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Closed-Loop Control of Particles Based on Dielectrophoretic
Actuation

Alexis Lefevre*, Vladimir Gauthier*, Michaël Gauthier and Aude Bolopion

The dielectrophoresis phenomenon exerts a force on dielec-
tric particles placed in an inhomogeneous electric field. Using
this property, we are able to control the displacement of micro-
particles by controlling the electric field in the workspace. It
is achieved with an independent control of the voltages applied
on electrodes placed inside a micro-chip. However, this type of
system is characterized by a high non-linearity regarding the
position and the input voltages, making the control difficult. In
our previous work, we proposed a new model based on Fourier
series to compute the electric potential produced by electrodes.
Here, we extend this model to compute the dielectrophoretic force
applied to particles and, propose a closed-loop controller based
on the inversion of this model to achieve trajectory control of mi-
crometer-size particles. This inversion, based on the simulated an-
nealing technique, is implemented and tested on simulations and
experiments. The main issues for the implementation of closed-
loop control on the experimental platform are discussed and over-
come. Experiments are performed on microbeads of 10 microm-
eters in diameter and confirm that the inverse model computes
the required voltages. The trajectory control of micro-particles
using closed-loop control at a frequency of 160 Hz is successfully
achieved with a precision below 2 µm.

Index Terms—Non-contact micromanipulation, dielectrophore-
sis, position and speed control, closed-loop, simulated annealing

I. INTRODUCTION

NON-contact actuation for the manipulation of
micrometer-size particles has gained a large interest

during these last years. To achieve untethered micro-
manipulation, several physical principles can be used,
such as magnetic actuation [1], [2], optical tweezers [3],
acoustic waves [4] or electric fields [5]. Electric fields can
be used for many purposes. They can induce fluid flows
by electro-osmosis or electro-thermal effects [6], they can
also be used to characterize micrometer-size particles [7],
to manipulate micrometer size particles by electrophoresis
or dielectrophoresis [8], and can be applied on living
or non-living dielectric-particles. The precise control of
particles, using electric-based micromanipulation platforms,
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is currently an active field of research. Closed-loop control of
dielectrophoresis-based micromanipulation platform has been
investigated.
In [9], Kharboutly et al. used a micro-chip with four
electrodes creating a limited control area to perform motion
control of particles. The voltage applied on each electrode is
independently controlled to generate complex configurations
of electric field. A database linking the voltages applied to
the electrodes and the dielectrophoretic force in this area
was pre-processed to reduce computing time. Thus, with a
simplified model and a PID controller, they completed the
motion control of particles of 80 micrometers in diameter at
high velocity (1000 µm/s).
More recently, Hurak et al. have proposed several models
for dielectrophoresis-based micromanipulation platforms,
dedicated to the implementation of closed-loop control [10],
[11]. One of this model is based on the concept of Green’s
function to pre-process data of the electric voltages and their
derivatives. During the closed-loop control, those data are
used to quickly calculate the DEP force. To generate the
electric field, they use an array of 48 electrodes and control
the phase shift between each electrode. With this method,
they manage to control the motion of particles of 50 µm in
diameter at a closed-loop frequency of 10Hz and a precision
of 8 µm. They have also demonstrated orientation and position
control of objects around 100 µm with non-spherical shapes,
using 4 electrodes and a model combining electrokinetic and
hydrodynamic effects running at 50Hz [12].
In the biomedical field, there is a growing need to individually
control and characterize cells [13]. Most of the time this
has to be done inside micro-fluidic channels where the cells
are carried by a high speed flow. Most of devices listed
before are designed for artificial objects around 100µm in
diameter with low dynamics or for control in a limited area
making it difficult to use for most applications. We proposed
in a previous work to overcome those limitations by using a
new model based on Fourier series to compute the electric
potential generated by parallel electrodes [14]. It appears that
our model is a good option with regard to memory storage,
computation time and precision with numerous electrodes.
The use of parallel electrodes also make it possible to have
a large area of control. This article investigates the use of
this model to achieve closed-loop control at high speed on
cell-sized particles. To reach this goal, the model must be
inverted to compute the required voltages in order to produce
a given motion of the particle. This inversion is complex
due to the non-linearity of the model, the high number of
electrodes, and the requirements in terms of computation
time. We propose to use an optimization technique to invert
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Fig. 1. General architecture of the studied system: the top part represents the
micro-chip composed of parallel electrodes and the PDMS pool containing
the solution with beads. The bottom part is a zoom on the control area where
the electrodes are represented in white and the particle to control in red.
The spherical particle in the center will undergo the drag force, the dielec-
trophoretic force and the gravity-buoyancy in the (x⃗,y⃗) plane.

this model. Due to the presence of local minima, we chose to
use the simulated annealing technique. Closed-loop control
is implemented based on a visual feedback and experiments
are performed where the position of objects of 10 µm is
controlled along a pre-defined trajectory.

