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A B S T R A C T

An ultrasensitive mass sensor is proposed by combining the benefits of mode localization and nonlinear
dynamics in two clamped–clamped microbeams of different lengths. The coupling electrostatic stiffness
between the two resonators can be tuned for modulating sensitivity, and the actuation voltage applied to
the shorter beam can be adjusted in order to overcome mechanical defects such as geometric asymmetry. The
analytical dynamic model considering the quadratic and cubic nonlinearities is established and solved by the
asymptotic numerical method (ANM) combined with harmonic balance method (HBM), as well as validated
by the long-time integration (LTI) method. A parametric study is performed in order to investigate the effects
of the coupling voltage, gap ratio, position of added mass and length ratio on the device sensitivity. Beyond
the critical Duffing amplitude and while taking advantage of mode localization, it is shown that the device
sensitivity in terms of amplitude ratio is significantly enhanced with up to three orders of magnitude higher
than the relative shift in resonance frequencies. The proposed model can be used as a design tool to tune the
nonlinearity level enabling the performance improvement of multimodal MEMS mass sensors.
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1. Introduction

Mass sensing is one of the most valuable engineering applications
for electromechanical resonators, which can be used for measuring
and identifying proteins [1,2], DNA [3,4], gas [5], cancer [6] and
biomolecules [7]. Sensitivity for mass detection has been regarded
as the main decisive characteristic for evaluating the sensor’s perfor-
mance. Hence, a series of sensitivity improving methods have been
proposed by means of structure optimization [7,8], dimension minia-
turization [1–6], and utilization of nonlinear vibrations [9–12]. For
example, Zhao et al. [8] presented a novel design of the resonant mass
sensor to improve the sensitivity through configuration integrated op-
timization. Kacem et al. [9] proposed a carbon nanotube as a resonant
cantilever and establishes a nonlinear model to simultaneously detect
the mass and position of attached particles. Zhang et al. [10] proposed
a nonlinear mass sensing concept based on parametric resonance am-
plification, which is experimentally validated by a non-interdigitated
comb-finger driven micro-oscillator. All these methods are applicable
for single-resonator based sensors, which are not immune to ambient
interferences.

Recently, the mode localization of at least two weakly coupled res-
onators has been introduced in mass sensors to enhance the sensitivity
and anti-jamming performance [13]. By using such a phenomenon, a
small perturbation will cause symmetry-breaking that leads to a drastic
shift in eigenstates or amplitude [14,15]. Actually, such symmetric
coupled structures involving elastic springs [16,17] or electrostatic
couplings [18,19] have been utilized in many sensing applications like
mass sensors [20], accelerometers [21] and force sensors [22]. Spletzer
et al. [14] introduced two elastic coupled cantilevers in the design
of ultrasensitive mass sensors, and it is verified that the sensitivity
can be improved over two orders of magnitude compared to the rel-
ative change of resonance frequency. The effects of different coupling
strengths on the sensitivity of elastic spring coupled resonant mass
sensor has been investigated in [23]. Furthermore, the localization of
resonator arrays has been studied in several references [24–26], these
pieces of literature analyze the influencing factors of the localization
in array structures, and provide a research basis for potential sensing
applications. Wang et al. [27] proposed a 5-beam array of elastically
coupled resonators which shows theoretically three to four times of
amplitude shift enhancement compared to a single resonator.

Compared to mechanical coupled structures, the electrostatic cou-
pling structures of variable stiffness have great potentials in designing
adjustable sensors to enhance their environment adaptability. Thiru-
venkatanathan et al. [19] utilized the electrostatic coupling to obtain
a lower coupling stiffness and hence improve sensitivity for mode-
localized resonators. Zhao et al. [28] used the electrostatic coupling
to design a novel 3DoF weakly coupled structure to be used as a
mode localization sensor, and its sensitivity has been dramatically
improved compared with 2DoF mode localization resonant sensors.
Pandit et al. [29] investigated the improvement of resolution gains of
electrostatic coupling nonlinear resonators compared with the linear
counterpart. In addition to significantly improving sensitivity, mode
localization resonators are also robust to environmental disturbances.
In [30], the eigenstates shift remains relatively constant at different
environment pressures and temperatures. The robustness of mode lo-
calization readouts has been verified sufficiently by Zhang et al. [13],
and the results showed that the amplitude ratio can reject the ambient
pressure drift. These sensors are based on exactly identical resonators,
and the devices are initially balanced. However, as the size of the
structure decreases, manufacturing error induced asymmetrical items
will significantly unbalance the system resulting in malfunction.

Rabenimanana et al. [15] proposed a mass sensor with two weakly
coupled cantilevers with different lengths, which provided an effec-
tive way to overcome the influence of the non-negligible mechanical
defects, but limited to linear vibrations. In this paper, an ultrasensi-
tive mass sensor is proposed by introducing mode localization in two
weakly coupled microbeams of different lengths while combining the
benefits of nonlinear dynamics and electrostatic coupling. The latter
can be tuned to achieve variable stiffness and enables sensitivity im-
provement. The short beam is actuated by a combined AC–DC voltage.
The dynamic analytical model considering the quadratic and cubic non-
linearities is established by using the Galerkin method. The dynamic
response is obtained by using the asymptotic numerical method (ANM)
with harmonic balance method (HBM), and the validation is performed
with respect to solutions obtained using long-time integration (LTI)
method. For the electrostatic weakly coupled microbeams, and while
using the amplitude ratio as the output metric, the sensitivity can be
improved by three orders of magnitude compared to the frequency
shift output metric. For adjustability, the mass sensor can be controlled
to operate in the linear and nonlinear vibrations by regulating the
actuating voltage. It is shown that the sensitivity is significantly en-
hanced when the device is driven beyond its critical Duffing amplitude
compared to the linear regime. Finally, the effects of specific design
parameters on the device sensitivity are investigated while ensuring
nonlinear vibrations under primary resonance.

The present paper is organized as follows: the motion equations of
the structure are proposed in Section 2. In Section 3, the results of
the system operating in the linear and nonlinear states are studied. In
Section 4, the influence of the different parameters on the sensitivity is
investigated. Finally, conclusions are collected in Section 5.

2. Model

The proposed mass sensor is composed of two clamped–clamped
microbeams coupled by the bias voltage 𝑉𝑐 as sketched in Fig. 1. The
two microbeams have different lengths and only the shorter microbeam
2 is actuated by a combined voltage 𝑉𝑎 (̃𝑡) = 𝑉𝑑𝑐 + 𝑉𝑎𝑐𝑐𝑜𝑠(𝛺 �̃�) in the
bottom, where 𝑉𝑑𝑐 and 𝑉𝑎𝑐 are the DC polarization voltage and the
applied AC voltage, 𝛺 is the excitation frequency. The actuation voltage
applied to the shorter microbeam can be adjusted to overcome the
mechanical defects of asymmetric microbeams having unequal lengths.
The design parameters of the system are given in Table 1.

2.1. Dynamic modeling of the electrostatically coupled microbeams

The governing equations of motion of the two coupled microbeams
are established by using the Euler–Bernoulli theory.
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Table 1
Design parameters of the proposed mass sensor.

Parameter Value (μm) Parameter Value

Length of microbeam 1 (𝑙1) 200 Young’s modulus (E) 160 GPa
Length of microbeam 2 (𝑙2) 192 Density (𝜌) 2330 kg/m3

Microbeam width (b) 4 Air gap (𝑔𝑎) 1 μm
Microbeam height (h) 1 Air gap (𝑔𝑐 ) 2 μm
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and the boundary conditions of the microbeams are
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where 𝑥 is the position along the microbeam length, �̃� is time, 𝑐 is the
linear viscous damping per unit length, E is the Young modulus, 𝜌 is
the mass density, I=𝑏ℎ3/12 is the moment of inertia, b, h is the width
and the thickness, respectively, 𝑔𝑐 and 𝑔𝑎 are two gap distances, 𝑙1 and
𝑙2 are two lengths of microbeam 1 and microbeam 2, 𝑙3 is the length of
the electrode on microbeam 1, �̃�1 and �̃�2 are the transverse deflections
of the microbeam 1 and microbeam 2, A is microbeam cross-sectional
area, 𝜀0 is the dielectric constant of the gap medium, 𝑚𝑝 is added mass,
𝑉𝑐 is the applied voltage on the coupling electrode.

