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Abstract—Most research on energy efficiency in wireless sensor
networks has concluded that the communication subsystem
consumes significantly more energy than the sensing and com-
puting subsystems and that communication should be traded
for computation. This paper does an experimental study with a
Pysense sensor shield that utilizes WiFi and LoRa. It employs
two data management strategies for energy conservation that
have been demonstrated to be efficient through simulations and
examines the obtained results on real hardware. The findings of
this paper indicate that concentrating on lowering the energy
consumption of the communication subsystem was advantageous
while utilizing WiFi but was less effective and promising when
using LoRa. Additionally, it demonstrates the importance of
addressing many subsystems in order to extend the life of LoRa-
based devices.

Index Terms—Lora, LPWAN, Wireless sensor networks, en-
ergy efficiency, Internet of Things, power management

I. INTRODUCTION

Over the last few years, the rapid expansion of sensor
networks has intensified. Wireless sensor network (WSN) is
a term that refers to a collection of spatially scattered and
dedicated sensors that are used to monitor and record the
physical environmental conditions and to organize the acquired
data at a central point referred to as a Sink. WSN continues to
attract the interest of academia, equipment, chip manufacturing
sectors, and service providers capable of offering a variety of
user-specific or multi-featured applications via WSN.

One of the critical issues in IoT is the network energy
consumption [1], which is expanding at a fast pace as data
rates increase, the number of Internet-enabled services in-
creases, and the number of Internet-connected edge devices
proliferates. The future Internet of Things will significantly
increase network load and power consumption. Thus, green
and energy-efficient technologies must be used to maximize
the energy conservation of network devices. It has long been
recognized in WSN research that the radio module is the pri-
mary component responsible for sensor node battery drain [2].
For instance, the authors in [3] reports that communication is
more than 1000 times more energy-intensive than completing a
basic aggregation process. On the other hand, the authors in [4]

computed the energy cost of various operations, demonstrating
that the sensor’s sensing energy cost is comparable to the
radio’s cost. This, however, is only limited to the Extreme
Scale Mote system. The authors demonstrated in [5] that the
energy consumption of the sensing operation is comparable
to or even more significant than that of the radio in several
practical applications. They found that energy consumption
for sensing is not always inexpensive, particularly for power-
hungry sensors such as gas, flow control, or level sensors.

After reviewing the state-of-the-art of energy efficiency in
WSN, one can conclude that, in general and for the majority
of published articles, the emphasis on minimizing energy con-
sumption associated with radio communication was the most
critical factor in attaining energy efficiency. A recent survey
on energy efficiency published in 2020 [6] reflects what the
majority of research has established, namely that “most of the
energy consumption is exhausted for transmitting.” Numerous
energy-saving strategies could be used to address the issue of
battery-powered IoT devices consuming too much energy due
to radio communication [7]. This paper is concerned with data
reduction methods, a category of solutions that aims to reduce
the amount of data delivered to the sink.

This paper is an experimental study in the field of energy
efficiency for IoT, and the hypothesis it will attempt to demon-
strate is that, while focusing on reducing energy consumption
associated with radio communication when using WiFi has
been shown to be effective in numerous research studies, this
strategy may fail when using LoRa-based sensor networks.

To demonstrate the point made above, this paper will
examine two data-driven energy management approaches that
have been proposed for energy efficiency and transmission re-
duction and shown through simulations to increase the lifetime
of a sensor node. It will then implement these approaches
on real hardware and examine the energy consumption when
using WiFi and LoRa. The experimental findings obtained will
demonstrate that while utilizing LoRa, radio communication
is not the primary and only module that matters. Thus, the
assertion that “transmission reduction is the most energy-
efficient strategy” is untrue.

The rest of this paper is as follows. Section II discusses
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the two data-driven approaches for energy management used
in this paper. Section III presents the hardware used for
the experiments. Sections IV and V respectively discuss the
experiments done using WiFi and LoRa and the conclusion is
presented in section VI.