The rest of the paper is organized as follows. Section II
describes the dynamic model. The validation of the direct
model through simulation and experiment is presented in sec-
tion III. The inversion of the model is explained in section IV.
The chosen parameters and results of the closed-loop control
are discussed in section V. Finally, section VI concludes the
paper.

II. DIRECT MODEL DEFINITION

This section recalls the basic principles of the model de-
veloped in [15]. The studied system is composed of a micro-
chip with parallel electrodes used to produce dielectrophoretic
actuation. This configuration is inspired from travelling wave
control [16]. However, we propose here to independently
control the voltage on each electrode. Parallel electrodes
have proved to be of interest in the framework of micro-
manipulation, as demonstrated in recent work [17]. In this con-
figuration, electrodes can be considered as infinite compared
to the size of the particles (Fig. 1). The dielectrophoretic force
is perpendicular to the long axis of the electrodes, inducing
the lateral displacement of the particle (x⃗ axis) as well as a
displacement along its vertical direction (y⃗ axis). The motion
of the particle on the longitudinal z⃗ axis is controlled only
by the fluid. It is thus possible to decouple the motion along
the z⃗ axis, induced by the fluid, and along the x⃗ and y⃗
axes, induced by the dielectrophoretic force. In the following
sections, we only consider the motion of the particle due to
the dielectrophoretic force.

In the general case, the forces applied to a particle are the
fluid drag force, the gravity-buoyancy, the dielectrophoretic

force and the Brownian motion. Moreover, the medium can
be subjected to AC electro-osmosis and electrothermal flow. It
can be shown that AC electro-osmosis, Brownian motion and
electrothermal flow are at least two orders of magnitude less
than the dielectrophoretic force, and one order of magnitude
less than the joint effect of gravity and buoyancy [14]. Thus,
these three effects are neglected in this work.

For a spherical particle around 10 µm in diameter subject
to gravity-buoyancy F⃗g, dielectrophoresis F⃗DEP and fluid drag
F⃗drag, Kharboutly et al. demonstrated that the inertial term
can be neglected in Newton’s second law [18]. Thus, we can
consider that the particle undergoes three forces (see Fig. 1)
and its motion can be deduced from:

[
0
0

]
= Fg + Fdrag + FDEP (1)

The gravity-buoyancy force is given by:

Fg =

[
0

4
3πa

3(ρm − ρp)g

]
(2)

where a is the radius of the particle, ρm (resp ρp) is the
fluid density (resp. particle density) and g is the gravitational
acceleration. The next sections present the expressions of the
drag and dielectrophoretic forces.

A. Model of the drag force

The Stockes’ law gives the classical model of the drag force
applied to a spherical particle. An extended version of this law,
taking into account the boundary condition, has been proposed
in [19], [20]:

Fdrag = D.Ẋ (3)

with

D = −6πµa

[
λx 0
0 λy

]
, Ẋ =

[
ẋ
ẏ

]
(4)

where D is an invertible matrix. µ is the dynamic viscosity,
ẋ (resp ẏ) is the particle velocity on the x⃗ (resp y⃗) direction.
λx and λy are correction factors enabling to model the impact
of the substrate close to the particle. These correction factors
are defined in [19, Eq. (1)] and [20, Eq. (3.2)]:

λx =

[
1− 9

16

a

y
+

1

8

(
a

y

)3
]−1

, (5)

λy =
8

15
sinhα

[
2 sinh 3α+ 3 sinh 2α

4 sinh2 1.5α− 9 sinh2 α
− 1

]
, (6)

where

α = cosh−1(1 + (y − a)/a),

and y is the altitude of the center of gravity of the particle
above the substrate. As the drag coefficients are different along
x⃗ and y⃗, this general model is called “anisotropic drag force”
in the following of this paper. The isotropic classical Stockes’
law corresponds to the case of λx = λy = 1.
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Fig. 2. Schematic representation of the boundary conditions determining the
electric potential above an array of electrodes. ϕ+ and ϕ− are the electric
potentials on each side of the boundary. ϵm is the permittivity of the fluid in
the channel and ϵw is the permittivity of the wall. The region of interest is
the domain where the electric field is computed, its size is 310 x 50 µm. h is
the height of the PDMS pool. The black rectangles represent the electrodes.