For simplicity, the governing equations of the system will be nor-
malized by the following non-dimensional parameters
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Substituting Eq. (5) into Eqs. (1)–(4) dropping the hats. To reduce
the computational complexity of the equations, the electrostatic force
terms have been expanded in Taylor series in Eqs. (1) and (2). In [31], it
is found that the accuracy of using the truncated Taylor series is greatly
affected by the response amplitude. Since the two microbeams only
operate at small amplitudes (�̃�1, �̃�2 < 0.1) in this paper, third-order
Taylor expansion is used for the electrostatic actuation force term to
obtain up to three possible amplitudes for a given frequency [32]. As
the coupling voltage is very weak, its corresponding electrostatic forces
in Eqs (1) and (2) have been expanded into first order Taylor series.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜕4𝑤1

𝜕𝑥4
+

𝜕2𝑤1

𝜕𝑡2
+ 𝛿𝑥0 (𝑥)𝛥𝑚

𝜕2𝑤1

𝜕𝑡2
−

[

𝑁1 + 𝛼1 ∫

1

0

(

𝜕𝑤1
𝜕𝑥

)2
𝑑𝑥

]

𝜕2𝑤1

𝜕𝑥2

= −𝑐
𝜕𝑤1
𝜕𝑡

− 𝛼2𝑉
2
c 𝐻1 (𝑥)

( 1
𝑅2

− 2
𝑅3

(

𝑤1 −𝑤2
)

)

𝜕4𝑤2

𝜕𝑥4
+

𝜕2𝑤2

𝜕𝑡2
+ 𝑐

𝜕𝑤2
𝜕𝑡

−

[

𝑁2 + 𝛼3 ∫

1+𝛬
2

1−𝛬
2

(

𝜕𝑤2
𝜕𝑥

)2
𝑑𝑥

]

𝜕2𝑤2

𝜕𝑥2
=

− 𝛼2
[

𝑉𝑑𝑐 + 𝑉𝑎𝑐 cos (𝛺𝑡)
]2 (1 − 2𝑤2 + 3𝑤2

2 − 4𝑤3
2
)

+ 𝛼2𝑉
2
c 𝐻1 (𝑥)

( 1
𝑅2

− 2
𝑅3

(

𝑤1 −𝑤2
)

)

(6)

The expressions of the non-dimensional parameters are defined
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2.2. Static analysis

The deflection of the two microbeams consists of a static component
caused by a DC voltage, represented by 𝑤𝑠1(x), 𝑤𝑠2(x), and a small
dynamic component caused by an AC voltage, expressed as 𝑢1(x, t),
𝑢2(x, t).
{

𝑤1 (𝑥, 𝑡) = 𝑤𝑠1 (𝑥) + 𝑢1 (𝑥, 𝑡)
𝑤2 (𝑥, 𝑡) = 𝑤𝑠2 (𝑥) + 𝑢2 (𝑥, 𝑡)

(9)

Substituting Eq. (9) into Eq. (6) and then setting the AC forcing term
and the time derivatives equal to zero, we can obtain
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when the coupling voltage 𝑉𝑐 is fixed, the static deflection at the center
of the microbeam increases with the applied voltage 𝑉𝑑𝑐 .

There are many ways to solve the static problems like Differential-
Quadrature Method [33] and shooting method [31]. Moreover, another
common and powerful method called asymptotic numerical method is
adopted here.
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where 𝑞𝑠1,𝑖, 𝑞𝑠2,𝑖 are the 𝑖th static generalized coordinate, and 𝜙1,𝑖(x),
𝜙2,𝑖(x) are the 𝑖th linear undamped mode shape of the straight mi-
crobeam 1 and microbeam 2, respectively.

By substituting Eq. (12) into (10), multiplying the mode shapes of
𝜙1,𝑖(x) and 𝜙2,𝑖(x), and integrating the two equations from 0 to 1 and
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Fig. 1. A scheme of proposed mass sensor. (a) the device; (b) model of two coupled microbeams with added point mass and electrostatic actuation.

Fig. 2. Variation of the maximum static deflection of the microbeam 2 with respect
to the voltage 𝑉𝑑𝑐 for the coupling voltage 𝑉c = 5 V.

from (1 − 𝛬)∕2 to (1 + 𝛬)∕2 respectively, the continuous system can
be discretized, while assuming that no axial loads are applied to the
microbeam. Since we are interested in the pull-in voltage under static
displacement, the number of modes is continuously increased, as shown
in Fig. 2 and only the symmetric modes were considered. It can be seen
that the solution keeps almost constant when the number of modes
reaches two. Though introducing multiple modes can improve preci-
sion, it can also complicate the calculation process. Fig. 2 shows that
the accuracy is sufficient when the two first symmetric modes are used
to predict the pull-in voltage and microbeam deflection, and the result
is in good agreement with the finite element. Here, the finite element
results are obtained by the software COMSOL Multiphysics [34]. When
the coupling voltage of the two microbeams is 𝑉c = 5 V, the pull-in
voltage is equal to 13.75 V.

2.3. Mode veering analysis

Neglecting the damping and nonlinear terms, the method of modal
decomposition is employed to investigate the mode veering point be-
tween the Eigen-modes of the presented structure. By substituting
Eq. (9) into Eq. (6), the mode veering phenomenon between the curves
of the natural frequencies with the change of DC voltage is obtained,
as shown in Fig. 3. Here, the coupling voltage 𝑉𝑐 = 5 V and other
structural parameters are listed in Table 1.

During the simulation, we found that the length ratio 𝜆 and actua-
tion gap 𝑔𝑎 have a significant influence on the mode veering voltage.
As shown in Fig. 3(a), reducing the length ratio 𝜆 or increasing the
actuation gap 𝑔𝑎 lead to an increase in the veering voltage.

Fig. 3(b)–(e) show the variation of the frequencies of each mode
(𝜔1,1 and 𝜔2,1) as a function of the DC voltage for different length
ratios when the actuation gap 𝑔𝑎 = 1 μm. When the length of the two
microbeams are equal, the natural frequencies are very close and then
move away as the DC voltage increases. When the length ratio is less

than 0.94, the mode veering point approaches to the pull-in voltage.
Here, we choose the length ratio of 0.96 in the next simulation section.
With the selected structural parameters, when the value of 𝑉𝑑𝑐 reaches
8.6 V, the system can reach a balanced state.

2.4. HBM+ANM for periodic solutions

To eliminate the spatial dependence, the Galerkin expansion is used
to discretize the nonlinear equations. And the mode shapes of the
straight microbeams are used as base functions in the Galerkin proce-
dure [31]. The deflection of each clamped microbeam is approximated
by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑤1 (𝑥, 𝑡) = 𝑤𝑠1 (𝑥) +
𝑁𝑚
∑

𝑖=1
𝑞1,𝑖 (𝑡)𝜙1,𝑖 (𝑥)

𝑤2 (𝑥, 𝑡) = 𝑤𝑠2 (𝑥) +
𝑁𝑚
∑

𝑖=1
𝑞2,𝑖 (𝑡)𝜙2,𝑖 (𝑥)

(13)

where 𝑞1,𝑖(t), 𝑞2,𝑖(t) are the 𝑖th dynamic generalized coordinate.
By substituting Eq. (13) into Eq. (6), multiplying the mode functions

with 𝜑1,𝑖(x), 𝜑2,𝑖(x), integrating the results from 0 to 1 and from 𝛿1 to 𝛿2,
respectively, and then subtract the static part, the reduced-order model
can be obtained, as deduced in Appendix A.1. For further simplification,
a matrix–vector form is introduced [9].

