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Abstract—A Modular Self-Reconfigurable Robot (MSR) is
an Internet of Robotic Things object (IoRT) composed of an
ensemble of independent communicating robotic modules that
can self-reconfigure to change their initial shape into a goal one.
Self-reconfiguration is known to be an intricate and complex task
and faults such as broken connections, loss of power, incomplete
motions... are likely to occur during the self-reconfiguration
process. However, existing work on self-reconfiguration considers
fault-free robotic modules and does not apply any fault-tolerance
mechanisms.

In this paper, we propose a fault-tolerance mechanism that can
be applied to a broken interface which results in communication
failures in the context of the self-reconfiguration of a 3D Catom
robot using the deterministic scaffold assembly algorithm. We
introduce a new module role: the Helper module. The Helper
module serves as a communication bridge between two modules
attached by a broken interface. We showed in simulation the
efficiency of our approach dealing with communication failures
caused by broken interfaces.

Index Terms—Fault-Tolerance, Modular Robots, Self-
Reconfiguration, Internet of Robotic Things

I. INTRODUCTION

In nature, some very robust organisms can be found. For
example, the human body is able to regain health after bones
or skin breaks. One of the reasons for the success of the human
body is the trillions of cells making up the body. There is no
single point of failure for multi-cellular organisms. This can
be ensured by the redundancy of cells which may separate,
relocate, or fix the life form they make. Robots, in actuality,
are overall not very fault-tolerant. The passing of a sensor,
an actuator or a piece of mechanics will in most cases leave
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Fig. 1. Presentation of the problem: in the left picture yellow lines shows the
broken connection and in the right picture the solution using Helper module
in blue to maintain the communication.

the robot completely defenseless and incapable to play out its
capacity.

Inspired by multi-cellular organisms, modular self-
reconfigurable robots (MSR) consist of many interconnected
robot modules [1] forming an intranet of robotic things.
Considering the ensemble as a whole, the set of modules
is a complete Internet of Robotic Things (IoRT) object that
can participate in the Internet of Things (IoT) ecosystem.
They are able to communicate to coordinate their tasks and
move to self-reconfigure from their current shape into a
goal one. However, modules are prone to failures. Faults
such as a broken interface, a loss of power, an incomplete
motion, a faulty docking... can probably occur during the
self-reconfiguration process. Moreover, self-reconfiguration
is known to be an intricate task that requires complex
planning and coordination between modules to move
and reach their goal positions. Many self-reconfiguration
algorithms exist in the literature, yet, to the best of our
knowledge, they don’t consider modules failures during the
self-reconfiguration process. Therefore, in order to tolerate
faults, some mechanisms must be implemented to guarantee
the completeness of a self-reconfiguration algorithm to
successfully achieve the desired goal shape.

Programmable matter is a matter with the ability to change
its physical properties such as its color and shape on demand
or due to a certain stimuli from its environment. MSRs can
be used to achieve such matter by building objects composed
of an ensemble of connected quasi-spherical micro-robots
capable of computing, communicating and moving around
each other to coordinate their tasks and self-reconfigure to
change the shape of the object. In this context, Thalamy
et. al [2] envisions to a achieve a programmable matter by
representing an object as a porous internal scaffold formed
with quasi-spherical modules called 3D Catoms. The scaffold
is then coated with a thin layer of modules to better represent
the goal object [3].

In [4], an algorithm is described for building the scaffold.
In which, modules flow continuously in the upward direction
starting from a reserve of modules placed underneath the scene
called Sandbox. During their motions, modules use a message-
passing motion coordination algorithm inspired by traffic-light
systems to keep enough space between them and other flowing
modules. They also exchange messages to plan their motions.
Therefore, a communication failure can interrupt the flow of



modules and cause an incomplete scaffold construction.
In this paper, we aim to propose a fault-tolerance mecha-

nism to prevent incomplete scaffold construction in case of a
communication failure caused by a broken interface between
two adjacent modules. For this purpose, we introduce the
Helper module: a module that will serve as communication
bridge between two adjacent modules attached by a broken
interface. We describe a method that can be easily added to the
motion coordination algorithm to put the Helper module in its
place to reactivate the communication as shown on Figure 1.

The remainder of this paper is organized as follows. Section
2 starts by introducing the related work, followed by an
overview of the fundamentals of our method in Section 3.
Section 4 describes the proposed solution. Lastly, Section 5
presents results and simulations of our method performed
on the VisibleSim [5] simulator for modular robots, before
concluding the paper in Section 6.

