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Abstract The creation of current assembly lines can benefit from the new advances
made in the fields of Computer Science and the Internet of Things (IoT) to increase
their flexibility and improve their reliability. There are assembly line simulators de-
veloped for this purpose. However, these simulators have been designed to model
every detail of the line and take hours to be done. The aim of this paper is to intro-
duce a faster and more accurate computer-based solution - ManufactSim- allowing
the simulation of a real production system. This implementation derives from a be-
havioral modular robots simulator enhanced with a 3D display option. The results
show that ManufactSim’s performances are above the standards with an execution
time less than 11 seconds for 8 hours shift running on a CAD computer. Our de-
veloped solution is able to face this challenge with an highly accurate and efficient
simulator without compromise. The performed benchmarks show that we obtain a
robust and agile tool needed for a global future solution based on Machine Learning.
The benefits of this contribution will permit to automate the generation of industrial
assembly lines while caring on multiple optimization criteria.

Key words: Manufacturing, Industry 4.0, Digital Twin, Behavioral Simulator, Dis-
tributed Algorithms, Operational Research, Optimization Methods

1 Introduction

Industrial production is a constant adaptation process whose aim at increasing qual-
ity, speed or cost of the production, to cite only a few. Automation science has
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developed numerous theoretical tools which have been used to optimize the man-
ufacturing process. However, designing a new manufacturing line still faces lots
of challenges. A product is made of different parts assembled all together and the
assembly order can vary, there are multiple choices of robots, some tasks can be
made by humans and storage can placed between assembly units. The number of
combination is therefore huge. Furthermore, the cost function of each solution has
also many parameters like the employee cost, the machine cost or the production
rate. Aside from these challenges, deep learning is becoming a prevalent solution in
many fields of optimization. Its capacity to digest huge amount of data and to solve
complex problems have broadened its scope of use. In manufacturing, deep learning
has been successfully applied to vision, Automated Guided Vehicle (AGV), and in
many other domains but rarely to the design of manufacturing lines. We propose to
develop a complete environment for helping manufacturing line designers.

A machine learning algorithm will be used to generate the scenario and to op-
timize the different parameters (cf. Figure 1). To do this, it will need to quickly
evaluate the efficiency of the scenario. There exists plenty of manufacturing line
simulation which could be used to do like [12] or [7], except that these simulators
have been designed to model every details of the line and a simulation could take
hours to finish. What we need, in this context, is a different type of simulator which
does not exist to the best of our knowledge. That is why, we propose in this article to
develop ManufactSim: a behavioral discrete event simulator able to simulate a real
manufacturing line in a few seconds. The simulation and visualization engine is a

Fig. 1: Optimization solution architecture
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Fig. 2: Manufacturing environment

fork of VisibleSim [10], a modular robots behavioral simulator and as a bonus, this
visualization engine is able to display and animate the manufacturing line in 3D.

In Section 2, we will present some background information about the industrial
context of this study, followed by a state of the art in manufacturing line simulation
in Section 3. Section 4 will present our approach to enable high-speed simulation
of manufacturing lines and Section 5 will report our results showing that our envi-
ronment is fast, precise and adaptable. Section 6 will conclude the article and will
present some future work.

2 Industrial context

Three components are identified in order to design a manufacturing process: the
product’s Engineering Bill Of Material (EBOM), the manufacturing environment
and the scenario as presented in Figure 2. The EBOM contains the list of parts to
assembly with their constraints and parameters. The line layout sums up the phys-
ical manufacturing environment while the manufacturing scenario is mapping the
entities interactions organized into process.

