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Abstract. In quantum mechanics, the measurement of an observable
does not reveal a pre-existing value/reality but depends on the mea-
surement contexts: the geometry of mutually commuting observables.
This has led to many ‘proofs’ that the algebra of observables and of
eigenvalues is counter intuitive compared to the Boolean logic.

Paraphrasing Niels Bohr: The world “reality” is also a word, a word
which we must learn to use correctly. In this essay, words built from
a two-generator free group G are used to investigate contextuality in
quantum mechanics. Our language has two important features related
to geometry and topology. Group theoretical commutators correspond
to quantum commutation of observables and a ‘geometric contextual-
ity’ corresponds to quantum contextuality. Then, selecting the free
group G as the fundamental group π1 of an appropriate 4-manifold M

– a 4-dimensional exotic space-time–, quantum measurements in a d-
dimensional Hilbert space can be seen as taking place on homeomorphic
but not diffeomorphic manifolds Md corresponding to subgroups of fi-
nite index d of π1. We use the word ‘exotic contextuality’ to feature the
geometries with non Boolean logic occuring from those manifolds.

Some Brieskorn 3-manifolds M = Σ(p, q, r) (with p, q and r mutu-
ally coprimes) play a special role in the aforementioned phenomenon of
‘exotic contextuality’.

1. Introduction

What is quantum reality? Quoting Niels Bohr: We are suspended in lan-

guage in such a way that we cannot say what is up and what is down. The

world “reality” is also a word, a word which we must learn to use correctly

[1]. Today, the words ‘quantum holism’ are often used to qualify the in-
separability of distant quantum objects known as quantum entanglement
or quantum non-locality [2]–[4]. The concept of ‘quantum contextuality’
seems to be more appropriate because it is used to describe our objective
experience of quantum measurements. In a contextual world, the measured
value of an observable depends on which other mutually compatible mea-
surements might be performed and cannot simply be thought as revealing
a pre-existing value. It is not only that the whole supersedes the parts but
that the observer interprets the quantum world with his available sensors
and words. Quantum contextuality is able to feature counter-intuitive as-
pects of the quantum language and is now considered as more general than
quantum entanglement and quantum non-locality (at least when one refers
to Bell’s theorem).
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In this line of thought, the Bell-Kochen-Specker theorem (BKS) is able
to rule out non-contextual hidden variable theories by resorting to mathe-
matical statements about coloring of rays located on maximal orthonormal
bases in a d-dimensional Hilbert space (with d at least 3) [5, 6]. A very
transparent ‘proof’ of the BKS theorem makes use of 18 rays and 9 maximal
orthonormal bases of two qubits (i.e. in the 4-dimensional Hilbert space)
[7]. This topic will be described in some details in Sect. 2.

In the past few years, the author developed a group theoretical approach
of quantum contextuality that he called ‘geometric contextuality’. The idea
is to take seriously Bohr’s suggestion that quantum theory is a language.
Most of the time, words in this language only need two letters and the theory
resorts to the so-called ‘dessins d’enfants’ of Grothendieck [8, 9, 10]. This
topic is developed in Sect. 2 by restricting to the case of two qubits in order
to keep the technicalities simple enough.

Then, in Sect 4, the topic ‘exotic contextuality offers an opportunity to
reintroduce a four-dimensional space-time in our interpretation of the quan-
tum world. Our objects are four-manifolds. Quantum measurements may
be seen as taking place in ‘parallel’ worlds/contexts that mathematically
are homeomorphic but non diffeomorphic to each other [11]. This idea looks
like the many worlds interpretation of quantum mechanics [12] while being
different in the mathematical approach.

2. A glance at two-qubit parity proofs of the BKS theorem

A parity proof of BKS theorem is a set of v rays that form l bases (l
odd) such that each ray occurs an even number of times over these bases. A
proof of BKS theorem is critical if it cannot be further simplified by deleting
even a single ray or a single basis. The smallest BKS proof in dimension
4 is a parity proof and corresponds to arrangements of real states arising
from the two-qubit Pauli group, more specifically as eigenstates of two-qubit
operators forming a (3×3)-grid (also known as a Mermin’s square) as follows

(1)

| | ||
IX− XI− XX−
| | ||

ZX− XZ− Y Y−
| | ||

ZI− IZ− ZZ−
| | ||

where I is the two-dimensional identity matrix, X, Y and Z are the Pauli
spin matrices, and the operator products are Kronecker products.

The simplification of arguments in favour of a contextual view of quan-
tum measurements started with Peres’ note [5] and Mermin’s report [13].
Observe that in (1), the three operators in each row and each column mutu-
ally commute and their product is the identity matrix, except for the right
hand side column whose product is minus the identity matrix. There is no
way of assigning multiplicative properties to the eigenvalues ±1 of the nine
operators while still keeping the same multiplicative properties for the op-
erators. Paraphrasing [5], the result of a measurement depends “in a way
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not understood, on the choice of other quantum measurements, that may
possibly be performed”. Mermin’s ‘proof’ of the BKS theorem stated in
terms of two-qubit observables can now be reformulated in terms of rays
and maximal bases.

We shall employ a signature of the proofs in terms of the distance Dab

between two orthonormal bases a and b defined as [14]

(2) D2
ab = 1− 1

d− 1

d
∑

i,j

(

|〈ai|bj〉|2 −
1

d

)2

.

The distance (2) vanishes when the bases are the same and is maxi-
mal (equal to unity) when the two bases a and b are mutually unbiased,

|〈ai|bj〉|2 = 1/d, and only then. We shall see that the bases of a BKS proof
employ a selected set of distances which happens to be a universal feature
of the proof.