II. RELATED WORK

Numerous optimization approaches, such as the data-driven
approach, could be considered for resolving the energy ef-
ficiency problem. Data compression, aggregation, adaptive
sampling, and data prediction are some of the methods used
in this approach (Figure 1) [8]–[11]. The algorithms consid-
ered for this paper are the Fault-Tolerant Data Transmission
Reduction (FTDTR) method [12] and the Adaptive Sampling
Transmission Reduction (ASTR) method [13]. The former
falls within the data prediction category, while the latter
combines adaptive sampling with data prediction.
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Fig. 1: Some of the data-driven methods for energy efficiency.
The red boxes are the methods considered for this paper.

The FTDTR approach is based on the assumption of a
periodic sensor network in which each sensor collects and
transmits data every specified number of seconds. The primary
goal of this method is to develop a prediction model that
the sensor and sink can use. After activation, the sensor
transmits the first two measurements obtained to the sink.
The sensor and sink then compute the temporal correlation
between recently acquired and upcoming measurements. Both
the sensor and the sink can update the prediction model as
needed by keeping the most recently communicated data. The
efficient aspect of this method is that the sensor is no longer
necessary to transmit any collected measurements to the sink
as long as the sink can predict them within a defined error
boundary.

The ASTR method enhances the FTDTR method by using
an adaptive sampling technique. Adaptive sampling is an
approach that enables the sensor node to adjust its sampling
rate in response to changes in the data collected over a
specified time period. If no significant change is detected, the
sensor node’s sampling rate may gradually be reduced, and

it may sleep for an extended period of time. The authors in
[13] employed the Kruskal-Wallis statistic model to determine
whether there is a difference between sampled data points
from period Pt and sampled data points from period Pt−1.
The advantage of ASTR over FTDTR is that it takes into
account not only the radio communication module but also
the sensing module and the wake-up time when evaluating
energy consumption.

The simulations run on real data sets in [12] and [13] will
be tested and validated on real hardware in the subsequent
sections of this paper.

III. EXPERIMENTAL SETUP

The energy management methods described in Section II
will be implemented on the Pysense sensor shield1 shown in
Figure 2. In addition to the overall energy consumption of
each method, the energy consumption of each activity (trans-
mission, sensing, processing, and idle) is measured indepen-
dently. To accomplish this, the USB current tester “UM24C”
was utilized. This device is capable of measuring currents
ranging from 0 to 5000 Amperes. Additionally, it monitors
current variations in real-time and automatically estimates
the consumed current in mAh and energy in mWh. The
data collected is transferred via Bluetooth to a laptop/mobile
device, where it is visualized. The UM24C is depicted in
Figure 3, together with the mobile and desktop applications.
Note that the MicroPython implementation of the Python 3
programming language was used to implement the FTDTR and
ASTR methods. To test the implemented methods with WiFi
and LoRa, the LoPy4 Micropython-programmable quadruple
bearer board has been used2.

The IoT device is set to follow a cycle in which it wakes
up every minute, performs a particular task, and then sleeps
again. This process is repeated for one hour. The UM24C
tester is then used to retrieve the real-time current values that
have been collected. The energy consumption for this task is
calculated by averaging the peak current consumption for each
wake-up. Knowing that the device consumes between 2 and
8× 10−6 Amps during deep sleep, we ignored these numbers
and assumed that each peak begins when the current exceeds
8×10−6 Amp and stops when the current drops below 8×10−6

Amp. In the following experiments, we were interested in the
current consumed by sensing, processing, transmission, and
idle activities.

IV. EXPERIMENTS WITH WIFI

The first experiment evaluates the FTDTR and ASTR al-
gorithms when used with WiFi. This experiment enables us
to investigate the current consumption of sensing, processing,
transmission, and idle activities, as well as the ASTR, FTDTR,
and Naive (wake, collect, transmit, sleep) approaches.

Figure 4 shows the current consumption in Amp of one of
the many peaks recorded for the different activities and algo-
rithms. The idle, sensing and processing peaks are the shortest.
This is because these operations do not require a significant

1https://pycom.io/product/pysense-2-0-x/
2https://pycom.io/product/lopy4/
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Fig. 2: The Pysense sensor used in this paper’s experiments. Fig. 3: The energy measurement device used to estimate the
current consumption.

amount of time to complete, and hence the microcontroller
does not remain awake for an extended period of time. It’s
critical to highlight that the sensors utilized in this experiment
are temperature and humidity sensors, which collect samples
quickly. Transmission and the Naive approach have the most
prolonged peaks. The FTDTR and ASTR techniques produce a
peak that is intermediate in length. These findings validate that
WiFi transmission does have a significant impact on overall
energy consumption.
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Fig. 4: Peak current consumption comparison when using
WiFi.

