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Abstract—A wireless sensor network (WSN) is a set of special-
ized devices that commonly monitor environmental and physical
conditions. A critical aspect of applications with WSNs is their
limited resources especially in multivariate sensor features when
transmitting large amount of data from the nodes to the base
station. The aim is then to optimize power consumption during
data transmission by using data reduction methods. In this
article, we study multivariate data reduction at node’s level.
We propose a new efficient model based on reducing collected
data by aggregation and polynomial regression. We evaluate and
compare our method with existing data aggregation techniques,
and with the following well-known compression techniques (xz,
bzip2, brotli and gzip). The simulation results show that our
approach outperforms the existing methods and offers a good
approximation of data quality with small approximation errors.

Index Terms—Heterogeneous WSN - data aggregation - data
reduction - similarity functions

I. INTRODUCTION

A wireless sensor network (WSN) is composed of a large

number of sensor nodes deployed over an area (large or small).

These nodes are cheap and small (but not only) devices which

sens environmental data and then collaborate to send them to

a base station usually called a sink. The main drawback of

WSNs is that their resources are strongly constrained (energy

and processing power, communication range and memory

size).

Heterogeneous WSN are composed of nodes which are

able to monitor heterogeneous environmental features such as

temperature, humidity, light etc. We then speak of multivariate

data (in opposition of univariate data i.e. the sensing of a

unique feature). It is also known that the amount of energy

consumed during data transmission is much higher than that

used for data computation [23]. So, as power consumption in

WSN is highly correlated with radio communication, it appears

that optimizing the transmission of multivariate data is an

important challenge (even more in a large scale deployment)

[12], [25].

In this paper, we propose a 2-steps approach which focuses

on optimizing the energy consumption in HWSN while opti-

mizing the data transmitted in the network. This aggregation

approach is based on the Euclidean Distance computation

and on polynomial regression techniques and try to tackle

the energy and memory constraints of WSN. Several existing

works have been conducted on data aggregation in the WSN

context and the majority of them focus on a one field data [14],

[15], [19]. We present in this paper an extension with more

experimentation of our previous work [6]. Our approach is

composed of two levels of data reduction. The first one is data

aggregation and the second one is dedicated to data correlation

while using polynomial regression. Here, the aim is to only

send to the sink one of the correlated fields instead of all. In

this way a polynomial regression function is computed and

only its parameters are sent to the sink.

The remaining of this paper is organized as follows: Sec-

tion 2 presents a state of the art. Sections 3 and 4 describe

the two phases of data reduction. Experimental results are

presented in Section 5. Section 6 concludes the paper and

provides future work.

II. STATE OF THE ART

Energy conservation in WSN is an extensively studied topic.

Several approaches have been proposed and here we only

focus on data reduction technique which can be categorized

in three main groups.

• Data compression. The goal here is to reduce the number

of bits needed to represent information and in this way

decreasing the overall inter-node communication volume.

It implies a compression process at the node level and

a decoding counterpart at the sink level [13], [16],

[29]. The compression can be losslessly (data can be

reproduced exactly by the decoding process) or lossily

(the compression is better bu the decoding process can

only approximate the original data). Lossily compression

reduces the application area of this technique, since data

such as medical data, emails and other text generally

do not tolerate any information loss. We can cite here

well-known compression tools such as [3], bzip2 [2], xz

[5] and brotli [1]. The main drawback of compression

techniques is that the computational cost induced by

coding and decoding algorithms is particularly hight

• Data aggregation. These techniques reduce the amount

of data to be transmitted by removing redundant data

due to geographical or temporal proximity, for exam-

ple [10], [20]–[22]. In a tree-based approach the aggre-

gation processes are computed along a tree, data flowing

from leaf nodes to the root i.e. the sink [9]. The main



difficulty is here to build a tree which balances the overall

energy consumption in the network [28]. Cluster-based

algorithms (hierarchical approach) divide the network in

several clusters which elect a cluster-head among their

members [28].