II. RELATED WORK

Modular robots are made up of multiple modules that are
communicating with one another [6]. A fault can originate
from any module in the system, regardless of where the
unexpected system failure occurs.

Once the fault in a module actually manifests itself and
becomes active, it causes some unexpected behavior. Different
faults will result in different behaviors, but the common thread
here is that they are unexpected. An expected behavior in our
system effectively means that some part of our system did
something that we did not plan for. These robots are becoming
increasingly prevalent in our digital era, fault-tolerant research
has begun to shed light on the internal failures of the robot’s
hardware and software systems [7] [8]. The focus is shifting
to enable the robot to prolong its working life and maintain
as much of its functionality as possible with minimal cost
and less human intervention. In order to support these internal
fault-tolerant capabilities, there is a need to develop and master
robotic technology to detect and engrave failures. Before
digging in more in the modular robot faults, the concept of
scaffolding should be introduced.

Scaffolding in self-reconfiguration is not a novel approach,
it started in [9], where the ensemble could be made porous by
constructing multi-module structures that allowed modules to
flow freely internally, simplifying design, lowering the amount
of modules that needed to be displaced, thus speeding up
completely the reconfiguration. The scaffolding concept was
further studied in [10] and [11] using a very simple scaffold
geometry thanks to the cubic sliding and rotating robotic
model’s simplicity. They devised an effective deterministic
reconfiguration method, based on cellular automata and simple
gradients. The same scaffold geometry later was the inspiration
of [12], with a similar model but resolving reconfiguration
using a max-flow search to optimize the flow of the modules
between the boundaries of the initial shape and those of the
goal shape. They both achieved self-reconfiguration using a
number of individual movements linear in the number of
modules that are presented in the system.
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Fig. 2. Anatomy of the entire scaffold: Breakdown of a sample scaffold
consisting of an arrangement of 8 tiles with all branches grown, directly over
the sandbox [4].

However, these scaffold approaches have considered an
initial form as a pre-built scaffolding, but none responded
to the construction of the scaffolding structure from a mass
of modules, which it was introduced and developed in [4].
This work showed that scaffolds with complex geometries can
be considered as a very powerful tool to facilitate the self-
reconfiguration of massive modular robots.

In order to have fault-tolerant robots using the scaffold
method, one must be able to detect a failure or an error in
their systems. Many fault detector algorithms were developed
in [13] [14] [15] [16] [17] to identify failures quickly without
depending on a human’s senses, allowing the robot to rely
only on the information it can glean from its existing sensors.

In our case, we are interested in tolerating communication
failure caused by a broken interface on one of the modules
forming the scaffold to void the interruption of the construc-
tion.

III. PREREQUISITES

A. 3D Catom modular robot

Our solution focuses on the self-reconfiguration of modular
robots. These robots are made of quasi-spherical rotating
modules named 3D Catoms [18]. The 3D Catoms have a
quasi-spherical geometry consisting of 12 flat squares (named
connectors) linked by curves.

These 12 electrostatic connectors on the surface of the 3D
Catoms are used for latching, actuation between modules, and
peer-to-peer communication between connected neighbors, see
Figure 3. The 3D Catoms are placed in a face-center cubic
lattice and each 3D Catom can be connected to up to 12
neighbors. All 3D Catoms share the same coordinate system
and each 3D Catom stores in its internal memory its own
coordinates and update them after each movement. A 3D
Catom can move to a free adjacent position by rotating on
a fix module that serves as a pivot. 3D Catoms motions must
be coordinated by message-passing to avoid collisions and
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Fig. 3. The 3D Catom, a) shape and actuators, b) the two kind of rotations,
c) first prototype of mm size printed structure and d) electrostatic actuator.

blocking. They can detect and react to several internal and
external events such as the reception of a message, an added
or removed neighbor, an interruption event...

In addition, a 3D Catom can detect the presence of a
connected neighbor to one of its interfaces. In the context of
this paper, the 3D Catom can also detect that a connection is
broken after a motion due to a faulty docking procedure.

B. Scaffold model

To accelerate the self-reconfiguration of a programmable
matter based on modular robots, Thalamy et al. [2] described
a novel 3D self-reconfiguration approach for programmable
matter composed of 3D Catoms. The idea is to represent
the object using an internal scaffold coated by thin layer of
modules. The advantage of using a scaffold model is to leave
internal holes inside the shape thus facilitating coordination
and parallel motions inside the structure while requiring less
number of modules to represent the goal shape.

