(z,2,) = Hy(z)+ Ha(xo) = %XTQX
=32z +3QTCQ + 5Ly
The energy matrix of the coupled PDE-ODE system is de-
fined by Q = diag[£, L™, C~1].

Ill. CONTROL DESIGN BY THE LQG METHOD WITH
DAMPING INJECTION

The control goal is to obtain a desired configuration of the
flexible beam with the desired performance by regulating the
input voltages of the IPMC patches. A control law of the
endoscope system (16) using an LQG control design coupled
with damping injection is proposed. The closed-loop control
schema is shown in Fig 3.

Current

LQG

§ + Controller <—|

t

injection

FIGURE 3. Closed-loop schema

A. LQG AND DAMPING INJECTION CONTROL DESIGN

The design is divided into two parts. First, we consider
an LQG controller to eliminate the vibration of the en-
doscope. By definition, LQG control is a combination of
linear-quadratic state estimation (LQE) and a linear quadratic
regulator (LQR). Thus, the disadvantage is that it has the
same order as the system itself. In our case, the LQG con-
troller is also a coupled PDE-ODE system as the system
(16). To implement this type of controller, its order must be
reduced. However, when the lower-order (finite-dimensional)
controller is applied to the PDE system, closed-loop stability
cannot be guaranteed in the general case, which is known as
the spillover effect. Hence, in this work, an LQG controller
using the port-Hamiltonian formulation and model reduc-
tion method is applied to obtain a lower-order controller.
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This controller can be easily implemented in real physical
systems, while closed-loop stability is simultaneously guar-
anteed. Second, damping injection is applied to reduce the
settling time of the system.

The LQG controller can be formulated as an observer-
based dynamical feedback:

x = (J-R)Q-BK —FB*Q)x+ Fu,
Ye = Kx

a7
with the LQG controller state X, filter gain F' and optimal
state feedback gain K. The two gains F' and K can be
computed as:

K=R'B*P. and F = P;QBR,*

with the unique solutions P, = P > Oand Py = Py > 0 of
the two Riccati equations [31]:

(J-R)QP;+P;Q(J —R)"~FP;QBR,'B*QP;+Q, = 0

(18)
QJ-R)'P.+P.J-R)Q-P.BR 'B*P.+Q =0

19)
@, and R,, denote the state and output white noise, respec-
tively. The weighting operators () and R are taken from the
optimal control problem, which minimizes the energy cost
function:

+oo ) )
Jc:/ x |2 + || u %) dt. (20)
| (H g+ Il ||R>

Remark 1. The two Riccati equations (18) and (19) are well
posed and have unique positive definite solutions if the fol-
lowing holds. (i) The pair ((J — R)Q, Q,lj/2) is exponentially
stable. (ii) The pair (Q'/?,(J — R)Q) is exponentially de-
tectable [31]. By using the energy function as the Lyapunov
function and considering the dissipation term R, these two
conditions can easily be verified on the system (16).

In general, LQG controllers are not passive, and we cannot
preserve the Hamiltonian structure when the controller is
interconnected with the plant system. However, when we
take the exceptional choices of weighting operators @ and R
and covariance operators ), and R,,, the closed-loop system
coupled with the LQG controller has a port-Hamiltonian
system, as presented in [19]:

Theorem 2 (Hamilt9nifln LQG method). If the control
weighting operators R, () and covariance operators R, Q.
are chosen such that

R=R,. (21)
Quz=Q ' (2QI*P.+2P.JQ+Q)Q 'z, (22

the LOG controller (17) is passive and has a port-
Hamiltonian realization. Moreover, the two unique solutions
of the operator equations (18) and (19) are related by

Q 'P. = PQ (23)

The above theorem results in an LQG controller with a
port Hamiltonian formulation. Using this Hamiltonian LQG

5
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control formulation, we can preserve the port Hamiltonian
structure in the closed-loop system. Furthermore, this passive
LQG method can provide a balanced reduction coordinate
because P.Py # I. This relation implies that the state
space can be separated into two parts based on different
importance values of their contributions to the controller
design. By taking this advantage, the design and reduction
of the controller can simultaneously proceed. We define
the balanced reduction coordinate for the port-Hamiltonian
system as follows:

Definition 3. If two Riccati equation solutions Py and P,
satisfy

Pf = Pc =3 = diag(on)neN S ,C(gg), (24)

where (0,)nen is a positive and non-increasing sequence
with o1 > o9 > --+ > g, > --- > 0. Then, we say that the
port Hamiltonian system (16) is Hamiltonian LQG balanced.