⎧

⎪

⎪

⎪
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⎪
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⎪
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⎪
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⎩

[

𝐌𝟏𝟎 + 𝜼
]

�̈�𝟏 + 𝐂𝟏𝟎�̇�𝟏 +𝐊𝟏𝟎𝐪𝟏 − 𝛼1
[

𝐊𝟏𝐓𝟏 +𝐊𝟏𝐓𝟎
] (

𝑇 11
(

𝐪𝟏
)

+ 𝑇 12
(

𝐪𝟏
))

−
[

𝑁1 + 𝛼1𝑇 10
]

𝐊𝟏𝐓𝟏 = 𝐅𝟏𝐪𝟏 − 𝐅𝟐𝐪𝟐

𝐌𝟐𝟎�̈�𝟐 + 𝐂𝟐𝟎�̇�𝟐 +𝐊𝟐𝟎𝐪𝟐 − 𝛼3
[

𝐊𝟐𝐓𝟏 +𝐊𝟐𝐓𝟎
] (

𝑇 21
(

𝐪𝟐
)

+ 𝑇 22
(

𝐪𝟐
))

−
[

𝑁2 + 𝛼3𝑇 20
]

𝐊𝟐𝐓𝟏 = 𝐅𝟐𝐪𝟐 − 𝐅𝟏𝐪𝟏

+ 𝛼2𝑉 2
𝑎
[

𝐃𝟏 − 𝐃𝟎 + 𝐒𝟏 − 12𝐒𝟐 + 32𝐒𝟑
]

+ 𝑉 2
𝑑𝑐𝛼2

[

𝐃𝟎 − 2𝐒𝟏 + 3𝐒𝟐 − 4𝐒𝟑
]

(14)

where 𝑞1(𝑡) = [𝑞1,1(t), 𝑞1,2(t), . . . , 𝑞1,𝑁𝑚(t)]𝑇 , 𝑞2(t)=[𝑞2,1(t), 𝑞2,2(t), . . . ,
𝑞2,𝑁𝑚(t)]𝑇 . The items of matrices 𝐌𝟏0, 𝜂, 𝐂𝟏0, 𝐊𝟏0, 𝐊𝟏T0, 𝐊𝟏T1, 𝐌𝟐0,
𝐂𝟐0, 𝐊𝟐0, 𝐊𝟐T0, 𝐊𝟐T1, 𝐃0, 𝐃1, 𝐒1, 𝐒2, 𝐒3, F1, F2 are respectively M10𝑖𝑗 ,
𝜂𝑖𝑗 , C10𝑖𝑗 , K10𝑖𝑗 , K1𝑇 0𝑖𝑗 , K1𝑇 1𝑖𝑗 , M20𝑖𝑗 , C20𝑖𝑗 , K20𝑖𝑗 , K2𝑇 0𝑖𝑗 , K2𝑇 1𝑖𝑗 , D0𝑖𝑗 ,
D1𝑖𝑗 , S1𝑖𝑗 , S2𝑖𝑗 , S3𝑖𝑗 , and these scalars T11(𝑞1), T12(𝑞1), T21(𝑞2) and
T22(𝑞2), all of them are written in Appendix A.2.

The dynamics of the coupled microbeams with quadratic and cubic
nonlinearities are obtained by using the method ANM combined with
HBM thanks to MANLAB, which is a graphical interactive software
that runs in Matlab [35,36] and used for the continuation of solution
branches of nonlinear systems. The following three steps are required:
the first step and the most important step are to transform the sys-
tem equations into quadratic terms and then decompose the equation
formed in the previous step into the Fourier series by HBM. The last
step is to explore the ANM on the resulting system. Subsequently, a
detailed description of the first step of the quadratic recast has been
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Fig. 3. (a) The influences of length ratio 𝜆 and actuation gap 𝑔𝑎 on the mode veering voltage; (b), (c), (d), (e) Variation of the frequencies of each mode for the proposed device
with respect to the DC voltage for different length ratio 𝜆 (𝛬 = 𝑙2∕𝑙1, 𝑙1 remains constant).

shown in Eq. (15) and the relevant details of the other two steps have
been introduced in [9] and will not be described here.

𝐲𝟏 = �̇�𝟏
(

𝑠𝑖𝑧𝑒 𝑁𝑚
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m
)

𝑇 1 = 𝑇 11
(

𝑞1
)

+ 𝑇 12
(

𝑞1
)

(𝑠𝑖𝑧𝑒 1)

𝑇 2 = 𝑇 21
(

q2
)

+ 𝑇 22
(

q2
)

(𝑠𝑖𝑧𝑒 1)

(15)

and Eq. (14) can be rewritten as in Box I, where 𝐗=
(

𝐪𝟏,𝐪𝟐, 𝐲𝟏, 𝐲𝟐, 𝐳𝟏, 𝐳𝟐,𝐊𝟏𝐓𝐭𝐨𝐭 ,𝐊𝟐𝐓𝐭𝐨𝐭 , 𝑇 1, 𝑇 2
)𝑇

is the unknown vector of size 𝑁𝑒𝑞 = 6𝑁𝑚+2𝑁2
𝑚+2, the constant vector

is 𝑐, 𝑙(.) and 𝑚(.) are linear vector-valued operators with respect to X,
and 𝑞(., .) is a quadratic vector-valued operator with respect to X. Here,
the Galerkin discretization term 𝑁𝑚 = 2 uses two modes to simplify
calculation without loss of computational accuracy [37].

3. Numerical results

The traditional mass sensitivity is mainly dependent on the ratio of
the resonance frequency shift to the corresponding added mass. Here,
the ratio of the amplitude shift can be utilized as an output metric. The
two sensitivities can be expressed as

𝑆𝜔i
=
|

|

|

|

|

𝜔𝑖 − 𝜔0
𝑖

𝜔0
𝑖

|

|

|

|

|

/

𝛥𝑚 (17)

𝑆𝑎 =
|

|

|

|

|

|

(

𝑤2
𝑤1

−
𝑤0

2

𝑤0
1

)

/𝑤0
2

𝑤0
1

|

|

|

|

|

|

/

𝛥𝑚 (18)

where 𝑆𝜔𝑖 and 𝑆𝑎 represents the sensitivity based on the shift of
the resonant frequency and amplitude ratio, respectively, 𝜔0

i is the
frequency of balance state, 𝜔𝑖 is the frequency after the mass added, 𝑤1,
𝑤2 is the amplitude after the mass added of resonator 1 and resonator
2, respectively, 𝑤0

1, 𝑤
0
2 is the amplitude of balance state of resonator 1

and resonator 2, respectively.

Fig. 4. Amplitude (a) and phase–frequency (b) responses of the two resonators in a
balanced state with 𝑉𝑐 = 5 V, 𝑉𝑑𝑐 = 8.56, 𝑉𝑎𝑐 = 0.0001 V.

3.1. Linear behaviors

Assuming that the two clamped microbeams have the same quality
factor (Q = 8000) and the coupling voltage 𝑉𝑐 is fixed at 5.0 V, the
AC voltage is fixed at 𝑉𝑎𝑐 = 0.0001 V, the system becomes balanced
when 𝑉𝑑𝑐 is equal to 8.56 V. Thereafter, the peaks of the two modes
are equal regardless of unequal lengths of resonator 1 and resonator 2
at the veering point, as shown in Fig. 4(a). The two resonators undergo
linear vibrations. The response of the 1st mode is in-phase and that of
the 2nd mode is out-of-phase in Fig. 4(b).

According to previous reports [32], the two resonators can vibrate
in linear behavior when the applied voltage 𝑉𝑎𝑐 is less than 0.18 mV.
To investigate the effect of the voltage 𝑉𝑎𝑐 on sensitivity in the linear
behavior range, the different voltage of 𝑉𝑎𝑐 is applied from 0.05 mV to
0.18 mV. The added mass at the midpoint of resonator 1 is increasing
from 0 pg to 3 pg.

With the increase of the 𝑉𝑎𝑐 , the relative shift of amplitude ratio
is slightly improved. It can be noted in Fig. 5(a), (b) that the relative
shift of amplitude ratio as the output metric is more sensitive for
the 2nd mode, the sensitivity of the linear region is approximately
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Box I.

Fig. 5. Variation of the relative shift of the resonance frequency and amplitude ratio with respect to 𝛥m and 𝑉𝑎𝑐 . (a), (c) Sensitivity for linear behavior at the 1st mode in terms
of amplitude ratio and frequency shift; (b), (d) Sensitivity for linear behavior at the 2nd mode in terms of amplitude ratio and frequency shift.

19.45%/pg. In contrast, the relative frequency shift as the output metric
is more sensitive for the 1st mode, and the sensitivity is approximately
0.031%/pg as shown in Fig. 5(c), (d). The relative change of the
amplitude ratio is more than 627 times higher than the relative shift
in its resonance frequency.

3.2. Nonlinear behavior

The two resonators can vibrate in linear behavior when a low AC
voltage is applied. Actually, an AC voltage of more than 0.18 mV
enables the device to reach the critical amplitude, which it is the
transition amplitude from the linear to the nonlinear behavior [38–
40]. For example, when the voltage of 𝑉𝑎𝑐 is set to be 0.4 mV, the
influence of nonlinear behaviors on the sensitivity is analyzed with a
fixed quality factor and an unchanged coupling voltage 𝑉𝑐 . Here, the
DC voltage 𝑉𝑑𝑐 = 8.583 V is re-adjusted to ensure that the system is
operating in a balanced state. The frequency response curves of the
two modes are shown in Fig. 6. From Fig. 6(b), it can be seen that the
two microbeams are oscillating at symmetric and the anti-symmetric
modes. From Fig. 6(a), it is worth noting that solid line curves obtained
by ANM+HBM are in good agreement with the points simulated by
the LTI, thus validating the solving methods. For mass sensing, the
changing ratio of the highest amplitude is selected as an output metric
in sensitivity calculation.