Using the list of the unnormalized eigenvectors (numbered consecutively)

1 : [1000], 2 : [0100], 3 : [0010], 4 : [0001], 5 : [1111], 6 : [111̄1̄]

7 : [11̄11̄], 8 : [11̄1̄1], 9 : [11̄1̄1̄], 10 : [11̄11], 11 : [111̄1], 12 : [1111̄]

13 : [1100], 14 : [11̄00], 15 : [0011], 16 : [0011̄], 17 : [0101], 18 : [0101̄]

19; [1010], 20 : [101̄0], 21 : [1001̄], 22 : [1001], 23 : [011̄0], 24 : [0110]

(3)

one gets 24 complete orthogonal bases are as follows

1 : {1, 2, 3, 4},2 : {5, 6, 7, 8},3 : {9, 10, 11, 12},4 : {13, 14, 15, 16},
5 : {17, 18, 19, 20},6 : {21, 22, 23, 24},7 : {1, 2, 15, 16},8 : {1, 3, 17, 18},
9 : {1, 4, 23, 24},10 : {2, 3, 21, 22},11 : {2, 4, 19, 20},12 : {3, 4, 13, 14},
13 : {5, 6, 14, 16},14 : {5, 7, 18, 20},15 : {5, 8, 21, 23},16 : {6, 7, 22, 24},
17 : {6, 8, 17, 19},18 : {7, 8, 13, 15},19 : {9, 10, 13, 16},20 : {9, 11, 18, 19},

21 : {9, 12, 22, 23},22 : {10, 11, 21, 24},23 : {10, 12, 17, 20},24 : {11, 12, 14, 15}.
(4)

Then, by normalizing rays, one obtains a finite set of distances between
the 24 bases

D = {a1, a2, a3, a4, a5} = {
√

1/3,
√

7/12,
√

2/3,
√

5/6, 1} ≈ {0.58, 0.76, 0.82, 0.91, 1.000}.
Table 1 provides a histogram of distances for various parity proofs v − l.
The table reveals that there exist four main types of parity proofs arising

from the 24 rays, that are of the type 18− 9, 20− 11, 22− 13 and 24− 15.
Types 20 − 11 and 22 − 13 subdivide into two non-isomorphic ones A and
B as shown in Table 1 [14, 15, 16].

The 16 proofs of the 18 − 9 type can be displayed as the 4 × 4 square
(5) in which two adjacent proofs share three bases. Observe that each 2× 2
square of adjacent proofs has the same shared base, which is taken as an
index (e.g. the upper left-hand-side 2× 2 square has index 7 and the lower
right-hand-side square has index 10). All four indices in each row and in
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proof v − l # proofs a1 a2 a3 a4 a5

24-15 16 18 18 9 54 6
22-13A 96 12 18 3 42 3
22-13B 144 12 18 4 42 2
20-11A 96 6 18 0 30 1
20-11B 144 6 18 1 30 0
18-9 16 0 18 0 18 0

Table 1. The histogram of distances for various parity
proofs v − l obtained from Mermin’s square.

each column correspond to four disjoint bases that together partition the 24
rays.

(5)




7 8 10
13 14 16

22 23 24



−





7 9 11
14 15 18

19 20 22



−





8 9 12
16 17 18

20 21 24



−





10 11 12
13 15 17
19 21 23



−

|7 | 20 |12 |23




7 9 11

16 17 18
19 21 23



−





7 8 10

13 15 17
20 21 24



−





10 11 12

13 14 16
19 20 22



−





8 9 12

14 15 18
22 23 24



−

|17 |10 |14 |9




8 9 12

13 15 17
19 20 22



−





10 11 12

16 17 18

22 23 24



−





7 8 10

14 15 18
19 21 23



−





7 9 11

13 14 16
20 21 24



−

|12 |23 |7 |20




10 11 12

14 15 18

20 21 24



−





8 9 12

13 14 16
19 21 23



−





7 9 11

13 15 17
22 23 24



−





7 8 10

16 17 18
19 20 22



−

|14 |9 |17 |10

Diagrams for the proofs. How can we account for the distance signature
of a given proof? A simple diagram does the job.

The diagram for the 18 − 9 proof is simply a 3 × 3 square. Below we
give an explicit construction of the first proof that corresponds to the upper
left-hand-side corner in (5). The 9 vertices of the graph are the 9 bases of
the proof, the one-point crossing graph between the bases is the graph (6),
with aut = G72 = Z

2
3 ⋊D4. There are 9 (distinct) edges that encode the 18

rays, a selected vertex/base of the graph is encoded by the union of the four
edges/rays that are adjacent to it.

(6)

(

1 2
15 16

)

− 1−
(

1 3
17 18

)

− 3−
(

2 3
21 22

)

− 2

|16 | 18 |22
(

5 6
14 16

)

− 5−
(

5 7
18 20

)

− 7−
(

6 7
22 24

)

− 6

|14 |20 |24
(

11 12
14 15

)

− 12−
(

10 12
17 20

)

− 10−
(

10 11
21 24

)

− 11

|15 |17 |21
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As for the distances between the bases, two bases located in the same row
(or the same column) have distance a2 =

√

7/12, while two bases not in the

same row (or column) have distance a4 =
√

5/6 > a2, as readily discernible
from Table 2 and the histogram in Table 1. Indeed, any proof of the 18− 9
type has the same diagram as (6).

Similar diagrams can be drawn to reflect the histogram of distances in
proofs of a larger size. Below we restrict to the case of a 20 − 11A proof
(where only the distance between two bases is made explicit, but not the
common rays of the bases)

(7)
(

10 12
17 20

)

− a2−
(

11 12
14 15

)

− a2−
(

10 11
21 24

)

...a4 =
√

5/6...

|a2 =
√

7/12 | a2 |a2 ...
(

1 3
17 18

)

− a2−
(

1 2
15 16

)

− a2−
(

1 4
23 24

)

..a1 = 1
√

3
..