Today, each manufacturing scenario is designed manually by a Process Archi-
tect. This expert has to dispatch the assembly operations into a line layout and deal
with an explosion field of possibilities. Then the scenario is presented to the Plant
Manufacturing Leader who is in charge of carrying on the manufacturing process.
Next the scenario is updated with the last feedback and presented to the job experts.
Once all feedback are collected, the scenario get a last optimization for a final val-
idation by the Program Manufacturing Leader who is in charge of respecting the
engagement contracted with customers. The Figure 3 illustrates three states of the
combinatorial explosion for a seven parts EBOM assembled in four stations which
results on five operations. So that for each state respectively loading number NL
and sub-assemblies number NS we compute the pair {NL,NS}. We get the optimal
solution {11,5}, all possible loadings {64,5} and all possible loadings and sub-
assemblies {64,27}.

A assembly line is the result of a set of entities enumerated below, combined
to describe how to assemble the pieces, manage the interactions between robots,
workers, and finally define evaluation parameters.
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Fig. 3: Combinatory explosion

An EBOM is a list of sub components which are composing a manufactured
product as illustrated in the figure 2. The assembly is following a defined process
resulting from a multiple tasks succession. Many parameters and constraints are
defining the EBOM such as a volume to produce per year, a target assembly cycle
time, some customers datum.

A layout is a production line footprint describing the physical manufacturing
environment aspects. Equipment and humans workers also called entities are listed
in order to design the assemblies flows. The parameters and constraints of a layout
can be defined by a list of equipment including cells, machines robots and tooling,
a sum-up of storage and buffers, a way of working (clockwise, anti clockwise), an
amount of workers.

A manufacturing scenario is a list of actions which defines the interactions over
the line’s layout entities. The scenario is a macro view of every steps needed to
complete an assembly.

A flow is a continuity of actions performed by each resources. In our case we’ve
got three types of interdependent flows such as human operator, robot and product.
The KPIs for Key Indicators Performance are used in the industry for evaluating
the efficiency rate. In an highly concurrency environment this criteria is required in
order to keep an eye on the competitiveness. Our main KPI is focused on the actions
duration performed by the line’s layout resources. The load balancing is the way to
evaluate the workload balancing between resources.

3 Related work

Digital tools are currently used to manage the new processes creation such as
”3DExperience platform” [2] from Dassault Systems. These tools are offering a
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wide range of services for industries by covering the product life cycle manage-
ment. Considering the aim of this tools is to bring a complete overview of the pro-
cess without generating optimized manufacturing scenarios, we assume that an extra
automation tool might be helpful.

So that, several works were done by using Machine Learning methods and more
precisely Reinforcement Learning. After a selection on the most accurate research,
a first approach from 2018 was turned around the application of Google’s Deep Q-
Learning architecture by Waschneck et al. to optimize production scheduling in a
multi-agent environment. Their method is applied to a dynamic and complex job
shop environment consisting of work centers with different constraints, multiple
machines of different types and multiple products [11]. Then a second research was
done in 2019 on ”Design, implementation and evaluation of reinforcement learning
for an adaptive order dispatching in job shop manufacturing systems” [6]. In 2021,
a work is covering the topic ”Designing an adaptive production control system us-
ing reinforcement learning” [5]. In another contribution to scenario simulation and
statistics generation, Kampa et al. [4] proposed an approach that allows a better rep-
resentation of real production processes and assembly lines by using discrete event
simulation methods.

A survey published in 2020 suggests that 75% of possible research areas in the
application of machine learning to improve production planning and control are
barely explored or not addressed at all [3], which is the case for the item ”Smart
Design of Products and Processes” in which we propose to develop this work.

4 Our proposal

In order to simplify the complexity of the possible operations combinations (see
Fig. 3), we have developed a manufacturing optimized scenario generation tool. We
focus on the simulator which is a single part of a whole solution.

The goal is to output multiple manufacturing data for different cases as the vol-
ume of part produced or the shift duration. Three components are necessary to per-
form a simulation: a product, a line layout and a manufacturing scenario. Each pair
of single manufactured product combined with different line layout will propose
multiple manufacturing scenarios. Each of them will have to be simulated in order
to evaluate them efficiency. In a addition to the simulation, a second API will an-
alyze and score the generated data for each scenario. Then global solution will be
able to perform a efficiency benchmark over each manufacturing scenario.