First, we measure the “EIdle” value. This value represents
the amount of current consumed by the microcontroller when
waking up. We obtain an average consumption of 0.373 Amp
by averaging the recorded current values during the idle phase,
i.e. when the sensor wakes up and does nothing.

“ESensing” denotes the energy consumed by the sensing
activity. To obtain an approximation of “ESensing”, we sub-
tract “EIdle” from “E′

Sensing” as specified in Equation 1.
“E′

Sensing” represents the energy consumed when waking up
and sensing a measurement. Given that the microcontroller
must wake up to collect temperature/humidity measurements,
we can estimate “ESensing” by disregarding the energy con-
sumed by waking up and doing nothing. “ESensing” has an
average of 0.07425 Amp, as determined by the results.

ESensing = E′
Sensing − EIdle (1)

Similarly, the transmission energy consumption
“ETransmission” is estimated using “EIdle”. Rather than
waking up and collecting data, the microcontroller wakes
up and transmits a random temperature measurement. To
obtain an approximation of “ETransmission”, we subtract
“EIdle” from “E′

Transmission” as specified in Equation 2.
“E′

Transmission” represents the energy consumed when
waking up and sending a random measurement to the sink.
“ETransmission” has an average of 1.751 Amp.

ETransmission = E′
Transmission − EIdle (2)

The processing energy consumption of the FTDTR tech-
nique may be calculated by subtracting “E′

Sensing” from
“E′

PFTDTR
” as denoted in Equation 3, where “E′

PFTDTR
” is

the energy consumed when the device is woken up and the
FTDTR algorithm is executed. Notably, transmission energy
is not considered here because we consider the FTDTR makes
a correct prediction and hence there is no need to transmit the
data to the sink. The estimated value of “EPFTDTR

” is 0.1474
Amp.

EPFTDTR
= E′

FTDTR − E′
Sensing (3)

Similar to “EPFTDTR
” calculation, the ASTR method’s

processing energy consumption is estimated as denoted in
Equation 4. The estimated value of “EPASTR

” is 0.115 Amp.

EPASTR
= E′

ASTR − E′
Sensing (4)

We ran ASTR, FTDTR, and the Naive approach on the
microcontroller and averaged the peak current consumption
for each execution. The estimated values of ENaive, EFTDTR,
and EASTR are 2.489, 0.4832, 0.4888 respectively. The ob-
tained results are illustrated in Figure 5. As can be seen,
transmission consumes the most energy compared to other ac-
tivities, while sensing consumes the least. It’s worth noting that
temperature and humidity sensors are generally not energy-
intensive. If alternative types of sensors were utilized, the
results might be different. The idle mode consumes the second
most energy, whereas the processing action consumes the third
most. Figure 5 also shows that the Naive approach consumes
the most energy on average, followed by ASTR and FTDTR.
The impact on transmission efficiency is already evident since
both ASTR and FTDTR significantly lowered average current
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consumption compared to the Naive approach. However, we
observe that ASTR utilized more energy than FTDTR despite
incorporating a mechanism that minimizes sensing and trans-
mission by increasing the deep-sleep duration. This is because
we calculated the current consumption only while the sensor
was awake and not during deep sleep.
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Fig. 5: Average current consumption comparison for the peaks
when using WiFi.

Using the average current consumption of each algorithm
and considering a 2000 mAh Lipo battery, one may estimate
the microcontroller’s operational lifetime in days. The lifetime
of the microcontroller is estimated in Figure 6 using the Naive,
FTDTR, and ASTR approaches. The Naive approach limits the
device’s life to 4.456 days, and the FTDTR approach enables a
357 percent (20.38 days) improvement in operational lifespan.
In contrast to what is displayed in Figure 5, the ASTR was
the most efficient and showed a 1535 percent (72.77 days)
gain in performance since it reduces wake-ups and keeps the
microcontroller in a deep sleep for a longer time. As a result,
the results obtained from real implementation are consistent
with those obtained from simulations in [12] and [13].
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Fig. 6: Lifetime estimate in days when using WiFi.