B. Model of the dielectrophoretic force

Close to the electrodes, the electric field is non-uniform.
The force induced by a highly non-uniform electric field on
a uniform spherical dielectric particle can be derived using
Maxwell stress tensor [21] or effective multipole moment
[22]. Maxwell stress tensor approach is regarded as the most
rigorous one. However, for control purposes, one of the main
issue is the computation time. It has been shown in [14] that
a good trade-off between the precision of the model and the
computation time is given by the dipolar approximation. The
dipolar approximation of the i component, i ∈ {x, y}, of the
dielectrophoretic force induced by an electric field E can be
found in [23, Eq. (8)]:

FDEP = CDEP

[
Ex

∂Ex
∂x + Ey

∂Ex
∂y

Ex
∂Ey

∂x + Ey
∂Ey

∂y

]
(7)

where
CDEP = 4πεma

3K (8)

Equation (7) uses the Einstein summation convention: all
repeated indexes are summed. The real part of the Clausius-
Mossotti factor K is defined as:

K = Re

(
ε∗p − ε∗m
ε∗p + 2ε∗m

)
, (9)

where ε∗m and ε∗p are the complex permittivity of the medium
and the particle, respectively. These are defined as ε∗ = ε+j σ

ω
where ε is the permittivity, σ is the conductivity and ω = 2πf
is the angular frequency of the harmonic electric field.

The force calculation requires the determination of the
electric field E in the system. The electric potential ϕ has
been formulated in [15, Eq.(6)] . The boundary conditions are
specified in Fig. 2 and comes from [15] where details can be
found. Thus, the electric potential can be expressed as :

ϕ(x, y,U(t)) = e(x, y)T ·A ·U, (10)

where





e(x, y)T =
[
e0 e1 ... ePf

]

e0 =
h− y

h

∀p ∈ [1, Pf], ep =
epπ(2h−y)/L − epπy/L

e2hpπ/L − 1
eipπx/L

(11)

and U is a Ne vector composed of the electric potentials
applied to each electrode, Ne being the number of electrodes.
A is a (Pf, Ne) matrix composed of the ap,n coefficients
analytically defined in [15, Table 1] and is only function of the
system geometry. Pf is the chosen length of the Fourier series.
In this article, the length of the Fourier series is Pf = 2Ne
which is, accordingly to [15], a good trade-off between the
computation time and the convergence of the Fourier series.
e(x, y)T is the vector of the Pf exponential terms (Eq 11)
evaluated at the position of the object (x, y). L is the width
of the electrode pattern. In this formulation, U, the control
parameter of the system, and the matrix A, are independent
of position (x, y) of the particle. Consequently, the calculation
of the gradients of the electric potential, required to determine
both the electric field and the dielectrophoretic force, is simple.
The electric field is thus:

E =
−→∇ (ϕ) =

[
∂eT

∂x AU

∂eT

∂y AU

]
(12)

Based on (7), the dielectrophoretic force can be defined as:

FDEP = CDEP

[
∂2eT

∂x2 AU ∂2eT

∂x∂yAU
∂2eT

∂y∂xAU ∂2eT

∂y2 AU

]
.

[
∂eT

∂x AU
∂eT

∂y AU

]
(13)

This expression can also be rewritten as a quadratic function
of the control parameter U:

FDEP = U ·P ·UT (14)

where:

P = CDEP.

(
∂eT

∂X
(x, y) ·A

)T

· ∂
2eT

∂X2
(x, y) ·A (15)

and X = [x, y]T . Eq. (14) makes it possible to calculate
the dielectrophoretic force applied to the object whatever its
position (x,y) and the control voltages U. The equations (1),
(2), (3) and (14) form the direct model of the dielectrophoresis-
based micromanipulation platform.

Considering the presented models, the speed of the particle
can be expressed as:

Ẋ = −D−1(Fg +U ·P ·UT ) (16)

This analytical model is compared to both simulation and ex-
perimental data in the next section. In the rest of this article,
the model will be named as FSM for Fourier Series Model
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Fig. 3. Picture of the setup used for experiments. The main components are
the chip, the high speed camera, the NI PCI analog outputs and the electronic
board.