Fig. 7 shows the sensitivities when the device is operating in the
nonlinear behavior, for the two different modes respectively. Further
observations for the simulation results can be divided into two aspects:
(i) the sensitivity outputs of resonators are substantially depicted by the
frequency shift, and the relative change of the resonance frequency of
the 1st mode is much larger than that of the 2nd mode; (ii) contrary to
the aforementioned results, the relative shift of amplitude ratio of the

Fig. 6. Amplitude (a) and phase (b) responses of two microbeams resonating in a
balanced state with 𝑉𝑐 = 5 V, 𝑉𝑑𝑐 = 8.583, 𝑉𝑎𝑐 = 0.0004 V.

1st mode is smaller compared to the 2nd mode. As reported in [41],
the 2nd mode is localized in the stiffer resonator.

The relative shift of amplitude ratio as the output metric is more
sensitive for the 2nd mode, the sensitivity of the linear region is
approximately 47.23%/pg in Fig. 7(b). For the relative frequency shift,
the sensitivity is approximately 0.035%/pg in Fig. 7(c). As predicted,
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Fig. 7. Variation of th relative shift of the resonance frequency and amplitude ratio with respect to 𝛥m and 𝑉𝑎𝑐 . (a), (c) Sensitivity for nonlinear behavior at the 1st mode in
terms of amplitude ratio and frequency shift; (b), (d) Sensitivity for nonlinear behavior at the 2nd mode in terms of amplitude ratio and frequency shift.

the relative change of the amplitude ratio is more than three orders of
magnitude higher than the relative shift in its resonance frequency.

Figs. 6(b) and 7(b) show that compared with the device operating in
a linear behavior, the sensitivity is improved 242.83% when operating
in the nonlinear state in the 2nd mode. Furthermore, as the voltage
𝑉𝑎𝑐 increases, the amplitude ratio as the output metric has a larger
detection range than the frequency shift output in the 2nd mode.

In summary, utilizing the amplitude ratio of the 2nd mode as the
output metric permits the achievement of higher sensitivity compared
to the 1st mode, and the sensitivity can be further improved when the
device is operating in the nonlinear state.

3.3. Adjustability of the sensitivity by electrostatic coupling stiffness

Actually, the sensitivity is significantly affected by the electrostatic
coupling stiffness, which is controlled by the voltage. The two clamped–
clamped microbeams are electrostatically coupled, and the variable
stiffness can be easily regulated. This coupling method can overcome
the defects of traditional mechanical coupling to obtain low coupling
stiffness. When the AC voltage is fixed at 𝑉𝑎𝑐 = 0.0004 V, the effects
of the value of coupling strength 𝑉𝑐 on the amplitude ratio are shown
in Fig. 8. The sensitivity can be significantly improved by reducing the
coupling strength. Precisely, it is increased by 15.79 times when the
coupling voltage 𝑉𝑐 is decreased from 10.0 V to 4.0 V in Fig. 8(a). Thus,
the sensitivity enhancement can be tuned by adjusting the coupling
strength 𝑉𝑐 .

The first two natural frequencies variations with respect the cou-
pling strength are shown in Fig. 8(b). Although decreasing the coupling
strength 𝑉𝑐 can increase sensitivity, the first natural frequency is grad-
ually increased close to the second eigenfrequency by reducing the
coupling strength. When the coupling voltage is less than 4 V, the
device will generate mode aliasing, which limits the proposed sensing
technique, based on the eigenstate variation.

4. Influences of the geometric parameters

The effect of different geometric parameters on sensitivity is inves-
tigated, such as position of added mass 𝑥0, length ratio 𝜆 (𝜆 =l2∕𝑙1),
gap ratio (R), Numerical analysis has been conducted for using the
amplitude ratio of the 2nd mode as the output metric, which is much
higher than that of the 1st mode. Also, the sensitivity can be further
improved when the device is operating in a nonlinear state.

4.1. Effects of the position of added mass on sensitivity

The effect of the dimensionless position of added mass 𝑥0 on sen-
sitivity is investigated. Fig. 9(a) shows the variation of the sensitivity
with respect to the dimensionless position 𝑥0. It can be noticed that
there is a large effect of the dimensionless position 𝑥0 on the sensitivity.
With the dimensionless position 𝑥0 of the added mass vary from 0.1 to
0.5, the sensitivity can be increased by 89.24 times. Since the vibration

mode is symmetrical, the sensitivity is optimal when the dimensionless
position 𝑥0 = 0.5. From the frequency response curve of the resonators
shown in Fig. 9(b)–(c), it can be seen that under the same driving force
and mass disturbance, the amplitude gradually increases. For many
mass sensors, to accurately measure the target analyte, a thin film with
a surface adsorption function is attached to the beam. Thus, in order to
obtain high sensitivity, the surface adsorption film should be stuck in
the middle of the microbeam 1.

4.2. Effects of the length ratio on sensitivity

The system is balanced by adjusting 𝑉𝑑𝑐 at a constant AC voltage
(𝑉𝑎𝑐 = 0.4 mV) for different length ratios. The effects of length ratio on
the sensitivity are shown in Fig. 10(a). By setting the length of resonator
1 (𝑙1 = 200 μm) to be constant, the length ratio can be changed by
varying the length of resonator 2.

It can be seen that the sensitivity of 2nd mode changes inversely
with the length ratio. And the sensitivity will be lowest when the two
lengths are equals. Hence, the unequal length sensor is more sensitive
than a sensor based on periodic structures. Although the reduction in
length ratio can increase the sensitivity, it cannot be infinitely small,
and as the length ratio decreases, the voltage 𝑉𝑑𝑐 of the balanced state
is gradually close to pull-in voltage in Fig. 3. The smallest length ratio
here is 0.94. Fig. 10(b)–(c) are the frequency responses of the res-
onators, it was found that under the same mass disturbance, when the
length ratio is 0.94, the amplitude is larger and the pull-in phenomenon
is more likely to occur.

4.3. Effects of the gap ratio on sensitivity

We consider investigating the effect of the actuation gap 𝑔𝑎 and
the coupling gap 𝑔𝑐 between the two microbeams on the sensitivity.
Fig. 11(a) shows the variation of the sensitivity with the gap 𝑔𝑐 in-
creases and 𝑔𝑎 is constant 1 μm. It can be noted that there is a huge
effect of the gap 𝑔𝑐 on the sensitivity. When the gap between the
two microbeams 𝑔𝑐 is increased from 2 μm up to 2.5 μm, the resulted
sensitivity can be increased by 4.39 times, which is reasonable since
increasing the gap ratio will decrease the coupling strength. However,
when the gap 𝑔𝑐 exceeds 2.5 μm, mode aliasing occurs, which can be
considered as the upper bound limit for sensitivity improvement for the
considered design parameters.

In contrast, when the gap 𝑔𝑐 between the two microbeams is set
constant at 2 μm, the variation of the actuation gap 𝑔𝑎 between 0.6 μm
and 1.5 μm has little effects on the sensitivity as shown in Fig. 11(b).
Through the above analysis, the sensitivity is mainly affected by the
coupling gap 𝑔𝑐 between the two microbeams.

7
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Fig. 8. (a) Variation of the sensitivity with respect to the coupling voltage (𝑉𝑐 ); (b) Variation of the natural frequencies with respect to the coupling voltage (𝑉𝑐 ).

Fig. 9. (a) Variation of the sensitivity with respect to the dimensionless position 𝑥0 of added mass; (b), (c) Frequency responses of the resonators 1 and 2 for different dimensionless
positions 𝑥0 and an added mass of 1pg.

Fig. 10. (a) Variation of the sensitivity with respect to the length of resonator 2; (b), (c) Frequency responses of the resonators 1 and 2 in nonlinear behavior for an added mass
of 1pg.
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Fig. 11. Variation of the second mode sensitivity with the gap ratio. (a) the value 𝑔𝑎 is set constant at 1 μm and the coupling gap between the two microbeams 𝑔𝑐 is changed;
(b) the value 𝑔𝑐 is set constant at 2 μm and the actuation gap 𝑔𝑎 is changed.