V. EXPERIMENTS WITH LORA

This section will examine the impact of the approaches
presented in Section IV on a microcontroller equipped with
a LoRa radio module, as LoRa transmissions consume signifi-
cantly less power than WiFi transmissions. In this experiment,

the WiFi radio model was disabled and only the LoRa radio
model was used. The same methodology has been used to
calculate peak current consumption, average peak current
consumption, and average operational lifespan in days.

Figure 7 compares one of the numerous current consump-
tion peaks across various activities and algorithms. We note
that the current peaks for the different activities are shorter
than in Figure 4, implying that less current is consumed,
especially for the transmission activity.
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Fig. 7: Peak current consumption comparison when using
LoRa.

The difference in current consumption between the Naive
and FTDTR methods has been significantly reduced as shown
in Figure 8, as the transmission no longer consumes as much
current. Additionally, ASTR consumes more power than the
Naive approach when the microcontroller exits the sleep mode.

Idl
e

Se
ns

ing

Tra
ns

miss
ion

Pro
ce

ssi
ng

 (F
TD

TR
)

Pro
ce

ssi
ng

 (A
ST

R)
Na

ive
FT

DT
R

AS
TR

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

C
u

rr
e
n

t 
(A

)

Fig. 8: Peak current consumption comparison when using
LoRa.

The estimated lifetime of a microcontroller using the Naive,
FTDTR, and ASTR techniques is shown in Figure 9. While
Figure 8 indicates that the ASTR’s peak current consumption
is greater than the other peaks, the ASTR method remains
the most efficient in terms of total energy efficiency due to
the device remaining in sleep mode for a longer period of
time than the other ways. The microcontroller can operate
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for 26.68 days using the Naive method. When the FTDTR
method was used, the operating lifetime increased by 10.79
percent (29.56 days), compared to 357 percent when WiFi
was used. When the ASTR technique was used, the operational
lifetime increased by 247 percent (92.74 days), compared to
1535 percent when WiFi was used.
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Fig. 9: Lifetime estimate in days when using LoRa.

This experiment using LoRa demonstrated that the proposed
data-driven energy management algorithms are still efficient
when used with LoRa-based sensors but not as efficiently
as when used with WiFi-based sensors. Due to the nature
of the data used in this experiment, the FTDTR strategy
outperformed the Naive approach. Temperature and humidity
time series are often smooth, stable, and free of large fluc-
tuations, simplifying the prediction task. With more rapidly
changing data, we may find that the Naive method outperforms
the FTDTR. As a result, the data’s nature is critical when
working with LoRa-based devices. Another essential aspect
to take away from this experiment is the crucial importance
of targeting the sensing and processing modules for energy
efficiency, considering that LoRa does not require as much
power as WiFi does. This explains why the ASTR technique
achieved the best performance by increasing the amount of
time spent in deep sleep and minimizing the frequent use of
the sensing module.

VI. CONCLUSION

The purpose of this paper is to conduct an experimental
study on energy efficiency to determine whether transmission
reduction is the most efficient energy efficiency strategy. Two
proposed methods for data reduction have been implemented
and validated using WiFi and LoRa. While the results acquired
on real devices match those obtained through simulations, it
was noted that when LoRa was used, the results were less
optimistic. It was demonstrated that the approach based on
transmission reduction did indeed slightly increase the device’s
lifetime when using LoRa, although only little when compared
to WiFi. Additionally, it is necessary to emphasize that the data
types used in this paper’s experiments are easily predictable
(temperature and humidity). If the data are more difficult to
predict, a transmission reduction strategy may have performed
worse than that presented in this paper. On the other hand, the
solution that combines transmission reduction with adaptive
sampling and allows the microcontroller to wake up less

frequently did extend the device’s lifespan, although not as
efficiently as when WiFi was used. As a result, the assertion
that ”radio communication is most closely related to energy
consumption” cannot be generalized. The approaches that have
proven efficient with one communication protocol may not
have the same efficiency with another. Also, when proposing
a solution for high energy consumption in IoT, it is advisable
to target many modules (processing, sensor, and radio).
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