Another approach based on prefix frequency filtering

(PFF) technique is proposed in [7], [8]. The idea is to

find redundant data sets generated by neighboring sensor

nodes (by neighboring we mean geographically and/or

temporally).

• Data correlation. In [11], Banerjee et al. proposed to

model the sensed data as a polynomial function in the

2D space via a regression technique. In this way, only

the coefficients of the function (and not the raw data)

are sent into the network. Their method (TREG) is a

tree based polynomial regression algorithm based on the

degree of correlation that exists between the sensor data.

The authors of [27] also applied a regression technique to

propose a new data aggregation algorithm which exploit

the spatial correlation of the data. Here, the sensor

network is a 3D one.

In this paper, we use both data aggregation and data cor-

relation techniques. This method differs from other methods

since it works on two data reduction phases. The two phases

are at the node level. First an aggregation technique is applied

on the multivariate data sensed. Then a polynomial regression

function is computed and its parameters are sent to the

sink in a way that the reconstructed values at the sink bear

approximation errors.

III. HETEROGENEOUS WSN

Homogeneous data structures are composed of one data field

(e.g. light), while heterogeneous data contain several fields

(e.g. humidity, temperature, voltage, etc.). In this approach

we consider heterogeneous sensor networks where each node

collects measures that correspond to different different sensing

fields.

In this work, let N = {N1, N2, . . . , Nn} represents the

set nodes, and n is the total number of nodes in the net-

work. We consider that Ni is equipped of sensors Si =
{Si1 , Si2 , . . . , SiK}, related to different fields. We consider

periodic approach and each period is divided into τ slots.

At each slot j each sensor Sik collects a measure. Subse-

quently, at each slot j, each node Ni takes a data record

Mij =
[

mij1
,mij2

, . . . ,mijK

]

, where mijk
is collected by

the sensor Sik for slot j. Therefore, at each period p, Ni will

form a data matrix Vi as follows:

Vi =


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
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The aim of our first step is then to search the similarity

between the line in this matrix while using the Euclidean

distance.

A. Euclidean distance computation

The Euclidean distance is a common metric used in a large

number of applications. In most of them it is defined as

a threshold and is computed between two objects (images,

points, lines, sensors...) [24]. In our method the nodes use this

distance to compute the similarity between two vectors and the

frequency parameter Freq(Mij of similar data records int eh

matrix. The Euclidean distance (Ed) between two data vectors

Mia and Mib is evaluated as follows:

Ed(Mia ,Mib) =

√

√

√

√

L
∑

l=1

(mial
−mibl

)2

where mial
∈Mial

and mibl
∈Mibl

.

Thus, Mia and Mib are said to be redundant if

Ed(Mia ,Mib) ≤ tEd
, where tEd

to be determined by the end-

user.

The frequency of a data vector Mij , noted as Freq (Mij ),

is the number of subsequent instances of the similar vectors

in the same matrix Vi after the Euclidean distance estimation.

In order to be able to perform exact comparison between

data sets, normalization of the distance data must be computed.

The aim of this step is to constraint the different distances

into the [0, 1] range. The length of the vector Mia , noted

as length(Mia), is computed as the distance from the origin

vector (or zero’s vector) to the vector Mia as follows:

length(Mia) =

√

√

√

√

K
∑

k=1

m2

iak
, where miak

∈Mia .

The normalisation phase of the Euclidean distance can be

done as follows:

EdNorm
(Mia ,Mib) =

Ed(Mia ,Mib)

max{length(Mia), length(Mib}

B. Similarity computation Algorithm

The data reduction and similarity detection between vectors

are presented in Algorithm 1. At a first slot, a sensor node

Ni captures the first data vector and initializes its weight to

1 and saves it as the first row in the final matrix of measures

(lines 2-4) before sending it to the sink. Then, for each new

collected vector, the node searches for similarities with this

row with other vectors already save din the final matrix based

on the Euclidean distance.