(

1 2
3 4

)

|a2 |a2 |a2 |a5 = 1
(

5 7
18 20

)

− a2−
(

5 6
14 16

)

− a2−
(

5 8
21 23

)

..a1 = 1
√

3
..

(

5 6
7 8

)

|a2 |a2 |a2 ...

The proof consists of 11 bases, 9 of them have the same mutual diagram
as in (6) and their mutual distance is a2 =

√

7/12 (as shown) or a4 =
√

5/6
(not shown), depending on whether they are located in the same row (or
the same column) of the 3 × 3 square, or not. The extra two bases of the
right-hand-side column are mutually unbiased (with distance a5 = 1), their
distance to any base of the same row is 1/

√
3 and their distance to any base

of the first row is a4 (as shown).

3. Geometric contextuality

Interpreting quantum theory is a long standing effort and not a single
approach can exhaust all facets of this fascinating subject. Quantum infor-
mation owes much to the concept of a (generalized) Pauli group for under-
standing quantum observables, their commutation, entanglement, contex-
tuality and many other aspects, e.g. quantum computing. Quite recently,
it has been shown that quantum commutation relies on some finite geome-
tries such as generalized polygons and polar spaces [17]. Finite geometries
connect to the classification of simple groups as understood by prominent
researchers as Jacques Tits, Cohen Thas and many others [9, 18].

In the Atlas of finite group representations [19], one starts with a free
group G with relations, then the finite group under investigation P is the
permutation representation of the cosets of a subgroup of finite index d of G
(obtained thanks to the Todd-Coxeter algorithm). As a way of illustrating
this topic, one can refer to [9, Table 3] to observe that a certain subgroup of
index 15 of the symplectic group S′

4(2) corresponds to the 2QB (two-qubit)
commutation of the 15 observables in terms of the generalized quadrangle
of order two, denoted GQ(2, 2) (alias the doily). For 3QB, a subgroup of
index 63 in the symplectic group S6(2) does the job and the commutation
relies on the symplectic polar spaceW5(2) [9, Table 7]. An alternative way to
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approach 3QB commutation is in terms of the generalized hexagon GH(2, 2)
(or its dual) which occurs from a subgroup of index 63 in the unitary group
U3(3) [9, Table 8]. Similar geometries can be defined for multiple qudits
(instead of qubits).

The straightforward relationship of quantum commutation to the appro-
priate symmetries and finite groups was made possible thanks to techniques
that we briefly summarize.

3.1. Finite geometries from cosets [8, 9, 20]. Let H be a subgroup of
index d of a free group G with generators and relations. A coset table over
the subgroup H is built by means of a Coxeter-Todd algorithm. Given the
coset table, on builds a permutation group P that is the image og G given
by its action on the cosets of H. In this paper, the software Magma [21] is
used to perform these operations.

One needs to define the rank r of the permutation group P . First one
asks that the d-letter group P acts faithfully and transitively on the set
Ω = {1, 2, · · · , d}. The action of P on a pair of distinct elements of Ω is
defined as (α, β)p = (αp, βp), p ∈ P , α 6= β. The orbits of P on the product
set Ω×Ω are called orbitals. The number of orbits is called the rank r of P
on Ω. Such a rank of P is at least two, and it also known that two-transitive
groups may be identified to rank two permutation groups.

One selects a pair (α, β) ∈ Ω×Ω, α 6= β and one introduces the two-point
stabilizer subgroup P(α,β) = {p ∈ P |(α, β)p = (α, β)}. There are 1 < m ≤ r
such non-isomorphic (two-point stabilizer) subgroups of P . Selecting one
of them with α 6= β, one defines a point/line incidence geometry G whose
points are the elements of the set Ω and whose lines are defined by the
subsets of Ω that share the same two-point stabilizer subgroup. Two lines
of G are distinguished by their (isomorphic) stabilizers acting on distinct
subsets of Ω. A non-trivial geometry is obtained from P as soon as the rank
of the representation P of P is r > 2, and at the same time, the number of
non isomorphic two-point stabilizers of P is m > 2. Further, G is said to be
contextual (shows geometrical contextuality) if at least one of its lines/edges
is such that a set/pair of vertices is encoded by non-commuting cosets [8].

Figure 1 illustrates the application of the two-point stabilizer subgroup
approach just described for the index 15 subgroup of the symplectic group
is S′

4(2) = A6 whose finite representation is
H =

〈

a, b|a2 = b4 = (ab)5 = (ab2)5 = 1
〉

. The finite geometry organizing
the coset representatives is the generalized quadrangle GQ(2, 2). The other
representation is in terms of the two-qubit Pauli operators, as first found in
[17, 22]. It is easy to check that all lines not passing through the coset e
contains some mutually not commuting cosets so that the GQ(2, 2) geome-
try is contextual. The embedded (3 × 3)-grid shown in bold (the so-called
Mermin square) allows a 2QB proof of Kochen-Specker theorem [14].

3.2. The Kochen-Specker theorem with a Mermin square of two-

qubit observables. Let us show how to recover the geometry of the Mer-
min square, i.e. the (3 × 3) grid embedded in the generalized GQ(2, 2) of
Figure 1. Recall that it is the basic model of two-qubit contextuality [9,
Fig. 1]-[14]. One starts with the free group G =

〈

a, b|b2
〉

and one makes use
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Figure 1. The generalized quadrangle of order two
GQ(2, 2). The picture provides a representation in terms of
the fifteen 2QB observables that are commuting by triples:
the lines of the geometry. Bold lines are for an embedded
3× 3 grid (also called Mermin square) that is a basic model
of Kochen-Specker theorem (e.g. [9, Fig.1] or [14]). The
second representation is in terms of the cosets of the permu-
tation group arising from the index 15 subgroup of G ∼= A6

(the 6-letter alternating group).

of the mathematical software Magma [21]. Then one derives the (unique)
subgroup H of G that is of index nine and possesses a permutation repre-
sentation P isomorphic to the finite group Z

2
3 × Z

2
2 reflecting the symmetry

of the grid. The permutation representation is as follows:

P = 〈9|(1, 2, 4, 8, 7, 3)(5, 9, 6), (2, 5)(3, 6)(4, 7)(8, 9)〉 ,
where the list [1, ..., 9] means the list of coset representatives

[e, a, a−1, a2, ab, a−1b, a−2, a3, aba].