Define the transformation operator 7' that can diagonalize
P, and Py as:

TPT* =TtP,T™ =¥ 25)

Then, we can denote the realization of the port-Hamiltonian
system (16), i.e., Hamiltonian LQG balanced realization, as:
with Xy € o .

{ xp = (Jp —Ry) Quxp + Byu
y =
(26)

B; Quxy
To obtain the reduced-order system of the balanced realiza-
tion (26) and the reduced Hamiltonian LQG controller while
preserving their passivity and Hamiltonian structure, we use
the Petrov-Galerkin projection method. The details of this
method are shown in [32]. The reduced port-Hamiltonian
system is written as:
with =z, € R"

{ j7r = (Jr - RT’) Qrzr + Bru
y =
27

B 7T Qrx,
The reduced-order LQG controller is obtained using the
reduced-order system (27) and Theorem 2 and formulated as
a strictly passive PH control system:
with z.€ R"

{ jjc = (Jc - Rc) Qcmc + Bcuc
Ye =
(28)

Bl Q..
Then, this controller (28) is implemented in the original
coupled PDE-ODE system (16) to eliminate the vibration of
the endoscope using the passive preserving interconnection:

(oo &

To improve the response time performance, output feed-
back damping injection [33] is employed:

u=—rey, (30)

The output of system y is the current of the IPMC patch,

which can be easily measured. The main purpose of using
damping injection is to improve the response performance.

6

The dynamics of the system can be accelerated using positive
damping injection, i.e., the dissipation parameter of the con-
troller r. > 0. Furthermore, this parameter must be bounded
below the natural damping coefficient . > —r; to guarantee
the stability of the closed-loop system.

The oscillation of the flexible beam becomes more impor-
tant if the response dynamics are faster. The LQG controller
will be combined with the damping injection to find the
desired compromise between the vibration flexible beam and
the response time.

B. CLOSED-LOOP STABILITY ANALYSIS

In this part, we analyse the closed-loop stability of the orig-
inal coupled PDE-ODE system (16) with the reduced-order
controller (28). First, the existence of a solution is considered
in the following theorem.

Theorem 4. Let the state of the open loop system of (16)
satisfy 34 || x ||°< uTy and let the controller (28)
be strictly passive. Then, the closed-loop system with the
interconnection relation (29) is defined by

w(t) = Jaw(t),w(0) e X @31

where X = X x R" is the state space of the closed-loop

system, w = € X and T - X — X is a linear
operator defined by
(T-R)Q BkQ 0 <
Jaw(t) = | —-kTB*Q (J-R)Q —BIQ, Lj }
0 BTQ (Jr - Rr) Qr "
(32)
with
D(J.) = H([a, b]; RY) x R?™*", (33)
Moreover, the operator A, defined by A.w = Jw with
D(A.)=D(J) xR" (34)

generates a contraction semigroup on X.

Proof. The open-loop operator A = J — R of the system
(16) is a generator of the contraction semigroup [34], [35].
The closed-loop operator is a consequence of the power pre-
serving interconnection of the system (16) with the controller
(28). Then, from the Lumer-Phillips theorem, the closed-loop
operator A, generates a contraction semigroup. O

The stability of the closed-loop system (31) is considered
in the following theorem.

Theorem 5. Let the controller (28) be strictly positive real.
Then, the closed-loop system (31) is globally asymptoti-
cally stable, i.e., for any initial condition w(0) € X, the
unique solution of (31) asymptotically approaches zero, i.e.,
limy-yoc || w(t) | = 0.

Proof. Since the controller (28) is strictly positive real and
the system (16) satisfies %% | x [|I2< uTy, the closed-loop
system (31) has a compact resolvent [34, Thm 2.25]. We can

VOLUME , 2016
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choose the closed-loop energy function as a Lyapunov func-
tion candidate, and the asymptotic stability can be proven
using the Lyapunov argument in combination with Lasalle’s
invariance principle. To use Lasalle’s invariance principle,
we need the solution trajectory of the closed-loop system to
be precompact. Since the system is linear, the precompact
condition for the trajectory can be reduced so that the closed-
loop operator has a compact resolvent. In our case, we can
prove the norm of operator || (A — Al z ||¢>a || z |3
with @ > 0 because of the dissipativity of the closed
system. Thus, using Theorem 2.25 in [34], we obtain that
the closed loop system operator has a compact resolvent.
From 3 | z, |2 0.< —R. x2, the equilibrium profile satisfies

=y, = 0, and from Remark 1, it reduces to zero. O

IV. EXPERIMENTAL METHOD

In this section, we will use the experimental setup to validate
the proposed model and show the effectiveness of the pro-
posed control design method. In Subsection IV.A, the flexible
beam and the IPMC actuator dynamics are identified and
validated from the experimental data. Subsection IV.B uses
the positive damping injection method to track the periodic
signal reference. Subsections IV.C and IV.D present experi-
mental results of the passive LQG controller implementation
to the flexible beam for both mono- and multi IPMC patch
actuated cases.