If a similarity is detected, the node deletes the new vector

and increments the corresponding frequency of the similar

row by 1 (lines 8-12), else it adds it as a new row in the

final matrix and assigns its frequency to 1 (lines 15-16). At

the end of period, every node will have a reduced matrix

with no redundant vectors in terms of rows. Then, it executes

the second phase, ’data correlation’ and further reduces the

matrices of data in terms of columns.



Algorithm 1 Rows similarity at the Nodes level.

Require: new data row Mij = {mij1
,mij2

, . . . ,mijK
} col-

lected at slot sj , period p.

Ensure: data matrix composed of rows and their frequencies:

Vi.

1: Vi ← ∅
2: if j = 1 (sj is the first slot in p) then

3: Freq(Mij )← 1
4: Vi ← Vi ∪ {(Mij , F req(Mij ))}
5: else

6: found← false

7: while
(

(Mik , F req(Mik)) ∈ Vi

)

&&
(

!found
)

do

8: if Ed(Mij ,Mik) ≤ tEd
then

9: Freq(Mik)← Freq(Mik) + 1
10: disregard Mij

11: found← true

12: end if

13: end while

14: if (!found) then

15: Freq(Mij )← 1
16: Vi ← Vi ∪ {(Mij , F req(Mij ))}
17: end if

18: end if

19: return Vi

IV. DATA CORRELATION

A correlation matrix groups together the correlations of

several variables with each other, the coefficients indicating

the influence that the variables have on each other which is vey

useful when using multivariate techniques. It is, then, possible

to better analyse the correlation among features, by reducing

the number of dimensions of the underlying structures. To

perform this step, many statistical tools exist (PCA, canonical

correlation analysis, etc.).

A. Polynomial regression

In this phase, to further reduce the quantity of data that

transit in the network, each sensor fits its correlated feature’s

data to a polynomial function. The objective of this phase is

to find the relationship/correlation between the measures of

two different fields in the dataset XSip
and XSiq

, where the

data-set of a node Ni is Xi = {XSi1
, XSi2

, . . . , XSik
} and

1 ≤ p < q ≤ k.

In order to compute this correlation, we use the polynomial

regression method to obtain the following f function as

follows:

f(XSip
) = β0 + β1XSip

+ β2X
2

Sip
+ β3X

3

Sip
+ ...+ βnX

n
Sip

where βi = 1, 2, 3, ..., n are the coefficients of the function,

and β0 is noted as the intercept term. However, the assump-

tion of the existence of a linear relationship between data sets

is not sufficient. Then, the aim is to assemble our linear model:

linearModel = lm(XSip
∼ XSiq

, datas− et)

where XSip
and XSiq

are the correlated parameters observed

in the correlation matrix, and based on a correlation threshold

α fixed by the application criticality. When the criticality of

the application increases, the value of the threshold tends to

1. The degree of the polynomial depends on the degree of

needed precision. Here we have to find a balance between the

precision of the model and the complexity of the calculations.

Now the quality of a regression prediction can be measured by

the coefficient of determination, denoted (R2). This coefficient

can be viewed as a statistical measure of fit i.e. how well a

a statistical model fits a data set. An (R2) of 1 means that

the model fits very well the data. Our tests show that beyond

degree 3 the accuracy gains become negligible. These results

are confirmed with the use of the ANOVA table. In this way,

we choose to use a polynomial regression model of the third

degree.

Now, if we use the R statistical free software [4], the lm

function is the following:

fit = lm(XSiq
∼ XSip

+ I(X2

Sip
)+ I(X3

Sip
), data− set).

Figure 1 sums up our data reduction method. The objective

is to reduce the collected matrix in both columns and rows. The

data aggregation phase aims at reducing the rows of the matrix,

while the correlation phase goal is to reduce the number of

columns.

Fig. 1. The reduced matrix of data of our approach.

V. EXPERIMENTAL RESULTS

The proposed technique describe in this paper is imple-

mented at the sensor level. Redundant data sensed during the

aggregation phase are deleted and the number of parameters

sent to the aggregator are reduced with the correlation phase.

In this section, we propose to experimentally validate our

approach by running a R-based simulator (of our own) on



the well-known Intel Berkeley Research Lab [26] data set.