The permutation representation P can be seen on a torus as in Figure 2i.
Next, we apply the procedure described at the top of this subsection.

There are two types of two-point stabilizer subgroups isomorphic to the
single element group Z1 or to the two-element group Z2. Both define the
geometry of a (3 × 3) grid comprising six lines identified, by their non-
identical, but isomorphic two-point stabilizers s1 to s6, made explicit in the
caption of Figure 2. The first grid (not shown) is considered non-contextual
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Figure 2. The map (i) leading to Mermin’s square (j). The
two-point stabilizer subgroups of the permutation represen-
tation P corresponding to the dessin (one for each line) are
as follows: s1 = (2, 3)(4, 7)(5, 6), s2 = (1, 7)(2, 8)(6, 9), s3 =
(1, 4)(3, 8)(5, 9), s4 = (2, 6)(3, 5)(8, 9), s5 = (1, 9)(4, 5)(6, 7),
s6 = (1, 8)(2, 7)(3, 4), where the points of the square (resp.
the edges of the dessin d’enfant) are labeled as [1, .., 9] =
[e, a, a−1, a2, ab, a−1b, a−2, a3, aba].

in the sense that the cosets on a line are commuting. The second grid,
shown in Figure 2j, is contextual in the sense that the right column does
not have all its triples of cosets mutually commuting. The non-commuting
cosets on this line reflect the contextuality that occurs when one takes two-
qubit coordinates for the points of the grid, see [8] for more details about the
relationship between non-commuting cosets and geometric contextuality.

4. Exotic contextuality

We already approached the topic of quantum contextuality (QC) in two
ways. In Sect. 2, we found how the 3 × 3 grid (or Mermin square) can be
considered as a building block of QC by proving the BKS theorem, either
at level of two-qubit operators that parametrize the grid or at the level of
rays that correspond to eigenstates attached to the operators of the grid.
In Sect. 3, a group theoretical language with two-letter words was found
to nicely mimic QC in the Mermin square and its embedding generalized
quadrangle GQ(2, 2) –the locus of of the two-qubit Pauli group–. In such
an approach, geometric contextuality corresponds to QC. Now, we jump
to a possible interpretation of this language by seeing the QC-geometries
as creatures of exotic four-manifolds that one may identify to our familiar
space-time [11].
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We introduce the concept of exotic contextuality for such an interpre-
tation. Moreover, such a type of contextuality in related to a model of
quantum computing based on magic states that we developed in a series of
papers [23, 24, 25]. In quantum information theory, the two-qubit configura-
tion and its properties: quantum entanglement and quantum contextuality
have been discussed at length as prototypes of peculiarities or resources in
the quantum world. Our Sect. 3.2 mainly featured the quantum contextu-
ality of two-qubit systems. Our model of quantum computing is based on
the concept of a magic state - a state that has to be added to the eigen-
states of the d-dimensional Pauli group- in order to allow universal quantum
computation. This was started by Bravyi & Kitaev in 2005 [26] for qubits
(d = 2). A subset of magic states consists of states associated to minimal
informationally complete measurements, that we called MIC states [23]. We
require that magic states should be MIC states as well. For getting the
candidate MIC states, one uses the fact that a permutation may be realized
as a permutation matrix/gate and that mutually commuting matrices share
eigenstates. They are either of the stabilizer type (as elements of the Pauli
group) or of the magic type. One keeps magic states that are MIC states
in order to preserve a complete information during the computation and
measurements.

A further step in our quantum computing model was to introduce a 3-
dimensional manifold M3 whose fundamental group G = π1(M

3) would be
the source of MIC states [24, 25]. Recall that G is a free group with relations
and that a d-dimensional MIC state may be obtained from the permutation
group that organizes the cosets of an appropriate subgroup of index d of G.

It was considered by us quite remarkable that two group geometrical ax-
ioms very often govern the MIC states of interest [25], viz (i) the normal (or
conjugate) closure {g−1hg|g ∈ G and h ∈ H} of the appropriate subgroup
H of G equals G itself and (ii) there is no geometry (a triple of cosets do
not produce equal pairwise stabilizer subgroups). See [25, Sec. 1.1] for our
method of building a finite geometry from coset classes. But these rules had
to be modified by allowing either the simultaneous falsification of (i) and
(ii) or by tolerating a few exceptions. If it happens that (ii) is violated, one
gets geometric contextuality, the parallel to quantum contextuality [8] that
one featured in Sect. 3.

It is known that there exist infinitely many 4-manifolds that are home-
omorphic but non diffeomorphic to each other [27]-[30]. They can be seen
as distinct copies of space-time not identifiable to the ordinary Euclidean
space-time. A cornerstone of our approach is an ‘exotic’ 4-manifold called
an Akbulut cork W that is contractible, compact and smooth, but not dif-
feomorphic to the 4-ball [30]. In our approach, we do not need the full
toolkit of 4-manifolds since we are focusing on W and its neighboors only.
All what we need is to understand the handlebody decomposition of a 4-
manifold, the fundamental group π1(∂W ) of the 3-dimensional boundary
∂W of W , and related fundamental groups. Following the methodology of
our previous work [23, 24], the subgroup structure of such π1’s corresponds
to the Hilbert spaces of interest. Our view is close to the many-worlds in-
terpretation of quantum mechanics where all possible outcomes of quantum
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measurements are realized in some ‘world’ and are objectively real [12]. One
arrives at a many-manifolds view of quantum computing -reminiscent of the
many-worlds- where the many-manifolds are in an exotic class and can be
seen as many-quantum generalized measurements, the latter being POVM’s
(positive operator valued measures).