5. Conclusion

In this paper, we have demonstrated the design of mass sensor
by introducing the mode localization of two electrostatically coupled
clamped–clamped microbeams of different lengths. Only the shorter
microbeam is actuated by a combined AC–DC voltage, which can
be adjusted to overcome the mechanical defects of asymmetry while
driving the device beyond its critical Duffing amplitude.

Firstly, the equation of motion of the system considering the
quadratic and cubic nonlinearities was established and solved by the
method of ANM and HBM, and the long-term integration method is
applied to validate the effectiveness of the solving procedure. Secondly,
the sensor operating in linear and nonlinear regimes can be controlled
by the AC voltage applied to the shorter microbeam. More importantly,
the sensitivity can be further improved by nonlinear behavior. Thirdly,
utilizing the amplitude ratio of the 2nd mode as the output metric
enables the device to reach higher sensitivity compared to the 1st
mode, and the sensitivity can be improved up to three orders of
magnitude compared to the common frequency shift as an output
metric. Finally, the effects of several design parameters on sensitivity
have been revealed. The sensitivity can be modulated by adjusting the
length ratio, coupling voltage and gap ratio, e.g., reducing the length
ratio or weakening the coupling strength can improve the sensitivity,
and among them, reducing the coupling strength has the greatest
effect on sensitivity improvement below the onset of mode aliasing
phenomenon.
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Appendix

A.1. Reduced order model

(

1 + 𝛥𝑚𝜙1,i
(

𝑥0
)

𝜙1,j
(

𝑥0
))

𝑞1,𝑖 + 𝑐�̇�1,𝑖 + 𝜔2
𝑛𝑜𝑛1,𝑖𝑞1,𝑖

− 𝛼1
𝑁𝑚
∑

𝑗=1
𝑞𝑠1,𝑗 ∫

1

0
𝜙1,𝑖𝜙

′′
1,𝑗𝑑𝑥 ×

{𝑁𝑚
∑

𝑚=1

𝑁𝑚
∑

𝑛=1
𝑞1,𝑚𝑞1,𝑛 ∫

1

0
𝜙′′
1,𝑚𝜙

′
1,𝑛𝑑𝑥

+2
𝑁𝑚
∑

𝑚=1

𝑁𝑚
∑

𝑛=1
𝑞1,𝑚𝑞𝑠1,𝑛 ∫

1

0
𝜙′
1,𝑚𝜙

′
1,𝑛𝑑𝑥

}

− 𝛼1
𝑁𝑚
∑

𝑗=1
𝑞1,𝑗 ∫

1

0
𝜙1,𝑖𝜙

′′
1,𝑗𝑑𝑥 ×

{𝑁𝑚
∑

𝑚=1

𝑁𝑚
∑

𝑛=1
𝑞1,𝑚𝑞1,𝑛 ∫

1

0
𝜙′
1,𝑚𝜙

′
1,𝑛𝑑𝑥

+2
𝑁𝑚
∑

𝑚=1

𝑁𝑚
∑

𝑛=1
𝑞1,𝑚𝑞𝑠1,𝑛 ∫

1

0
𝜙′
1,𝑚𝜙

′
1,𝑛𝑑𝑥 +

𝑁𝑚
∑

𝑚=1

𝑁𝑚
∑

𝑛=1
𝑞𝑠1,𝑚𝑞𝑠1,𝑛 ∫

1

0
𝜙′
1,𝑚𝜙

′
1,𝑛𝑑𝑥

}

=
2𝛼2𝑉 2

𝑐
∑𝑁𝑚

𝑗=1 ∫
1
0 𝐻1 (𝑥)𝜙1,𝑖𝜙1,𝑗𝑑𝑥

𝑅3
𝑞1,𝑗

−
2𝛼2𝑉 2

𝑐
∑𝑁𝑚

𝑗=1 ∫
1
0 𝐻1 (𝑥)𝜙1,𝑖𝜙2,𝑗𝑑𝑥

𝑅3
𝑞2,𝑗 +𝑁1

𝑁𝑚
∑

𝑗=1
𝑞1,𝑗 ∫

1

0
𝜙1,𝑖𝜙

′′
1,𝑗𝑑𝑥

(19)

𝑞2,𝑖 + 𝑐�̇�2,𝑖 + 𝜔2
𝑛𝑜𝑛2,i𝑞2,𝑖 − 𝛼3

𝑁𝑚
∑

𝑗=1
𝑞𝑠2,𝑗 ∫

𝛿2

𝛿1
𝜙2,𝑖𝜙

′′
2,𝑗𝑑𝑥

×

(𝑁𝑚
∑

𝑚=1

𝑁𝑚
∑

𝑛=1
𝑞2,𝑚𝑞2,𝑛 ∫

𝛿2

𝛿1
𝜙′
2,𝑚𝜙

′
2,𝑛𝑑𝑥 + 2

𝑁𝑚
∑

𝑚=1

𝑁𝑚
∑

𝑛=1
𝑞2,𝑚𝑞𝑠2,𝑛 ∫

𝛿2

𝛿1
𝜙′
2,𝑚𝜙

′
2,𝑛𝑑𝑥

)

− 𝛼3
𝑁𝑚
∑

𝑗=1
𝑞2,𝑗 ∫

𝛿2

𝛿1
𝜙2,𝑖𝜙

′′
2,𝑗𝑑𝑥 ×

(𝑁𝑚
∑

𝑚=1

𝑁𝑚
∑

𝑛=1
𝑞2,𝑚𝑞2,𝑛 ∫

𝛿2

𝛿1
𝜙′
2,𝑚𝜙

′
2,𝑛𝑑𝑥

+2
𝑁𝑚
∑

𝑚=1

𝑁𝑚
∑

𝑛=1
𝑞2,𝑚𝑞𝑠2,𝑛 ∫

𝛿2

𝛿1
𝜙′
2,𝑚𝜙

′
2,𝑛𝑑𝑥 +

𝑁𝑚
∑

𝑚=1

𝑁𝑚
∑

𝑛=1
𝑞𝑠2,𝑚𝑞𝑠2,𝑛 ∫

𝛿2

𝛿1
𝜙′
2,𝑚𝜙

′
2,𝑛𝑑𝑥

)
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=
2𝑉 2

𝑐 𝛼2
∑𝑁𝑚

𝑗=1

(

∫ 𝛿2
𝛿1

𝐻1 (𝑥)𝜙2,𝑖𝜙2,𝑗𝑑𝑥
)

𝑅3
𝑞2,𝑗

−
2𝑉 2

𝑐 𝛼2
∑𝑁𝑚

𝑗=1

(

∫ 𝛿2
𝛿1

𝐻1 (𝑥)𝜙1,𝑗𝜙2,𝑖d𝑥
)

𝑅3
𝑞1,𝑗

+𝑁2

𝑁𝑚
∑

𝑗=1
𝑞2,𝑗 ∫

𝛿2

𝛿1
𝜙2,𝑖𝜙

′′
2,𝑗d𝑥 − 𝛼2𝑉

2
𝑎 ∫

𝛿2

𝛿1
𝜙2,𝑖d𝑥

+ 2𝛼2𝑉 2
𝑎

[𝑁𝑚
∑

𝑗=1
𝑞2,𝑗 ∫

𝛿2

𝛿1
𝜙2,𝑗𝜙2,𝑖d𝑥 +

𝑁𝑚
∑

𝑗=1
𝑞𝑠2,𝑗 ∫

𝛿2

𝛿1
𝜙2,𝑖𝜙2,𝑗d𝑥

− 6
𝑁𝑚
∑

𝑗=1

𝑁𝑚
∑

𝑘=1
𝑞𝑠2,𝑗𝑞𝑠2,𝑘 ∫

𝛿2

𝛿1
𝜙2,𝑖𝜙2,𝑗𝜙2,𝑘d𝑥

+16
𝑁𝑚
∑

𝑗=1

𝑁𝑚
∑

𝑘=1

𝑁𝑚
∑

𝑙=1
𝑞𝑠2,𝑗𝑞𝑠2,𝑘𝑞𝑠2,𝑙 ∫

𝛿2

𝛿1
𝜙2,𝑖𝜙2,𝑗𝜙2,𝑘𝜙2,𝑙d𝑥

]