This data set represents the data (humidity, temperature, light

and voltage) sensed every slot s = 31 seconds by 54 sensors

deployed in the lab

We choose ten nodes to run our simulation, with an aggrega-

tor located at the center of the lab. We aim at demonstrating the

efficiency of our technique more specifically in terms of power

consumption. Each node is initialized with a curve fitting

algorithm, reads data (measures) saved in file and applies the

aggregation phase and tests the correlation between different

fields and sends the data (vectors/frequecncies) to the coor-

dinator/aggregator while executing the correlation phase and

computing the coefficient values for the polynomial function.

A record means a set of 4 different measures collected at one

slot s. The metrics that we evaluate in our experiments are: the

the percentage of aggregated data using the Euclidean distance,

the percentage of data sent to the aggregator during the second

phase, the energy consumption and the data accuracy. We also

compared our approach to the PFF technique [7] that considers

clustering based networks.

A. Data aggregation at the node level

Here, by using the using the Euclidean distance, similar

data (record) are aggregates by each sensor. The frequency

assignment for each vector is also performed. The goal is

twofold: first , decreasing the size of the sensed data while

preserving their integrity. Two parameters are central here: the

threshold tEd
and the number of collected vectors by period

T .
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Fig. 2. Percentage of remaining data after the aggregation phase.

In this serie of evaluation, we varied the threshold tEd

between 0.01 and 0.1 (according to the measured field) and

T between 20 and 100. In Figure 2 we show the percentage

of the remaining data after using the Euclidean distance. It is

noticed that our approach, in the worst scenario, reduces up to

86%. Note also, that, the amount of redundant data decreases

when T or tEd
increases.

B. Correlation results

The objective of this part of simulations is to find the

correlated parameters. In our simulations (weather data), α

was fixed to 0.9. In Figure 3 we present the correlation matrix

of sensor number 1 (after the aggregation phase).

Fig. 3. Correlation matrix of data in sensor 1 after aggregation.

The correlated parameters are temp, hum and volt for

all the sensor nodes. While studying the used data for our

simulations, it appeared that the temp field is the most

correlated with other fields. Therefore, the result of the fitting

function is realized based on the field of temperature. For

instance, when α = 0.9, for node 1 1, and in order to depict

the correlation between temp and hum, the following formula

can be used:

lm(hum ∼ temp+ I(temp2) + I(temp3))

and so forth for temp and volt. After this step, the coefficients

of the functions and the temp measures are sent to the sink

instead of the whole data (temp, hum and voltage). The sink

will then extract the missed values. We compared our approach

to the Prefix Frequency Filtering technique PFF [8], [10], and

with other compression techniques (xz, bzip2, brotli, and gzip

). Figure 4 shows the results of the percentage of vectors

sent from sensor nodes to their aggregator, while varying the

threshold of the Euclidean distance tEd
and the number of

digits n to the right of the decimal point of the values of

our data (in order to convert the real numbers into natural for

compression methods).

In an another set of experiments, tEd
was fixed at 0.01 and

0.1 while n = 0, 1, 2 (we only illustrate n = 0 in figure 4).

The obtained results show that our approach allows each node

to reduce from 2 to 13% of the sets to send to the aggregator.

We show also that our method outperforms PFF and the four

compression techniques.

1the same for other nodes
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Fig. 4. Percentage of sets sent to the sink at each period with n = 0

Fig. 5 shows an illustrative example for the number of

remained data sent to the aggregator after applying our tech-

nique, PFF and gzip (i.e. the best compression technique

among others). We randomly take ten nodes from the network

then, we varied the period size while taking the following

values 20, 50 and 100 measures. Similarly to the results shown

in Fig. 4(b), we can observe that our technique allows each

node to significantly reduce its data sent to the aggregator,

compared to other techniques. Indeed, in our technique, the

results show that the amount of data sent is varying from node

to another; the nodes with ids = 1 and 4 sent the minimum

number of measures (≃ 44 when T = 20, 20 when T = 50
and 13 when T = 100) to the aggregator while the maximum

number of measures is sent by nodes with ids = 6 and 7 (≃ 65
when T = 20, 27 when T = 50 and 16 when T = 100)).
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Fig. 5. Number of measures sent to the aggregator with tEd
= 0.1.