III. DIRECT MODEL VALIDATION

The previous section defines the direct FSM making it pos-
sible to compute the motion of the particle when it undergoes
a dielectrophoretic force FDEP , induced by given voltages
U. To evaluate the adequacy of the FSM, it is compared to
simulation with the FEM software COMSOL and experiments
(section III-B). Data for the FEM simulation, as well as the
equipment used for the experiment are given in section III-A.

A. Description of the dielectrophoresis-based platform

As described in Fig. 3, the dielectrophoretic platform is
built around a micro-chip fabricated in a clean-room dedicated
to microfabrication. This chip is composed of an array of
Ne = 16 parallel electrodes to enable dielectrophoretic actua-
tion. Each electrode has a width of 10 µm and the gap between
two electrodes is 10 µm. Electrodes are composed of 20 nm of
titanium and 200 nm of gold deposited using photolithography
on a glass wafer. A PDMS (Polydimethylsiloxane) pool, with
a thickness around 1mm, is added on top of the chip and
sticks by adhesion. This pool is filled with micro-beads of
10 µm diameter in a solution of PBS (Phosphate-buffered
saline) diluted 10 times with a conductivity of 0.2 S/m. A
droplet of TWEEN20 from SIGMA-ALDRICH is added to
minimize adhesion between the chip and the particles. The
chip is plugged into a home-made electronic board which
independently supplies the electrodes in alternative current.
This board multiplies the continuous output of two NI PCI
6733 boards, which are the computed output voltages, with a
sinusoidal signal of 1 Vpp at a frequency of 50 kHz generated
by a HAMEG HM8131-2. The NI analog output devices are
connected to a computer Dell T3400 with OpenSuse 13.2
operating system, and a kernel 2.6 patched with RTAI3.8.1
to achieve real time performances. This computer is also
used to grab images from a high speed camera Photon Focus
MV-D 1024 at 160 fps with a pixel resolution of 1 µm

Electrodes

Particle Detected particle

x

z

Threshold

Blob
detection

fps = 160 Hz
Pixel size = 1 µm

Fig. 4. Picture of a particle above an electrode during an experiment. The
particle can be seen thanks to the combination of reflection and transmission
enlightenment. The left side represents the image from the camera. The right
side of the picture represents the result of the image processing algorithm,
composed of a threshold and a blob detection, the center of the cross is the
center of the detected particle. The size of a pixel in the image and the fps
used for the experiments are specified.

(Fig. 4) allowing accurate in-line tracking. It is also used
to process information and to compute the output voltages.
To facilitate the image processing and enable the observation
of particles above the electrodes, the chip is enlightened by
reflection and transmission, giving the images in Fig. 4. With
this enlightenment, a threshold followed by a blob detection
algorithm allows us to track particles. The result of the image
processing is also given in Fig. 4. The control algorithm
is implemented in C++. The threshold and blob detection
algorithm are realised without external library. It allows going
through each pixel only once to process the image and limit
computation time. The number of iterations to compute the
direct FSM is quadratically dependent on the number of
electrodes.

B. Evaluation of the presented FSM model

This section presents the validation of the direct FSM
through comparison with FEM (Finit Element Model) sim-
ulations and experiments.

1) Comparison with FEM
As a first validation step, the model is compared to a

finite element simulation from COMSOL software using the
electrostatic module. The chosen boundary conditions are zero
charge accumulation, on the walls and between the electrodes,
and charge conservation inside the simulated area. For the
simulation, a particle of 10 µm of diameter, ϵm = 78 and
K = −0.5 were considered. The 6th electrode, between
100 and 110 µm (see Fig. 5a), is supplied with a sinusoidal
signal of 5V at 50 kHz. The other electrodes are set to 0V.
The Fig. 5a shows the magnitude of the DEP force on x⃗
computed by the FSM in the (x⃗,y⃗) plane. The magnitude of
the force is represented through the color range. In the yellow
area, FDEPmodel,x ≥ 2.10−11N, inducing a displacement to the
right. In the purple area, FDEPmodel,x ≤ −2.10−11N, inducing a
displacement to the left.