+ 𝑉 2
𝑑𝑐𝛼2

[

∫

𝛿2

𝛿1
𝜙2,𝑖d𝑥 − 2

𝑁𝑚
∑

𝑗=1
𝑞𝑠2,𝑗 ∫

𝛿2

𝛿1
𝜙2,𝑖𝜙2,𝑗d𝑥

+ 3
𝑁𝑚
∑

𝑗=1

𝑁𝑚
∑

𝑘=1
𝑞𝑠2,𝑗𝑞𝑠2,𝑘 ∫

𝛿2

𝛿1
𝜙2,𝑖𝜙2,𝑗𝜙2,𝑘d𝑥

−4
𝑁𝑚
∑

𝑗=1

𝑁𝑚
∑

𝑘=1

𝑁𝑚
∑

𝑙=1
𝑞𝑠2,𝑗𝑞𝑠2,𝑘𝑞𝑠2,𝑙 ∫

𝛿2

𝛿1
𝜙2,𝑖𝜙2,𝑗𝜙2,𝑘𝜙2,𝑙d𝑥

]

(20)

where 𝑉 2
𝑎 =

(

𝑉𝑑𝑐 + 𝑉𝑎𝑐 cos(𝛺𝑡)
)2. Since the DC voltage is generally

much higher than the AC voltage, the squared term of AC voltage is
neglected and hence 𝑉 2

𝑎 =
(

𝑉𝑑𝑐 + 𝑉𝑎𝑐 cos(𝛺𝑡)
)2 ≈ 𝑉 2

𝑑𝑐 + 2𝑉𝑑𝑐𝑉𝑎𝑐 cos(𝛺𝑡),
𝛿1 = (1 − 𝛬) ∕2, 𝛿2 = (1 + 𝛬) ∕2, 𝑞1,𝑖, 𝑞2,𝑖 are unknown functions related
to time.

A.2. The integration parameters of Eq. (14)

M10𝑖𝑗 = 𝛿1𝑖𝑗
M20𝑖𝑗 = 𝛿2𝑖𝑗
𝐶10𝑖𝑗 = 𝑐𝑗M10𝑖𝑗
𝐶20𝑖𝑗 = 𝑐𝑗M20𝑖𝑗
𝐾10𝑖𝑗 = 𝜔2

𝑛𝑜𝑛1,j

𝐾20𝑖𝑗 = 𝜔2
𝑛𝑜𝑛2,j

𝐾1𝑇 0𝑖𝑗 =
𝑁𝑚
∑

𝑗=1

(

∫

1

0
𝜙1,𝑖𝜙

′′
1,𝑗d𝑥

)

𝑞s1,𝑗

𝐾1𝑇 1𝑖𝑗 =
𝑁𝑚
∑

𝑗=1

(

∫

1

0
𝜙1,𝑖𝜙

′′
1,𝑗d𝑥

)

𝑞1,𝑗

𝑇 10 =
𝑁𝑚
∑

𝑚=1

𝑁𝑚
∑

𝑛=1

(

∫

1

0
𝜙′
1,𝑚𝜙

′
1,𝑛𝑑𝑥

)

𝑞𝑠1,𝑚𝑞𝑠1,𝑛

𝑇 11(𝑞1) = 2
𝑁𝑚
∑

𝑚=1

𝑁𝑚
∑

𝑛=1

(

∫

1

0
𝜙′
1,𝑚𝜙

′
1,𝑛𝑑𝑥

)

𝑞1,𝑚𝑞𝑠1,𝑛

𝑇 12(𝑞1) =
𝑁𝑚
∑

𝑚=1

𝑁𝑚
∑

𝑛=1

(

∫

1

0
𝜙′
1,𝑚𝜙

′
1,𝑛𝑑𝑥

)

𝑞1,𝑚𝑞1,𝑛 (21)

𝐷0𝑖𝑗 = ∫

𝛿2

𝛿1
𝜙2,𝑖d𝑥

𝐷1𝑖𝑗 = 2

(

∫

𝛿2

𝛿1

𝑁𝑚
∑

𝑗=1
𝜙2,𝑗𝜙2,𝑖d𝑥

)

𝑞2,𝑗

𝑆1𝑖𝑗 = 2
𝑁𝑚
∑

𝑗=1

(

∫

𝛿2

𝛿1
𝜙2,𝑖𝜙2,𝑗d𝑥

)

𝑞𝑠2,𝑗

𝑆2𝑖𝑗 =
𝑁𝑚
∑

𝑗=1

𝑁𝑚
∑

𝑘=1

(

∫

𝛿2

𝛿1
𝜙2,𝑖𝜙2,𝑗𝜙2,𝑘d𝑥

)

𝑞𝑠2,𝑗𝑞𝑠2,𝑘

𝑆3𝑖𝑗 =
𝑁𝑚
∑

𝑗=1

𝑁𝑚
∑

𝑘=1

𝑁𝑚
∑

𝑙=1

(

∫

𝛿2

𝛿1
𝜙2,𝑖𝜙2,𝑗𝜙2,𝑘𝜙2,𝑙d𝑥

)

𝑞𝑠2,𝑗𝑞𝑠2,𝑘𝑞

𝐾2𝑇 0𝑖𝑗 =
𝑁𝑚
∑

𝑗=1

(

∫

𝛿2

𝛿1
𝜙2,𝑖𝜙

′′
2,𝑗d𝑥

)

𝑞s2,𝑗 ,

𝐾2𝑇 1𝑖𝑗 =
𝑁𝑚
∑

𝑗=1

(

∫

𝛿2

𝛿1
𝜙2,𝑖𝜙

′′
2,𝑗d𝑥

)

𝑞2,𝑗

𝑇 20 =
𝑁𝑚
∑

𝑚=1

𝑁𝑚
∑

𝑛=1

(

∫

𝛿2

𝛿1
𝜙′
2,m𝜙

′
2,nd𝑥

)

𝑞𝑠2,m𝑞𝑠2,n

𝜂𝑖𝑗 = 𝛥𝑚𝜙1,𝑖
(

𝑥0
)

𝜙1,𝑗
(

𝑥0
)

𝑇 21(q2) = 2
𝑁𝑚
∑

𝑚=1

𝑁𝑚
∑

𝑛=1

(

∫

𝛿2

𝛿1
𝜙′
2,m𝜙

′
2,nd𝑥

)

𝑞2,m𝑞𝑠2,n

𝑇 22(q2) =
𝑁𝑚
∑

𝑚=1

𝑁𝑚
∑

𝑛=1

(

∫

𝛿2

𝛿1
𝜙′
2,m𝜙

′
2,nd𝑥

)

𝑞2,m𝑞2,n

𝐹1𝑖 =
2𝛼2𝑉 2

𝑐
∑𝑁𝑚

𝑗=1

(

∫ 1
0 𝐻1 (𝑥)𝜙1,𝑖𝜙1,𝑗𝑑𝑥

)

𝑅3

𝐹2𝑖 =
2𝑉 2

𝑐 𝛼2
∑𝑁𝑚

𝑗=1

(

∫ 𝛿2
𝛿1

𝐻1 (𝑥)𝜙1,𝑗𝜙2,𝑖d𝑥
)

𝑅3

References

[1] J. Fritz, M.K. Baller, H.P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.J.
Guntherodt, C. Gerber, J.K. Gimzewski, Translating biomolecular recognition into
nanomechanics, Science 288 (2000) 316–318, http://dx.doi.org/10.1126/science.
288.5464.316.

[2] Y. Arntz, J.D. Seelig, H.P. Lang, J. Zhang, P. Hunziker, J.P. Ramseyer, E. Meyer,
M. Hegner, C. Gerber, Label-free protein assay based on a nanomechanical
cantilever array, Nanotechnology 14 (2003) 86–90, http://dx.doi.org/10.1088/
0957-4484/14/1/319.

[3] H. Zhang, M.S. Marma, S.K. Bahl, E.S. Kim, C.E. McKenna, Sequence specific
label-free DNA sensing using film-bulk-acoustic-resonators, IEEE Sens. J. 7 (2007)
1587–1588, http://dx.doi.org/10.1109/jsen.2007.905035.

[4] K.M. Hansen, H.F. Ji, G.H. Wu, R. Datar, R. Cote, A. Majumdar, T. Thundat,
Cantilever-based optical deflection assay for discrimination of DNA single-
nucleotide mismatches, Anal. Chem. 73 (2001) 1567–1571, http://dx.doi.org/
10.1021/ac0012748.