The experimental setup is depicted in Fig. 4. A dSPACE
MicroLabBox compact prototyping unit and a computer with
MATLAB Simulink are used to acquire the measurements
and implement the designed control law in the system by gen-
erating a voltage across the IPMC patches. The displacement
measurement is acquired by a KEYENCE (LK-G152) laser
sensor to identify unknown parameters.

The dimension of the flexible structure L is 160 mm, the
width W is 5 mm, and the beam thickness 7" is approximately
0.20 mm. The mass density p is 936kg/m?. The inertia
moment of area I and angular moment of inertia I, can be
calculated by physical parameters L and W since the Timo-
shenko beam model is used, and their values are 4.7 x 10~ 12
m* and 4.34 x 10~12kg/m, respectively.

Remark 6. The controlled beam in the experiment is ac-
tuated by the IPMC patches, which leads to a composite
structure. The actuation of the beam is driven by the torques
generated from the IPMC actuators. Hence, the Timoshenko
beam assumptions fit quite well with the proposed experimen-
tal setup even if the considered beam is quite thin.

The Timoshenko beam model is discretized for the iden-
tification procedure in MATLAB®. A structure-preserving
discretization method (mixed finite elements method [36]) is
used to preserve the port-Hamiltonian structure of the model.

Sequential quadratic programming (SQP) and trust-region-
reflective algorithms (fmincon’) are used to identify the
unknown parameters. This optimal nonlinear model identi-
fication algorithm can be found in the identification toolbox,
which has been implemented in the MATLAB software®.
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Fig 5 illustrates the result obtained by the identification.
With a fitting percentage of 89.69%, the curve fitting of the
proposed model and the experimental data are validated. The
identified parameters of Young’s modulus, shear modulus
and two dissipation constants are shown in Table 1.
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FIGURE 5. Identification curve fit of the flexible beam

A. VALIDATION OF THE IPMC ACTUATOR
The length of the IPMC patch L, is measured as 3 x 1072
m. The inductance in the RLC circuit is considered negligible
compared to other electrical parameters in Table 2.

The blocking force of the IPMC has been measured by
different researchers and shown in [11], [30]. It has an almost

7
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TABLE 1. Identified parameters of the flexible beam

4.14 x 109 Pa
1.418 x 10° Pa
2 x 1075 kg.m3/s
1x 1072 kg.m/s

E Young’s modulus

K shear modulus

R Traversal viscous fraction
R, Angular viscous fraction

TABLE 2. Parameters of the IPMC actuator

C  Capacitance 5.8 x 1072 F
r1  Resistance rq 29.75 Q
ro  Resistance ro 700 ©2

linear relation with respect to the applied voltage:
F —4
i 3.75 x 107*N/V (35)

where F' is the measured blocking force and U is the applied
voltage. The bending moment of the IPMC actuator can be
computed by the blocking force as follows [30]:

2L,

M = 3 F (36)
From (35) and (36), we can find the coupling constant
M X
k; = T 7.5 x 107 N.m/V (37)

In the setup in Fig. 4, the flexible structure is actuated by
one IPMC patch on the clamped side. Fig. 6 illustrates the
identification result of the IPMC actuator with u = 1.5V

Step response

%)

Displacement [mm]
~

=—Experimental measure
=Model simulation

0 5 10 15 20
Time (seconds)

FIGURE 6. IPMC actuated compliant endoscope

B. TRAJECTORY TRACKING OF THE FLEXIBLE BEAM
Trajectory tracking of the flexible beam tip is an important
control problem. In this part, this problem will be investigated
by using the experimental setup. We employ the damping
injection (30), where output y is the current. The following
figure shows the experimental validation of the proposed
control law for reference tracking.
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FIGURE 7. Reference tracking

In Fig. 7, the tracked reference is a periodic signal. The
open-loop response cannot reach the reference since the re-
sponse time of the open-loop system is too slow with respect
to the reference. The control law (30) is used to track the
reference. The solid red line shows the experimental result.
We observe that the closed-loop system tracks the reference
signal with good precision.