VisibleSim [10] is a behavioral simulator designed to simulate distributed pro-
grams running in modules composing distributed robots. This tool is useful to de-
fine large sets of modules placed in a lattice that are all running the same code. Each
module is able to communicate with its neighbors, i.e. the modules that are placed
in a direct neighbor cell.
This simulator really executes C++ codes that are ran by each module (we call them
Block Codes) and simulates the real world, including point to point communications
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Fig. 4: Manufacturing line assembly flows example

taking into account the delay of transmissions, sensors and actuators events due to
the interaction with the simulated world.
VisibleSim has been evaluated with many kinds of robots, some of them exist in real
and then allow to compare real and simulated value. For example, experiments in
previous works [9] shows the very good capability of VisibleSim to simulate real
distributed programs running in real Blinky Blocks robots.

We propose here to adapt VisibleSim in order to simulate precisely the produc-
tion lines in order to extract many KPI values. The update concerns three items: the
replacement of the lattice which allows to define which modules are connected, the
way of writing the Block Code and the graphic representation of the system.
Concerning the definition of the graph, a connection must be defined between two
elements that exchange parts of the conception during the assembly. These connec-
tions are bidirectional that allows to transmit a piece from a module to another one
and receive an acknowledgment in the same canal. The list of connections that cor-
respond to the edges of the flow presented Figure 4 is enumerate in an XML files.
As a consequence, the number of connections is much less important than the one
defined by classic robots used in VisibleSim (they may have up to 12 neighbors by
module). As the consequence, it reduces the number of resolution steps necessary
to simulate the distributed system.
Programming robots with VisibleSim consists in writing a C++ code that describes
what the module must do at starting and when receiving a message from a neigh-
bor module or an event from a sensor. We need here define a more flexible method,
adapted to the global workflow.
To do so in ManufactSim, we divide the treatment in two parts: first in the internal
Block Code we describe the behavior of the agent using C++ for a list of actions, it
mainly consists in sending messages or waiting for messages to communicate with
the neighborhood. This part corresponds to the knowledge of the agent, for instance
when a worker need to perform an action into a station, he has to first check if the
door is open otherwise he has to wait. The second part is stored in an XML file, it
consists in a succession of calls of the previous actions detailed for each agent.
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Agent Layer Description Color
Station 0 Base component where parts are assembled. white
Buffer 1 Storage for sub assembly next to station. green
Worker 2 Human workers interacting with elements. gray
Robot 3 Welding machine which performs operations. blue

Table 1: List of agents running on Block Codes, colors in the last column are the
color of the corresponding object in Figure 5

Then in ManufactSim, the Block Code executes the list of actions which are stored
in the XML file. This list is initially copied in the local memory of each module and
then consumed respecting the order. This decomposition of the Block Code allows
to evaluate different scenarios, described in the XML file without recompiling the
simulator.

Concerning graphical representation of the configuration, ManufactSim shows
the modules freely placed in several overlapping layers. For example a robot can
be placed inside a station just by placing it in a higher layer than the one used by
the station. Table 1 shows a part of the list of agents with their color and layer used
in Figure 5. This Figure shows a screenshot of graphical interface of VisibleSim,
where each agent is represented by a distinctive 3D model and a specific color. This
scene is animated according to the message and events and can be freely observed
during the simulation. Two simulation modes are available, one respecting the real
time showing the actions played with the real duration and the other running the
simulation as fast as possible to get the simulation results quickly.

The tasks list is the XML formalism of a manufacturing scenario attached to a
line layout. Every action is mapped to a Block Code which can be an agent so that

Fig. 5: ManufactSim graphic interface describing the arrangement of the
manufacturing line.
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simulation can be performed. The XML code is organized with global parameters,
such as the line details and the list of parts with them corresponding welding.

The second part of the file describes the manufacturing scenario through a set
of instructions according to the manufacturing equipment. Each equipment contains
one or two stations which are assigned to a human operator. The file structure is
respectively made of XML tags, i.e. ’vcell’ containing ’station’ and ’robot’. In ad-
dition, the tag ’action’ defines and assigns the tasks to each resource by mapping it
with the Block Codes.