[5] H.T. Yu, P.C. Xu, X.Y. Xia, D.W. Lee, X.X. Li, Micro-/nanocombined gas sensors
with functionalized mesoporous thin film self-assembled in batches onto resonant
cantilevers, IEEE Trans. Ind. Electron. 59 (2012) 4881–4887, http://dx.doi.org/
10.1109/Tie.2011.2173094.

[6] G.H. Wu, R.H. Datar, K.M. Hansen, T. Thundat, R.J. Cote, A. Majumdar, Bioassay
of prostate-specific antigen (PSA) using microcantilevers, Nat. Biotechnol. 19
(2001) 856–860, http://dx.doi.org/10.1038/nbt0901-856.

[7] T.P. Burg, S.R. Manalis, Suspended microchannel resonators for biomolecular
detection, Appl. Phys. Lett. 83 (2003) 2698–2700, http://dx.doi.org/10.1063/1.
1611625.

[8] J. Zhao, Y. Zhang, R. Gao, S. Liu, A new sensitivity improving approach for
mass sensors through integrated optimization of both cantilever surface profile
and cross-section, Sensors Actuators B 206 (2015) 343–350, http://dx.doi.org/
10.1016/j.snb.2014.09.033.

[9] S. Souayeh, N. Kacem, Computational models for large amplitude nonlinear
vibrations of electrostatically actuated carbon nanotube-based mass sensors,
Sensors Actuators A 208 (2014) 10–20, http://dx.doi.org/10.1016/j.sna.2013.
12.015.

[10] W.H. Zhang, K.L. Turner, Application of parametric resonance amplification in
a single-crystal silicon micro-oscillator based mass sensor, Sensors Actuators A
122 (2005) 23–30, http://dx.doi.org/10.1016/j.sna.2004.12.033.

[11] T.J. Anderson, A.H. Nayfeh, B. Balachandran, Experimental verification of the
importance of the nonlinear curvature in the response of a cantilever beam, J.
Vib. Acoust. 118 (1996) 21–27, http://dx.doi.org/10.1115/1.2889630.

[12] T.J. Anderson, A.H. Nayfeh, B. Balachandran, Coupling between high-frequency
modes and a low-frequency mode: Theory and experiment, Nonlinear Dynam.
11 (1996) 17–36, http://dx.doi.org/10.1007/BF00045049.

10

http://dx.doi.org/10.1126/science.288.5464.316
http://dx.doi.org/10.1126/science.288.5464.316
http://dx.doi.org/10.1126/science.288.5464.316
http://dx.doi.org/10.1088/0957-4484/14/1/319
http://dx.doi.org/10.1088/0957-4484/14/1/319
http://dx.doi.org/10.1088/0957-4484/14/1/319
http://dx.doi.org/10.1109/jsen.2007.905035
http://dx.doi.org/10.1021/ac0012748
http://dx.doi.org/10.1021/ac0012748
http://dx.doi.org/10.1021/ac0012748
http://dx.doi.org/10.1109/Tie.2011.2173094
http://dx.doi.org/10.1109/Tie.2011.2173094
http://dx.doi.org/10.1109/Tie.2011.2173094
http://dx.doi.org/10.1038/nbt0901-856
http://dx.doi.org/10.1063/1.1611625
http://dx.doi.org/10.1063/1.1611625
http://dx.doi.org/10.1063/1.1611625
http://dx.doi.org/10.1016/j.snb.2014.09.033
http://dx.doi.org/10.1016/j.snb.2014.09.033
http://dx.doi.org/10.1016/j.snb.2014.09.033
http://dx.doi.org/10.1016/j.sna.2013.12.015
http://dx.doi.org/10.1016/j.sna.2013.12.015
http://dx.doi.org/10.1016/j.sna.2013.12.015
http://dx.doi.org/10.1016/j.sna.2004.12.033
http://dx.doi.org/10.1115/1.2889630
http://dx.doi.org/10.1007/BF00045049


M. Lyu, J. Zhao, N. Kacem et al. International Journal of Non-Linear Mechanics 121 (2020) 103455

[13] H.M. Zhang, J.M. Zhong, W.Z. Yuan, J. Yang, H.L. Chang, Ambient pressure drift
rejection of mode-localized resonant sensors, in: Proc IEEE Micr Elect, 2017, pp.
1095–1098, http://dx.doi.org/10.1109/MEMSYS.2017.7863604.

[14] M. Spletzer, A. Raman, A.Q. Wu, X. Xu, R. Reifenberger, Ultrasensitive mass
sensing using mode localization in coupled microcantilevers, Appl. Phys. Lett.
88 (2006) 254102, http://dx.doi.org/10.1063/1.2216889.

[15] V. Walter, G. Bourbon, P. Le Moal, N. Kacem, J. Lardiès, Electrostatic actuation
to counterbalance the manufacturing defects in a MEMS mass detection sensor
using mode localization, Proc. Eng. 168 (2016) 1488–1491, http://dx.doi.org/
10.1016/j.proeng.2016.11.431.

[16] N. Kacem, V. Walter, G. Bourbon, P. Le Moal, J. Lardiès, Mode veering and
internal resonance in mechanically coupled nanocantilevers under electrostatic
actuation, Proc. Eng. 168 (2016) 924–928, http://dx.doi.org/10.1016/j.proeng.
2016.11.307.

[17] T. Rabenimanana, V. Walter, N. Kacem, P. Le Moal, G. Bourbon, J. Lardiès, Mass
sensor using mode localization in two weakly coupled MEMS cantilevers with
different lengths: Design and experimental model validation, Sensors Actuators
A 295 (2019) 643–652, http://dx.doi.org/10.1016/j.sna.2019.06.004.

[18] M. Pandit, C. Zhao, G. Sobreviela, A. Mustafazade, A.A. Seshia, Coupled
nonlinear MEMS resonators for sensing, in: P IEEE Int Freq Cont, 2018, pp.
203–206, https://doi.org/10.1109/FCS.2018.8597571.

[19] J.Y.P. Thiruvenkatanathan, J.E.-Y. Lee, A.A. Seshia, Enhancing parametric sen-
sitivity using mode localization in electrically coupled MEMS resonator, in:
15th International Conference on Solid-State Sensors, Actuators and Microsys-
tems. Transducers, 2009, pp. 2350–2353, https://doi.org/10.1109/SENSOR.
2009.5285444.

[20] Y. Wang, C. Zhao, C. Wang, D. Cerica, M. Baijot, Q. Xiao, S. Stoukatch, M.
Kraft, A mass sensor based on 3-DOF mode localized coupled resonator under
atmospheric pressure, Sensors Actuators A 279 (2018) 254–262, http://dx.doi.
org/10.1016/j.sna.2018.06.028.

[21] H. Zhang, B. Li, W. Yuan, M. Kraft, H. Chang, An acceleration sensing
method based on the mode localization of weakly coupled resonators, J.
Microelectromech. Syst. 25 (2016) 286–296, http://dx.doi.org/10.1109/jmems.
2015.2514092.

[22] C. Zhao, G.S. Wood, J. Xie, H. Chang, S.H. Pu, M. Kraft, A force sensor based
on three weakly coupled resonators with ultrahigh sensitivity, Sensors Actuators
A 232 (2015) 151–162, http://dx.doi.org/10.1016/j.sna.2015.05.011.

[23] S. Marquez, M. Alvarez, J.A. Plaza, L.G. Villanueva, C. Dominguez, L.M. Lechuga,
Asymmetrically coupled resonators for mass sensing, Appl. Phys. Lett. 111 (2017)
http://dx.doi.org/10.1063/1.5003023.

[24] S. Ramakrishnan, B. Balachandran, Energy localization and white noise-induced
enhancement of response in a micro-scale oscillator array, Nonlinear Dynam. 62
(2010) 1–16, http://dx.doi.org/10.1007/s11071-010-9694-6.

[25] A.J. Dick, B. Balachandran, C.D. Mote Jr., Localization in microresonator arrays:
Influence of natural frequency tuning, J. Comput. Nonlinear Dyn. 5 (2009) 11,
http://dx.doi.org/10.1115/1.4000314.

[26] B. Balachandran, E. Perkins, T. Fitzgerald, Response localization in micro-scale
oscillator arrays: influence of cubic coupling nonlinearities, Int. J. Dyn. Control
3 (2014) 183–188, http://dx.doi.org/10.1007/s40435-014-0139-9.

[27] D.F. Wang, K. Chatani, T. Ikehara, R. Maeda, Mode localization analysis and
characterization in a 5-beam array of coupled nearly identical micromechanical
resonators for ultra-sensitive mass detection and analyte identification, Microsyst.
Technol. 18 (2012) 1923–1929, http://dx.doi.org/10.1007/s00542-012-1520-2.