4.1. Excerpts on the theory of 4-manifolds and exotic R4’s.

Figure 3. (a) Handlebody of a 4-manifold with the struc-
ture of 1- and 2-handles over the 0-handle B4 , (b) the struc-
ture of a 1-handle as a dotted circle S1 ×B3.

Handlebody of a 4-manifold. Let us introduce some excerpts of the theory of
4-manifolds needed for our paper [27, 28, 29]. It concerns the decomposition
of a 4-manifold into one- and two-dimensional handles as shown in Fig. 3
[27, Fig. 1.1 and Fig. 1.2]. Let Bn and Sn be the n-dimensional ball and the
n-dimensional sphere, respectively. An observer is placed at the boundary
∂B4 = S3 of the 0-handle B4 and watch the attaching regions of the 1-
and 2-handles. The attaching region of 1-handle is a pair of balls B3 (the
yellow balls), and the attaching region of 2-handles is a framed knot (the red
knotted circle) or a knot going over the 1-handle (shown in blue). Notice
that the 2-handles are attached after the 1-handles. For closed 4-manifolds,
there is no need of visualizing a 3-handle since it can be directly attached
to the 0-handle. The 1-handle can also be figured out as a dotted circle
S1 ×B3 obtained by squeezing together the two three-dimensional balls B3

so that they become flat and close together [28, p. 169] as shown in Fig.
3b. For the attaching region of a 2- and a 3-handle one needs to enrich our
knowledge by introducing the concept of an Akbulut cork to be described
later on. The surgering of a 2-handle to a 1-handle is illustrated in Fig.
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4a (see also [28, Fig. 5.33]). The 0-framed 2-handle (left) and the ‘dotted’
1-handle (right) are diffeomorphic at their boundary ∂. The boundary of a
2- and a 3-handle is intimately related to the Akbulut cork shown in Fig 4b
as described at the subsection 4.1.

Akbulut cork. AMazur manifold is a contractible, compact, smooth 4-manifold
(with boundary) not diffeomorphic to the standard 4-ball B4 [27]. Its bound-
ary is a homology 3-sphere. If one restricts to Mazur manifolds that have a
handle decomposition into a single 0-handle, a single 1-handle and a single
2-handle then the manifold has to be of the form of the dotted circle S1×B3

(as in Fig. 4a) (right) union a 2-handle.
Recall that, given p, q, r (with p ≤ q ≤ r), the Brieskorn 3-manifold

Σ(p, q, r) is the intersection in the complex 3-space C
3 of the 5-dimensional

sphere S5 with the surface of equation zp1 +zq2+zr3 = 0. The smallest known
Mazur manifold is the Akbulut cork W [30, 31] pictured in Fig 4b and its
boundary is the Brieskorn homology sphere Σ(2, 5, 7).

According to [32], there exists an involution f : ∂W → ∂W that surgers
the dotted 1-handle S1 ×B3 to the 0-framed 2-handle S2 ×B2 and back, in
the interior of W . Akbulut cork is shown in Fig. 4b. The Akbulut cork has
a simple definition in terms of the framings ±1 of (−3, 3,−3) pretzel knot
also called K = 946 [32, Fig. 3]. It has been shown that ∂W = Σ(2, 5, 7) =
K(1, 1) and W = K(−1, 1).

Exotic manifold R4. An exotic R4 is a differentiable manifold that is home-
omorphic but not diffeomorphic to the Euclidean space R

4. An exotic R4

is called small if it can be smoothly embedded as an open subset of the
standard R

4 and is called large otherwise. Here we are concerned with an
example of a small exotic R4. Let us quote Theorem 1 of [30].

There is a smooth contractible 4-manifold V with ∂V = ∂W , such that V
is homeomorphic but not diffeomorphic to W relative to the boundary.

Sketch of proof [30]:
Let α be a loop in ∂W as in Fig. 5a. α is not slice in W (does not bound

an imbedded smooth B2 in W ) but φ(α) is slice. Then φ does not extend
to a self-diffeomorphism φ : W → W .

It is time to recall that a cobordism between two oriented m-manifolds
M and N is any oriented (m + 1)-manifold W0 such that the boundary
is ∂W0 = M̄ ∪ N , where M appears with the reverse orientation. The
cobordism M × [0, 1] is called the trivial cobordism. Next, a cobordism W0

between M and N is called an h-cobordism if W0 is homotopically like the
trivial cobordism. The h-cobordism due to S. Smale in 1960, states that if
Mm and Nm are compact simply-connected oriented M -manifolds that are
h-cobordant through the simply-connected (m + 1)-manifold Wm+1

0 , then
M and N are diffeomorphic [29, p. 29]. But this theorem fails in dimension
4. If M and N are cobordant 4-manifolds, then N can be obtained from M
by cutting out a compact contractible submanifold W and gluing it back in
by using an involution of ∂W . The 4-manifold W is a ‘fake’ version of the
4-ball B4 called an Akbulut cork [29, Fig. 2.23].