Their proposed scaffold is composed of tiles as its basic
building units. Each tile can have up to six branches: two
horizontal branches placed along the −→x and −→y axis and four
upward branches as seen in Figure 2. In [2] a distributed self-
reconfiguration algorithm that builds the scaffolding structure
is described. 3D Catoms continuously flow upward at various
ground location of the scene from a reserve of modules placed
underneath the structure called Sandbox to construct the tiles
that corresponds to a given goal shape. Modules flow following
the same paths along the branches in a train-like fashion. A
motion coordination algorithm detailed in the next Section
III-C that uses a message-passing traffic-light style is used to

keep a safe space between flowing modules to avoid blocking.
Our solution is a plugin to be added to the motion.

C. Motion coordination algorithm

As mentioned in the previous section, during the construc-
tion, modules flow inside the structure to build the scaffold.
The motion coordination algorithm is used to keep enough
space between flowing modules to prevent blocking and colli-
sion. During the scaffold construction, modules take different
roles. We are concerned with two roles:

1) FreeAgent modules: are flowing modules inside the
structure.

2) Beam modules: are modules already in their final posi-
tions forming the branches of the tiles. They are used
as pivot for FreeAgent modules.

Figure 4 shows the traffic-light style state transitions dur-
ing the motion coordination algorithm to keep safe distance
between moving FreeAgent modules. Before a motion, a
FreeAgent must query the pivot and its next latching points
to check that their light states are green. The light state of a
beam changes as follow: when a FreeAgent attaches to a Beam,
the beam changes its light state to red blocking the flow of
next modules. It switches back to green when the FreeAgent
is removed so the flow can resume. Below is the summary of
the messages used in the motion coordination algorithm, their
function, and their data. They are exchanged between Beam
modules and FreeAgent modules:

1) PROBE LIGHT STATE (sender, nextPos) (PLS):
Sent by a FreeAgent about to move to ask permission
by checking the light states of its next latching points.
It has the sender’s position for routing the reply, as well
as the position it wants to shift to (nextPos). A receiver
uses the latter to forward the message to all modules
that will be attached to the FreeAgent after its motion.

Fig. 4. Light state transition during the fault-free motion coordination
algorithm [4].
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Fig. 5. Beam and FreeAgent flow chart: Simplified view of the behavior of
Beam and FreeAgent modules states in case of a broken interface detected at
the Beam.

2) GREEN LIGHT ON (GLO) [recipient]: This is a re-
sponse to PLS, sent back to the module which made the
request if the light state is green before moving.

3) FINAL TARGET REACHED () (FTR): Sent by the
module that has just arrived at its claimed scaffold
position to instruct the pivot to change its light state
to green to continue the flow of modules even if it is
still attached to it in this circumstance.

For a more detailed description of the motion coordination
algorithm the reader can refer to [4].

IV. PROPOSED METHOD

To achieve fault tolerance for self-reconfigurable modular
robots in case of a communication failure between two mod-
ules, some modifications were added to the motion coordi-
nation algorithm. We recall that modules are continuously
flowing upward starting from the Sandbox. Therefore, when
an interface between two Beam modules breaks, the flow is
interrupted which affects the construction of a tile’s branch
which results in an incomplete construction. We solve this
issue by introducing a new module’s role: the Helper module.
The Helper module will be placed between two modules
connected with a broken interface to serve as a communication
bridge between them as shown in Figure 6. All messages that
need to be sent via a broken interface are then handled by the
Helper.

In order for a Helper to take its place, we added two new
messages to the motion coordination algorithm:

Fig. 6. A simulation example for handling a broken interface. a) a broken
interface is detected. b) the Helper module creates a bridge of communica-
tion between disconnected modules. c) communications through the broken
interface are passed through the Helper.

1) HELPER(bridgingPosition): Sent by a module that has
a broken interface to the sender of a PLS message to
change its role from FreeAgent to Helper. The Helper
module will keep rotating until it reaches the bridging
position between the broken module and its neighbor.
The bridging position is chosen in way to not interfere
the flow of the other modules. Once arrived, it will send
a “HELPER POSITION REACHED” message to the
broken module.

2) HELPER POSITION REACHED() (HPR): HPR is sent



by the module that has just arrived to its bridging
position to instruct the broken Beam to continue the flow
of modules.

Algorithm 1: Motion algorithm pseudo-code for the
Beam module role in case of a broken interface.