[28] C. Zhao, G.S. Wood, S.H. Pu, M. Kraft, A mode-localized MEMS electrical
potential sensor based on three electrically coupled resonators, J. Sens. Sens.
Syst. 6 (2017) 1–8, http://dx.doi.org/10.5194/jsss-6-1-2017.

[29] M. Pandit, C. Zhao, G. Sobreviela, S. Du, X. Zou, A. Seshia, Utilizing energy
localization in weakly coupled nonlinear resonators for sensing applications, J.
Microelectromech. Syst. 28 (2019) 182–188, http://dx.doi.org/10.1109/jmems.
2019.2894953.

[30] P. Thiruvenkatanathan, J. Yan, A.A. Seshia, Common mode rejection in
electrically coupled MEMS resonators utilizing mode localization for sensor
applications, in: 2009 Joint Conference of the 22nd European Frequency and
Time Forum and the IEEE International Frequency Control Symposium, IEEE,
2009, pp. 358–363, http://dx.doi.org/10.1109/Freq.2009.5168201.

[31] M.I. Younis, E.M. Abdel-Rahman, A. Nayfeh, A reduced-order model for elec-
trically actuated microbeam-based MEMS, J. Microelectromech. Syst. 12 (2003)
672–680, http://dx.doi.org/10.1109/jmems.2003.818069.

[32] L. Li, J. Han, Q. Zhang, C. Liu, Z. Guo, Nonlinear dynamics and parameter
identification of electrostatically coupled resonators, Int. J. Non Linear Mech.
110 (2019) 104–114, http://dx.doi.org/10.1016/j.ijnonlinmec.2018.12.008.

[33] F. Najar, S. Choura, E.M. Abdel-Rahman, S. El-Borgi, A.H. Nayfeh, Dynamics of
variable-geometry electrostatic microactuators, J. Micromech. Microeng. (2006)
2449–2457, http://dx.doi.org/10.1088/0960-1317/16/11/028.

[34] COMSOL, http://www.comsol.com/.
[35] S. Karkar, B. Cochelin, C. Vergez, A high-order, purely frequency based harmonic

balance formulation for continuation of periodic solutions: The case of non-
polynomial nonlinearities, J. Sound Vib. 332 (2013) 968–977, http://dx.doi.org/
10.1016/j.jsv.2012.09.033.

[36] B. Cochelin, C. Vergez, A high order purely frequency-based harmonic balance
formulation for continuation of periodic solutions, J. Sound Vib. 324 (2009)
243–262, http://dx.doi.org/10.1016/j.jsv.2009.01.054.

[37] S. Baguet, V.N. Nguyen, C. Grenat, C.H. Lamarque, R. Dufour, Nonlinear
dynamics of micromechanical resonator arrays for mass sensing, Nonlinear
Dynam. 95 (2018) 1203–1220, http://dx.doi.org/10.1007/s11071-018-4624-0.

[38] N. Kacem, S. Hentz, D. Pinto, B. Reig, V. Nguyen, Nonlinear dynamics of
nanomechanical beam resonators: improving the performance of NEMS-based
sensors, Nanotechnology 20 (2009) 275501, http://dx.doi.org/10.1088/0957-
4484/20/27/275501.

[39] N. Kacem, J. Arcamone, F. Perez-Murano, S. Hentz, Dynamic range enhancement
of nonlinear nanomechanical resonant cantilevers for highly sensitive NEMS
gas/mass sensor applications, J. Micromech. Microeng. 20 (2010) 045023, http:
//dx.doi.org/10.1088/0960-1317/20/4/045023.

[40] N. Kacem, S. Hentz, S. Baguet, R. Dufour, Forced large amplitude periodic
vibrations of non-linear mathieu resonators for microgyroscope applications,
Int. J. Non-Linear Mech. 46 (2010) 1347–1355, http://dx.doi.org/10.1016/j.
ijnonlinmec.2011.07.008.

[41] B.K. Hammad, E.M. Abdel-Rahman, A.H. Nayfeh, Modeling and analysis of
electrostatic MEMS filters, Nonlinear Dynam. 60 (2009) 385–401, http://dx.doi.
org/10.1007/s11071-009-9603-z.

11

http://dx.doi.org/10.1109/MEMSYS.2017.7863604
http://dx.doi.org/10.1063/1.2216889
http://dx.doi.org/10.1016/j.proeng.2016.11.431
http://dx.doi.org/10.1016/j.proeng.2016.11.431
http://dx.doi.org/10.1016/j.proeng.2016.11.431
http://dx.doi.org/10.1016/j.proeng.2016.11.307
http://dx.doi.org/10.1016/j.proeng.2016.11.307
http://dx.doi.org/10.1016/j.proeng.2016.11.307
http://dx.doi.org/10.1016/j.sna.2019.06.004
https://doi.org/10.1109/FCS.2018.8597571
https://doi.org/10.1109/SENSOR.2009.5285444
https://doi.org/10.1109/SENSOR.2009.5285444
https://doi.org/10.1109/SENSOR.2009.5285444
http://dx.doi.org/10.1016/j.sna.2018.06.028
http://dx.doi.org/10.1016/j.sna.2018.06.028
http://dx.doi.org/10.1016/j.sna.2018.06.028
http://dx.doi.org/10.1109/jmems.2015.2514092
http://dx.doi.org/10.1109/jmems.2015.2514092
http://dx.doi.org/10.1109/jmems.2015.2514092
http://dx.doi.org/10.1016/j.sna.2015.05.011
http://dx.doi.org/10.1063/1.5003023
http://dx.doi.org/10.1007/s11071-010-9694-6
http://dx.doi.org/10.1115/1.4000314
http://dx.doi.org/10.1007/s40435-014-0139-9
http://dx.doi.org/10.1007/s00542-012-1520-2
http://dx.doi.org/10.5194/jsss-6-1-2017
http://dx.doi.org/10.1109/jmems.2019.2894953
http://dx.doi.org/10.1109/jmems.2019.2894953
http://dx.doi.org/10.1109/jmems.2019.2894953
http://dx.doi.org/10.1109/Freq.2009.5168201
http://dx.doi.org/10.1109/jmems.2003.818069
http://dx.doi.org/10.1016/j.ijnonlinmec.2018.12.008
http://dx.doi.org/10.1088/0960-1317/16/11/028
http://www.comsol.com/
http://dx.doi.org/10.1016/j.jsv.2012.09.033
http://dx.doi.org/10.1016/j.jsv.2012.09.033
http://dx.doi.org/10.1016/j.jsv.2012.09.033
http://dx.doi.org/10.1016/j.jsv.2009.01.054
http://dx.doi.org/10.1007/s11071-018-4624-0
http://dx.doi.org/10.1088/0957-4484/20/27/275501
http://dx.doi.org/10.1088/0957-4484/20/27/275501
http://dx.doi.org/10.1088/0957-4484/20/27/275501
http://dx.doi.org/10.1088/0960-1317/20/4/045023
http://dx.doi.org/10.1088/0960-1317/20/4/045023
http://dx.doi.org/10.1088/0960-1317/20/4/045023
http://dx.doi.org/10.1016/j.ijnonlinmec.2011.07.008
http://dx.doi.org/10.1016/j.ijnonlinmec.2011.07.008
http://dx.doi.org/10.1016/j.ijnonlinmec.2011.07.008
http://dx.doi.org/10.1007/s11071-009-9603-z
http://dx.doi.org/10.1007/s11071-009-9603-z
http://dx.doi.org/10.1007/s11071-009-9603-z

	Exploiting nonlinearity to enhance the sensitivity of mode-localized mass sensor based on electrostatically coupled MEMS resonators
	Introduction
	Model
	Dynamic modeling of the electrostatically coupled microbeams
	Static analysis
	Mode veering analysis
	HBM+ANM for periodic solutions

	Numerical results
	Linear behaviors
	Nonlinear behavior
	Adjustability of the sensitivity by electrostatic coupling stiffness

	Influences of the geometric parameters
	Effects of the position of added mass on sensitivity
	Effects of the length ratio on sensitivity
	Effects of the gap ratio on sensitivity

	Conclusion
	Declaration of competing interest
	CRediT authorship contribution statement
	Acknowledgments
	Appendix
	Reduced order model
	The integration parameters of TeXFolio:eq14

	References