The h-cobordism under question in our example may be described by
attaching an algebraic cancelling pair of 2- and 3-handles to the interior
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Figure 4. (a) A 0-framed 2-handle S2 × B2 (left) and a
dotted 1-handle S1 × B3 (right) are diffeomorphic at their
boundary ∂ = S2 × S1 , (b) Two equivalent pictures of the
Akbulut cork W .

of Akbulut cork W as pictured in Fig. 5b (see [30, p. 343]). The 4-
manifold W̄ mediating V and W is as shown in Fig. 5c [alias the 0-surgery
L7a6(0, 1)(0, 1)] (see [30, p. 355]).

Following [31], the result is relative since V itself is diffeomorphic to W
but such a diffeomorphism cannot extend to the identity map ∂V → ∂W
on the boundary. In [31], two exotic manifolds Q1 and Q2 are built that are
homeomorphic but not diffeomorphic to each other in their interior.

By the way, the exotic R4 manifolds Q1 and Q2 are related by a diffeo-
morphism Q1#S2 × S2 ≈ Q ≈ Q2#S2 × S2 (where # is the connected sum
between two manifolds) and Q is called the middle level between such con-
nected sums. This is shown in Fig. 6 for the two R4 manifolds Q1 and Q2

[31],[33, Fig. 2].
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Figure 5. (a) The loop α is not slice on the Akbulut cork,
(b) the non-trivial h-cobordism between small exotic mani-
folds V and W , (c) the mediating 4-manifold W̄ .

Figure 6. Exotic R4 manifolds Q1 shown in (a) and Q2

shown in (b). The connected sums Q1#S2×S2 and Q2#S2×
S2 are diffeomorphic with middle level Q shown in (c).
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4.2. Finite geometry of small exotic R4’s, quantum computing and

quantum contextuality. In the present paper, we choose G as the fun-
damental group π1(M

4) of a 4-manifold M4 that is the boundary ∂W of
Akbulut cork W , or governs the Akbulut h-cobordism. More precisely, one
takes the manifold M4 as W̄ in Fig. 5 and Q in Fig. 6. Manifolds Q1 and
Q2 are the small exotic R4’s of Ref. [31, Fig. 1 and 2]. There are homeo-
morphic but not diffeomorphic to each other in their interiors. This choice
has two important consequences.

In the present paper, we choose G as the fundamental group π1(M
4) of

a 4-manifold M4 that is the boundary ∂W of Akbulut cork W , or governs
the Akbulut h-cobordism. More precisely, one takes the manifold M4 as W̄
in Fig. 5 and Q in Fig. 6. Manifolds Q1 and Q2 are the small exotic R4’s of
Ref. [31, Fig. 1 and 2]. There are homeomorphic but not diffeomorphic to
each other in their interiors. This choice has two important consequences.

Recall the introduction of this section that that axioms (i) and (ii) are
expected to govern the subgroup structure of groups G relevant to our model
of quantum computing based on magic states. For the aforementioned man-
ifolds M4, the fundamental group G = π1(M

4) is such that (i) is always
satisfied and that (ii) most often is true or geometric contextuality occurs
with corresponding finite geometries of great interest such as the Fano plane
PG(2, 2) (at index 7), the Mermin’s pentagram (at index 10), the finite
projective space PG(3, 2) or its subgeometry GQ(2, 2) -known to control
2-qubit commutation- [25, Fig. 1] (at index 15), the Grassmannian Gr(2, 8)
-containing Cayley-Dickson algebras- (at index 28 ) and a few maximally
multipartite graphs.

Second, this new frame of ‘exotic contextuality’ provides a physical in-
terpretation of quantum computation and measurements as follows. Let us
imagine that R

4 is our familiar space-time. Thus the ‘fake’ 4-ball W -the
Akbulut cork- allows the existence of smoothly embedded open subsets of
space-time -the exotic R4 manifolds such as Q1 and Q2- that we interpret
in this model as 4-manifolds associated to quantum measurements.

The boundary ∂W of Akbulut cork. As announced earlier ∂W = K(1, 1) ≡
Σ(2, 5, 7) is a Brieskorn sphere with fundamental group

π1(Σ(2, 5, 7)) =
〈

a, b|aBab2aBab3, a4bAb
〉

, where A = a−1, B = b−1.

The cardinality structure of subgroups of this fundamental group is found
to be the sequence

ηd[π1(Σ(2, 5, 7))] = [0, 0, 0, 0, 0, 0, 2, 1, 0, 3, 0, 0, 0,12,145, 178, 47, 0, 0,4, · · · ] .
All the subgroups H of the above list satisfy axiom (i).
Up to index 28, exceptions to axiom (ii) can be found at index d = 14, 16,

20 featuring the geometry of multipartite graphs K
(d/2)
2 with d/2 parties,

at index d = 15 and finally at index 28. Here and below the bold notation
features the existence of such exceptions.

Apart from these exceptions, the permutation group organizing the cosets
is an alternating group Ad. The coset graph is the complete graph Kd on
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Figure 7. (a) A picture of the smallest finite projective
space PG(3, 2). It is found at Frans Marcelis website [34].
The coset coordinates are for a Fano plane PG(2, 2) of
PG(3, 2). (b) A picture of the generalized quadrangle of
order two GQ(2, 2) embedded in PG(3, 2). It may also be
found at Frans Marcelis website.

d vertices. One cannot find a triple of cosets with strictly equal pairwise
stabilizer subgroups of Ad (no geometry), thus (ii) is satisfied.

At index 15, when (ii) is not satisfied, the permutation group organizing
the cosets is isomorphic to A7. The stabilized geometry is the finite projec-
tive space PG(3, 2) (with 15 points, 15 planes and 35 lines) as illustrated
in Fig. 7a. The geometry is contextual in the sense that all lines not going
through the identity element do not show mutually commuting cosets.