Msg Handler PROBE LIGHT STATE(sender,
nextPos):
dst←computeLightPivotForTarget(motionTarget);
if dst is brokenInterface then

state← RED;
send HELPER(bridgingPos) to sender;

else
Execute the original motion coordination

algorithm;
end

end
Msg Handler HELPER POSITION REACHED():

setGreenLightOnandResumeFlow();
end
Function setGreenLightAndResumeFlow():

if state = ORANGE then
send GREEN LIGHT ON() to
waiting module;

end
state← GREEN ;

end

Algorithm 1 and 2 shows the algorithms executed on a
Beam and a FreeAgent in case of a broken interface on the
Beam. When the beam detects a broken interface it waits until
it receives a PLS message. Then, instead of executing the
original motion coordination algorithm, it sends a HELPER
message containing the bridging position to the sender. On
reception, the FreeAgent rotates to the bridging position to
become a Helper then sends a HPR message to the broken
Beam. The Beam modules connected to the Helper can then
resume the flow and use the Helper as a bridge to send and
receive messages.

V. SIMULATION

The proposed algorithm was implemented and evaluated us-
ing VisibleSim: a discrete-event simulator for modular robots.

Algorithm 2: Motion algorithm pseudo-code for the
FreeAgent module role in case of a broken interface

Msg Handler HELPER(bridgingPosition):
rotateTo(bridgingPosition);
send HELPER POSITION REACHED() to
brokenbeam;

end
Msg Handler GREEN LIGHT ON():

rotateTo(nextPos);
end

Fig. 7. Four complete constructions of a pyramid made of four tiles while
having 0,2,3 and 4 broken interfaces (in yellow) on upward branches. Helper
modules are in Blue serving as a communication bridge.

Our simulations consisted of constructing a pyramid with 2x2
tiles with a branch size of 6 modules shown in Figure 7. We
evaluated our solution by breaking one interface on each of
the upward branches. Figure 6 shows simulation snapshots
that demonstrate how a module handles a broken interface that
disables the communication with the next adjacent module in
the branch during the construction of a tile.

The video1 introduces the construction of the pyramid
scaffold with 4 simulated broken interfaces on each upward
branch of the 4 tiles. It shows the placement of the helper
module and how it allows the continuity of communication
between the elements of the branch. Finally, it shows in
comparing the construction of the same pyramid with 3 and
4 broken connection the effect of the algorithm on the global
time of reconfiguration.

Figure 8 shows how the number of exchanged messages
varies when the number of faults increases. Each fault requires
a fixed number of messages exchanged between the faulty
Beam module and the Helper module. Hence, the number of
exchanged messages increases linearly in the number of faults.

Figure 9 shows how the global simulation time varies when
the number of faults increases. A fault in a tile’s branch
only affects the time of construction of the branch. Tiles are
constructed in a specific order as explained in [4] and can be
seen in video1. The construction order can be represented as a
tree where nodes are tiles and edges represent the precedence
of construction. The tree is rooted at a tile placed at one

1Youtube video link: https://youtu.be/llxhcyfpBa0

https://youtu.be/llxhcyfpBa0


0 1 2 3 4
Nb of faults

1188
1198
1208
1218
1228
1238
1248
1258
1268
1278
1288

Nb
 o

f m
es

sa
ge

s

Fig. 8. Number of exchanged messages vs the number of faults.
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Fig. 9. Time in seconds vs the number of faults.

corner of the goal shape. Therefore, when a fault occurs, the
construction time of the whole scaffold is affected if it occurs
in a branch connecting a parent tile to one of its child tiles or
in the last tile being constructed (a leaf tile). The simulated
example presents the latter case when the fourth fault occurs
in a leaf tile.

VI. CONCLUSION AND FUTURE WORK

In this paper, we adapted the deterministic scaffold assembly
algorithm to deal with communication failures caused by a
broken interface during the construction of the scaffold. The
presented solution uses a special module as a communication
bridge between two modules attached by a broken interface to
guarantee that other modules continue their flow to reach their
goal position. Simulated experiments show that the emergence
of a bridging module in case of a communication failure is
efficient to complete the construction of the goal shape.

Future works include to experiment fault-tolerance on differ-
ent shapes of modular robots. Then, find solutions to tolerate
other types of faults related to motion, docking and loss of

power. In addition, we aim to generalize this method to other
scaffold structures. Furthermore, we aim to make use of the
Helper module in coating after the scaffold construction is
done.
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