C. Data accuracy

In order to study the accuracy of our technique, the differ-

ence of R-squared of the correlated parameters, and The mean

square error (MSE) are evaluated to see how close the line of

regression is close to a set of points. The smaller the MSE is,

the closer one is to find the line of best fit.

In tables I and II, one can notice the values of the R-squared

and the MSE for the predicted measures of the humidity

feature through the fitting with the voltage and the temperature,

and the predicted measures of the voltage feature through

the fitting with the humidity and the temperature. The results

confirm our decision to send the temperature feature instead

of the others, and to extract other features through it using the

fitting function.

Figures 6 (a, b) illustrate the plotting of the humidity

measurements at the nodes and at the sink level. When

comparing both figures, it appears clearly that there is no

min max median mean R2 MSE

real 29.9 39.45 37.37 35.89 - -

hum ∼ volt 30.63 39 37.88 35.89 0.9 1.2

hum ∼ temp 30.28 39.21 37.36 35.89 0.95 0.5

TABLE I
HUMIDITY SUMMARY BEFORE/AFTER THE FITTING

min max median mean R2 MSE

real 2.663 2.762 2.7 2.71 - -

volt ∼ hum 2.681 2.751 2.705 2.71 0.89 0.09

volt ∼ temp 2.678 2.751 2.703 2.71 0.95 0.04

TABLE II
VOLTAGE SUMMARY BEFORE/AFTER THE FITTING

real difference between the plotting of the estimated features

between regression function and the original.

(a) at node level. (b) at sink level.

Fig. 6. Humidity measurements plot.

D. Energy consumption study

The energy consumption of the communication radio mainly

relies on the volume of data sent over the network and is much

higher than data calculation [23]. By reducing the volume of

the collected data to be transmitted, our technique aims at

extending the network lifetime. This reduction is performed

by a data aggregation during the first phase, following by

expressing the correlated features by one of them in the second

phase. The information integrity is also preserved. In this

study we use the well-known energy consumption radio model

presented in [17], [18].

ETX(k, d) = Eelec ∗ k + βamp ∗ k ∗ d2.

Ecomp = Naddǫadd +Nshtǫsht +Ncmpǫcmp

E = ETX + Ecomp.

Every sensor, at the end of each period, builds a m vectors

set with their respective frequencies. This set will be sent by

the sensor and its size is equal to the frequencies number plus

the number of vectors sent. Each vector is considered to be

equal to 64 ∗ p bits, p referring to the number of parameters.

Figure 7 shows the energy consumption comparison between

our technique and other methods while varying the threshold

of the Euclidean distance tED and the number of digits n to

the right of the decimal point depending on the period T .

We varied tEd
= 0.1, 0.01 and n = 0, 1, 2 and the obtained

results show that our technique outperforms PFF and the com-

pression methods for all values of thresholds and it reduces

from 90% to 98%. In figure 7(a) and 7(b) only n = 0 is

presented.



From these results the following points can be deduced:

• our technique reduces more energy consumption when

tEd
increases,

• our technique conserves more energy when T increases.
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Fig. 7. Energy consumption at each sensor with tEd
= 0.01.

VI. CONCLUSIONS

A two-phase data reduction approach is described to save

energy in heterogeneous WSN. Using the the Euclidean dis-

tance function, sensor nodes aggregate the vectors of data

before sending them to the coordinator/aggregator. Then, the

high correlated parameters are fitted in a manner that the

estimated coefficients representing the values of the slope

computed by regression are obtained. The deleted data are then

reconstructed at the final base station using the fitting function

and the computed coefficient values. We showed the efficiency

of our method by reducing the size of the data transmitted in

the network and thus increasing the network lifetime while

guaranteeing the data integrity. In a future work, a matrix

similarity approach at the aggregator level will be applied.
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