C. CONTROL OF THE IPMC ACTUATED FLEXIBLE
BEAM

The settling time for the open-loop system is approximately
11s, as shown in Fig. 6. We illustrate the closed-loop perfor-
mances with the designed state feedback controls in Section
III. To apply the Hamiltonian LQG method defined in The-
orem 2, the control weighting operator is Q@ = Q;B,B;Q,
where the operator and matrix are defined in the balanced
realization of the system (26) and R = I. The cost function is
defined as shown in equation (20), which is the input output
energy function in this case. To guarantee the closed loop
passivity and stability, we compute the covariance operators
R, and @, using (21) and (22), which are defined in Theo-
rem 2. For implementation purposes, the designed full-order
LQG controller is reduced in a structure-preserving manner
to the lower-order controller, as shown in (28).

Fig. 8 illustrates the comparison between 2 different con-
trol laws for position assignment and open-loop response.

We observe that with simple positive damping injection,
the raising time is approximately 6 s instead of 11 s for
the open-loop system. However, we observe a significant
oscillation of the displacement due to the vibration of the
flexible beam, which may gradually irreversibly destroy the
flexible structure. By using LQG control plus positive damp-
ing injection control, we observe that the response time is
reduced to 6 seconds. Furthermore, compared to only using
the positive damping injection, the vibration has been signif-
icantly reduced.
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D. MULTI-ACTUATION OF A FLEXIBLE BEAM

To work in the human body environment, the endoscope
should be capable of being driven to the desired shape. In this
part, a multi-actuation case with two patches is considered,
as shown in Fig. 9. The first IPMC patch is attached at the
fixed side of the beam to achieve the largest deflection of
the beam’s free tip. The second patch cannot be placed too
close to the free end because the beam would be deformed
by the actuator and its wires. Hence, the patch is attached at
the middle of the structure. Then, the distributed input map B
of the flexible beam model (1) can be defined as:

0 0
0 0
B=| o 4 (38)
bi(z) b2(2)

where bi(z) = 1if z € [0,0.2L] and by(z) = 1if z €
[0.4L,0.6L] and by (2) = ba(z) = 0 elsewhere. The control
weighting operators are defined in the same manner as the
mono-actuation case, as shown in IV-C.The control objective
in this case is to drive the beam to a desired shape (position)
as fast as possible while reducing the beam vibration. The
desired shape is presented in Fig. 9. We first use the clamped
side IPMC actuator to move the flexible beam such that the
beam tip is displaced 5mm. Then, the second IPMC actuator
is used to change the beam configuration in the middle. In
this case, we use the second actuator to drive the beam tip to
10 mm.

In Fig. 10, we show the beam tip displacements (red
dashed line in the top figure) and middle displacement (solid
blue line). The clamped side actuator is activated at 3 sec-
onds, and the second actuator is actuated at 15 seconds.
We see that the tip displacement is changed by the two
actuators, while the middle displacement depends only on
the clamped side actuator. The second actuator has no impact
on the middle displacement except for a slight vibration at
approximately 15 seconds.

3L is the length of the flexible beam
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V. CONCLUSION AND PERSPECTIVE

An interconnected control model and LQG control strategy
of the IPMC actuated flexible structure using the PHS frame-
work is presented. The mechanical flexible dynamics are
modelled as a Timoshenko beam, while the electric dynamics
of the IPMCs are considered a lumped RLC equivalent
circuit model. Flexible dynamics described by the PDEs and
electric dynamics of the IPMCs described by an ODE are
interconnected by the PHS formalism via the energy change
ports.

The control strategy is composed of a Hamiltonian LQG
control method coupled with damping injection. Damping
injection is applied to improve the response time perfor-
mance, while the LQG controller reduces the oscillation.
The presented model has been identified and validated via
an experimental setup, where the flexible beam is driven by
IPMC patch actuators.

Finally, we implement the proposed control law in the
same experimental setup. The experimental results illustrated
the mono-actuation and multi-actuation cases to show the
effectiveness of the presented control methods.

A perspective of this work is to consider the uncertainty
of the parameters due to environmental reasons and the
disturbance from external perturbations. During the experi-
ment, the actuation of the IPMC actuator is sensitive to the
humidity of the working conditions. The robustness of the
control law should be considered in future work. Moreover,
in [10], a complete IPMC actuator model, where the diffusion
phenomena were considered, was proposed using the port-
Hamiltonian approach. The control design based on this
complete actuator model should be considered in the future.
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