The problem of finding optimal manufacturing scenarios is classified as NP prob-
lem: we can easily and quickly check if a candidate solution is indeed a possible
scenario but we cannot prove if it is the unique best solution [1]. Our search for
an optimal production scenario can be assimilated to a combinatorial optimization
problem which consists in finding one of the best solutions in a set of feasible man-
ufacturing scenarios [8].
A scenario is modeled by a set of parameters/variables presented by the following
feature matrix Ms.

Ms =

a11 a12 . . .
...

. . .
aK1 aKK


The feature vectors ai j are chosen in such a way that they directly affects the KPIs,
which means that a well-chosen combination of these parameters will result in op-
timal production performance.

5 Experiments

In this section, we are performing several experiments between our simulator and
the 3DExperience tool. This demonstrates the high speed and the accuracy as well

Fig. 6: Simulator execution time Fig. 7: Simulator versus 3DExperience
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Fig. 8: Accuracy between simulator and 3DExperience

as agility for future investigations. The experimental environment is powered by an
Intel i7 CPU, 2.60 GHz 64-bit, Windows 10 operating system embedding 32 Gb of
RAM memory.

This first experiment concerns the performance of our solution. Figure 6 high-
lights the fact that our simulator is fast regardless of the number of production hours
simulated while Figure 7 compares the simulation duration for both solutions. Re-
garding our experimental environment, we simulate 24 hours of production in 46
seconds while 3DExperience takes upper than 2 hours. Therefore, our simulator
proves to be at least 200 times faster than 3DExperience.

In order to evaluate the accuracy of the proposed solution, Figure 8 compares the
results for both solutions. The Mean Square Error (MSE) is around 3,04 seconds re-
sulting from updates applied on the tasks duration from the original 3DExperience’s
scenario.

Finally we can notice the agility of our method, Figures 9 and 10 are showing the
simulation results for 3 different line layout configurations by varying the amount
of Vcells or operators. The first figure shows the impact on the workload rate while

Fig. 9: Layout workload comparison Fig. 10: Layout cycle time comparison
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Fig. 11: Scenario workload comparison Fig. 12: Scenario cycle time comparison

the second one is focused on the cycle time. Figures 11 and 12 are showing the
simulation results for 3 different manufacturing scenario configurations by changing
the job scheduling arrangement. The first figure presents the impact on the workload
rate while the second one focuses on the cycle time.

So that we show that our simulator is able to handle for the same EBOM, different
layouts and scenarios to be generated by the artificial intelligence.

6 Conclusion

In summary, we can conclude that our manufacturing line simulation approach pro-
vides a stable, fast and accurate computer-based alternative ensuring a good yield
for complex manufacturing flows.
The performed experiments show that our solution delivers accurate results for 8
hours shift during less than 11 seconds running on a standard CAD computer com-
paring to the current tools that can take more than 2 hours for equal results. In
remains to be noted that the cycle time is only a study case that could be generalized
to other KPIs without ensuring changes and adaptations. It should also to be noticed
that an advantage of our solution is its configurability and its agility. Integrating
other functionalities and methods will modify the simulator’s parameters in order to
adapt and optimize the whole system.

In our future work, we plan to implement additional technical features: First, em-
bedding more KPIs for the assembly line scenarios evaluation. In this case, we might
use a multi-objective evaluation that takes into account the economic constraints ex-
tending the cycle time: i.e. for the high cost labor countries, we will mainly seek to
minimize the number of operators and vice versa. A other item concerns the au-
tomatic generation of scenarios to select the best ones using artificial intelligence
techniques. This method should have the learning ability without relying constantly
on experts. And as we will also implement a method for visualizing post-simulation
results. We suggest to generate at the end of the simulation a complete report con-
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taining diagrams that allow a better analysis of the performance indicators of the
scenario.
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