Fig. 5b uses the same color range to represent the difference
in magnitude following x⃗ between the FSM and FEM. The
arrows represent the direction of the DEP force in the (x⃗,y⃗)
plane for the FSM (black arrows) and the FEM (red arrows).
Fig. 5b shows that the computed magnitude of the actuation
force is similar close to the supplied electrode. Then, we can
observe an error around 40% in the further area. The dotted
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Fig. 5. Comparison between the FSM and FEM. The electrode between 100
and 110 µm is supplied with a sinusoidal signal of 5V at 50 kHz while the
others are set to 0V. (a) Represents the value of the DEP force following
x⃗ axis. In the yellow area, FDEPmodel,x ≥ 2.10−11N, inducing a displace-
ment to the right. In the purple area, FDEPmodel,x ≤ −2.10−11N, inducing a
displacement to the left (b) Represents the error in percentage of the DEP
force following x⃗ between the FSM and FEM. Arrows represent the DEP
force direction in the (x⃗,y⃗) plane

line represents y =5 µm, which is the minimum altitude of
the controlled particle. Next to the actuated electrodes, where
the DEP force is significant, the force directions established
by the two models are in coherence (Fig. 5b). Arrows only
show differences after 170 µm. At this location, the absolute
magnitude of the DEP force following the x⃗ axis is inferior
to 10−14N and can be neglected. The next subsection will
compare the calculated motion of a particle predicted by our
model to an experiment.

2) Comparison with experimental data
The second validation of the FSM is a comparison with

experimental data. A simulation using the FSM and the
following procedure is done: at t = 1s, an actuation signal
consisting in a step voltage of 3V at 50 kHz is applied to
the electrode closest to the particle (20 to 30 µm in Fig. 6).
After 1.5 s the electrode is switched off and the one between
80 and 90 µm is supplied with the actuation signal. This cycle
is repeated 3 times. In the model, the chosen initial altitude
of the particle yinit = 7 µm and the anisotropic drag force
model is considered. In parallel, an experiment following the
same procedure was done using a borosilicate micro-bead of
10 µm of diameter. Results are given in Fig. 6. They show
that the calculated position is coherent with the experiment,
meanwhile, the FSM has a tendency to slightly overestimate
the speed as it can be observed at t = 4.2 s. This can
be induced by several factors, such as the uncertainties of
the model (related to the properties of the particle, of the
medium or the electrodes), or the chosen boundary conditions
as discussed in [24].

The mean position error between the simulated and exper-
imental curve on 1 cycle is less than 1 µm with a standard
deviation of 4.5 µm, which is half of the diameter of the used
particle and seems promising for the control.
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Electrodes Particle
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Fig. 6. Experimental validation of the FSM through response to steps of 3V.
At t = 0 s, all electrodes (in white on the graph), are set to 0V. At t = 1 s,
the bottom electrode is set to 3V, then each 1.5 s, the voltage of the bottom
and the top electrode is switched. The dotted curve represents the trajectory
followed by the particle during the experiment while the crossed curve is the
trajectory obtained through simulation using the proposed model. The top part
of the figure is composed of images taken during the experiment.

IV. MODEL INVERSION DEFINITION AND VALIDATION

Following a reference trajectory requires to define at any
time t, a control voltage U enabling to induce the desired
velocity Ẋ to the particle. In other words, it means to find
a solution U of the quadratic equation (16) knowing Ẋ. We
propose a numerical method to solve this equation in a short
time in order to be used in the control loop.

A. Inversion of the FSM model

The keypoint in the inversion of Eq. (16) is the quadratic
expression U ·P ·UT corresponding to FDEP as defined in
Eq.(14). In addition, for practical reasons, the voltages applied
to each electrode are limited to an upper bound value Umax
inducing a second non-linearity. When particles moved at high
speed, or close to the electrodes, both non-linearities (quadratic
function and saturation) have to be taken into account and the
inversion of the model requires a numeric method [25].

The numerical inversion of the FSM consists in finding a
vector of voltages U which minimizes the cost function:

fcost(U) = ||FDes
DEP − FDEP(U)||. (17)

As proposed by Michálek et al. in a study on a global
optimization algorithm [26], the simulated annealing method
appears to be the most precise and one of the fastest in
the framework of dielectrophoresis. We propose to use this
numerical method to invert our FSM model.
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Fig. 7. Validation of the inverse model through a simulation. The targeted trajectory is a saw shape with a slope of 60 µm/s on x⃗ and a constant altitude on
y⃗. a) Voltage applied to the electrodes closest to the particle. b) Dielectrophoretic force applied to the particle along x⃗ and y⃗ axes. Even if the voltage applied
to the electrodes varies constantly, the dielectrophoretic force applied to the particle can be constant. Indeed, for a position (x,y) it exists several U inducing
the same force. c) Targeted trajectory and simulated one on x⃗ and y⃗. d) Spatial simulation of the DEP force inside the micro-chip at t=0.48s computed by
the FSM. The color range represents the magnitude of the DEP force along x⃗ on the upper image and y⃗ on the bottom one.