At index 28, when (ii) is not satisfied, there are two cases. In the first
case, the group P is of order 28 8! and the geometry is the multipartite

graph K
(7)
4 . In the second case, the permutation group is P = A8 and

the geometry is the configuration [286, 563] on 28 points and 56 lines of
size 3. In [35], it was shown that the geometry in question corresponds
to the combinatorial Grassmannian of type Gr(2, 8), alias the configuration
obtained from the points off the hyperbolic quadric Q+(5, 2) in the complex
projective space PG(5, 2). Interestingly, Gr(2, 8) can be nested by gradual
removal of a so-called ‘Conwell heptad’ and be identified to the tail of the
sequence of Cayley-Dickson algebras [35, 36, Table 4].

One expects a connection of the 28-point configuration to a del Pezzo
surface of degree 2 (since the 56 lines of such a del Pezzo surface map in
pairs to the 28 bitangents of a quartic).
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The [286, 563] configuration. Below are given some hints about the config-
uration that is stabilized at the index 28 subgroup H of the fundamental
group π1(∂W ) whose permutation group P organizing the cosets is isomor-
phic to A8. Recall that ∂W is the boundary of Akbulut cork W . The
28-letter permutation group P has two generators as follows

P = 〈28|g1, g2〉 with g1 = (2, 4, 8, 6, 3)(5, 10, 15, 13, 9)(11, 12, 18, 25, 17)

(14, 20, 19, 24, 21)(16, 22, 26, 28, 23), g2 = (1, 2, 5, 11, 6, 7, 3)(4, 8, 12, 19, 22, 14, 9)

(10, 16, 24, 27, 21, 26, 17)(13, 20, 18, 25, 28, 23, 15).

Using the method described in Appendix 2, one derives the configuration
[286, 563] on 28 points and 56 lines. As shown in [Table 4][35], the configu-
ration is isomorphic to the combinatorial Grassmannian Gr(2, 8) and nested
by a sequence of binomial configurations isomorphic to Gr(2, i), i ≤ 8, as-
sociated with Cayley-Dickson algebras. This statement is checked by listing
the 56 lines on the 28 points of the configuration as follows

{1, 7, 27},→ Gr(2,3)

{1, 15, 23}, {15, 17, 27}, {7, 17, 23},→ Gr(2,4)

{1, 5, 26}, {5, 18, 27}, {5, 15, 24}, {23, 24, 26}, {17, 18, 24}, {7, 18, 26},→ Gr(2,5)

{12, 14, 17}, {1, 9, 22}, {5, 8, 9}, {9, 14, 15}, {7, 12, 22}, {8, 12, 18},
{8, 14, 24}, {8, 22, 26}, {14, 22, 23}, {9, 12, 27},→ Gr(2,6)

{3, 10, 15}, {3, 6, 24}, {3, 17, 25}, {3, 23, 28}, {1, 10, 28}, {3, 14, 19}, {7, 25, 28}, {6, 8, 19},
{19, 22, 28}, {5, 6, 10}, {12, 19, 25}, {10, 25, 27}, {9, 10, 19}, {6, 18, 25}, {6, 26, 28},→ Gr(2,7)

{4, 11, 12}, {11, 21, 25}, {6, 20, 21}, {2, 3, 21}, {2, 4, 14}, {7, 11, 16}, {2, 16, 23}, {1, 13, 16},
{2, 11, 17}, {4, 19, 21}, {16, 20, 26}, {2, 13, 15}, {11, 13, 27}, {16, 21, 28}, {2, 20, 24},
{5, 13, 20}, {11, 18, 20}, {4, 9, 13}, {4, 8, 20}, {4, 16, 22}, {10, 13, 21} → Gr(2,8).

More precisely, the distinguished configuration [215, 353] isomorphic to
Gr(2, 7) in the list above is stabilized thanks to the subgroup of P iso-
morphic to A7. The distinguished Cayley-Salmon configuration [154, 203]
isomorphic to Gr(2, 6) in the list is obtained thanks to one of the two sub-
groups of P isomorphic to A6. The upper stages of the list correspond to
a Desargues configuration [103, 103], to a Pasch configuration [62, 43] and
to a single line[31, 13] and are isomorphic to the Grassmannians Gr(2, 5),
Gr(2, 4) and Gr(2, 3), respectively. The Cayley-Salmon configuration con-
figuration is shown on Fig. 8, see also [36, Fig. 12]. For the embedding of
Cayley-Salmon configuration into [215, 353] configuration, see [36, Fig. 18].

Frank Marcelis provides a parametrization of the Cayley-Salmon config-
uration in terms of 3-qubit operators [34].

Not surprisingly, geometric contextuality (in the coset coordinatization
not given here) is a common feature of all lines except for the ones going
through the identity element.

As a final note for this subsection, we found Brieskorn spheres other
than Σ(2, 5, 7) whose fundamental group admits an index 28 subgroup iso-
morphic to A8 whose geometry is the configuration with 28 points and 56
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Figure 8. The Cayley-Salmon configuration built around
the Desargues configuration (itself built around the Pasch
configuration) as in [36, Fig. 12].

lines. Three-manifolds Σ(3, 4, 5), Σ(3, 4, 7) and Σ(3, 5, 7) are such Brieskorn
spheres.

5. Conclusion

To conclude, it has been shown that the group theoretical language seems
efficient for describing quantum reality. We introduced the concepts of geo-
metric and exotic contextuality for quantum theory and quantum measure-
ments. In other papers dealing with slightly different subjects, we found
that ‘informationally complete’ magic states may be defined as irreducible
characters of an appropriate finite group. These characters are useful in the
context of quark and lepton mixings [37] and in the context of the universal
code of life –the genetic code–[38, 39]. What next? Proteins are the lan-
guage of life. We have much to learn about quantum mechanics by decoding
its 20-letter language, e.g.

MGFTCPNSDCLY SRSEWSNRALREEGLSFSMRCPGACCGAMLV · · · ,
is the beginning of the sentence of spike protein of SARS-Cov-2. Under-

standing the contextuality of life is the next step of this type of research.

References

[1] Niels Bohr, in Philosophy of Science Vol. 37 (1934), p. 157, and in The Truth of
Science : Physical Theories and Reality (1997) by Roger Gerhard Newton, p. 176.



18 MICHEL PLANAT†

[2] Michael Esfeld, Quantum holism and the philosophy of mind, J. Consciousness Stud-
ies, 6, 23–28 (1999).

[3] Elizabeth Miller, Quantum entanglement, Bohmian mechanics, an humean superve-
nience, Australasian Journal of Philosophy 92 567–83 (2014).

[4] M. Ferrero, D. Salgado and J. L. Sánchez-Gómez, Is the epistemic view of quantum
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[15] Pavic̆ić M., Merlet J.-P., McKay B. D. and Megill N. D. 2005 Kochen-Specker vectors

J. Phys. A: Math. Gen. 38 1577-1592.
[16] Mordecai Waegell and P. K. Aravind, Parity Proofs of the Kochen-Specker Theorem

Basedon the 24 Rays of Peres, Found. Phys. 41 1786–99 (2011).
[17] M. Planat, Pauli graphs when the Hilbert space dimension contains a square: Why

the Dedekind psi function? J. Phys. A Math. Theor. 2011, 44, 045301.
[18] Thas, J.; van Maldeghem, H. Generalized polygons in finite projective spaces. In

Distance-Regular Graphs and Finite Geometry, in Special Issue: Conference on Asso-
ciation Schemes, Codes and Designs, Proceedings of the 2004 Workshop on Distance-
regular Graphs and Finite Geometry (Com 2 MaC 2004), Busan, Korea, 19–23 July
2004.

[19] Wilson, R.; Walsh, P.; Tripp, J.; Suleiman, I.; Parker, R.; Norton, S.; Nickerson, S.;
Linton, S.; Bray, J.; Abbott, R. ATLAS of Finite Group Representations, Version 3.
Available online: http://brauer.maths.qmul.ac.uk/Atlas/v3/exc/TF42/ (accessed on
June 2015).

[20] M. Planat, A. Giorgetti, F. Holweck and M. Saniga, Quantum contextual finite ge-
ometries from dessins d’enfants, Int. J. Geom. Meth. in Mod. Phys. 12 1550067
(2015).

[21] W. Bosma, J. J. Cannon, C. Fieker, A. Steel (eds), Handbook of Magma functions,
Edition 2.23 (2017), 5914pp (accessed on 1 January 2019).

[22] M. Saniga and M. Planat, Multiple qubits as symplectic polar spaces of order two,
Adv. Stud. Theor. Phys. 1, 1 (2007).

[23] M. Planat and Z. Gedik, Magic informationally complete POVMs with permutations,
R. Soc. open sci. 4 170387 (2017).

[24] M. Planat, R. Aschheim, M. M. Amaral and K. Irwin, Universal quantum computing
and three-manifolds, Universal quantum computing and three-manifolds Symmetry
10 773 (2018).

[25] M. Planat, R. Aschheim, M. M. Amaral and K. Irwin, Group geometrical axioms for
magic states of quantum computing, Mathematics 7 948 (2019).

[26] S. Bravyi and A. Kitaev, Universal quantum computation with ideal Clifford gates
and noisy ancillas, Phys. Rev. A71 022316 (2005).

[27] S. Akbulut, 4-manifolds, Oxford Graduate Texts in Mathematics, Vol. 25 (Oxford
University Press, 2016).



GEOMETRIC AND EXOTIC CONTEXTUALITY IN QUANTUM REALITY 19

[28] R. E. Gompf and A. I. Stipsicz, 4-manifolds and Kirby calculus, Graduate Studies
in Mathematics, Vol. 20 (American Mathematical Society, Providence, Rhode Island,
1999).

[29] A. Scorpian, The wild world of 4-manifolds (American Mathematical Society, Provi-
dence, Rhode Island, 2011).

[30] S. Akbulut, A fake compact contractible 4-manifold, J. Diff. Geom. 33 335-356
(1991).

[31] S. Akbulut, An exotic 4-manifold, J. Diff. Geom. 33 357-361 (1991).
[32] S. Akbulut and S. Durusoy, An involution acting nontrivially on Heegard-Floer ho-

mology, in Geometry and topology of manifolds (Fields Inst. Commun., Amer. Math.
Soc., Providence, Rhode Island, 47, 1–9 ( 2005)).

[33] R. E. Gompf, An exotic menagerie, 37 199-223 (1993).
[34] F. Marcelis, https://fgmarcelis.wordpress.com/pg32/pg32-1/ and

https://fgmarcelis.wordpress.com/mermin-cayley-salmon-desargues, accessed on
January 1, 2020.

[35] M. Saniga, The complement of binary Klein quadric as a combinatoriam Grassman-
nian, Mathematics 3 481-486 (2015).

[36] M. Saniga, F. Holweck and P. Pracna, From Cayley-Dickson algebras to combinatorial
Grassmannians, Mathematics, 3, 1192-1221 (2015).

[37] M. Planat, R. Aschheim, M. M. Amaral and K. Irwin, Informationally complete
characters for quark and lepton mixings, Symmetry 12 1000 (2020).

[38] M. Planat, R. Aschheim, M. M. Amaral, F. Fang and K. Irwin, Complete quantum
information in the DNA genetic code, Symmetry 12 1993 (2020).

[39] M. Planat, D. Chester, R. Aschheim, M. M. Amaral, F. Fang and K. Irwin, Finite
groups for the Kummer surface: the genetic code and quantum gravity, Quantum
Reports 3 68–79 (2021).
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