The annealing method is a probabilistic technique to approx-
imate the global minimum of a cost function fcost(U) = E,
where E is called “the energy of the system”. A second
parameter T , called “temperature”, is also considered and
decreases with time, starting from an initial value Tinit. At
each time step, some neighboring values U∗ of the current
control signal U are considered and the energy E of each U∗

is compared to the current energy of U. In most of the cases,
the algorithm chooses the control signal that decreases the
energy E in order to converge to the minimum energy value.
However, in order to avoid local minima, some modifications
that increase the energy E are randomly accepted depending
on the system temperature T . Indeed, as the temperature
reduces, the algorithm will decreases the probability to explore

control parameters inducing a growing energy.
In our case, the errors along the x⃗ and y⃗ axis can be de-

coupled, the chosen cost function (17) becomes:

fcost(U) = αx|FDes
x − Fx(U)|+ αy|FDes

y − Fy(U)|, (18)

where FDes
x (resp. FDes

y ) is the desired force following x⃗ axis
(resp. y⃗ axis). Fx(U) (resp. Fy(U) is the calculated force on
x⃗ (resp. y⃗) generated by the voltages U. αx and αy manage
the relative importance between the error along x⃗ and along
y⃗. We chose to increase the weight of the error along x⃗ by
choosing αx = 2/3 and αy = 1/3.

T is decreasing following the law:

T = Tinite
−t.10−4

(19)
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Fig. 8. Block diagram of the closed-loop controller. A desired position XDes is the input. The error ϵx and ϵ̃y are built using the available measure xm along
x⃗ and using the reconstruction of the experimental position ỹ along y⃗. A PI controller computes the error ϵ to obtain the Xc, the input vector of the inverse
model. The calculated voltages U are then applied to the physical system inducing the particle motion measured by image processing.

The algorithm stops when the following criteria is reached:

E = fcost(U) < ϵstop, (20)

where ϵstop optimal value will be discussed in section V.

The introduced annealing method defined by equations (18),
(19), (20), enables to define a numerical model of the voltages
U to apply as a function of a desired FDes

DEP. This model is
called inverse FSM model in the following.

B. Validation of the inverse FSM

We are going to illustrate the behaviour and show the
relevance of the inverse FSM model on an example. We
consider a chip composed of Ne =16 parallel electrodes of
10 µm width, spaced by 10 µm. The considered particle is a
borosilicate micro-bead of 10 µm in diameter. We are going
to simulate a desired saw shape trajectory with a slope of
60 µm/s on x⃗ and a constant altitude on y⃗.

A saw shape trajectory enables to characterize the precision
of the applied force (on the constant slope parts) and the ability
of the proposed system to induce high dynamics on a particle
(instantaneous change of direction). The constant target on y⃗
ensures that the particle stays in the focal plane of the camera
to have a better precision during image processing.

The temporal and spatial results of the FSM simulation can
be seen in Fig. 7. In order to follow the reference saw shape
trajectory, the voltages U are determined using the inverse
FSM (See the voltage values of the four electrodes close to
the reference trajectory on Fig. 7a). The voltages induce a
DEP force on the particle whose components along x⃗ and y⃗
are described on Fig. 7b. It can be noticed that several U
can produce a similar DEP force on the particle for the same
particle position (x,y). The simulated DEP force enables to
determine the particle velocity using the dynamic model (Eq.
16). Fig. 7c shows that in simulation, the inverse FSM enables
the particle to follow the reference trajectory with a maximum

error of 0.08 µm on x⃗ and 0.5 µm on y⃗. At each time step
t, it is also possible to visualize the spatial distribution of
FDEP defined in (Eq. 14). As an example, both components
x⃗ and y⃗ of FDEP at t = 0.48s are described in Fig. 7d. First,
it shows that several equilibrium positions can be reached on
x⃗ (See top part of Fig. 7d) demonstrating that the proposed
method would be able to control several particles at the same
time. Secondly, it clearly appears that the DEP force along
y⃗ above the electrodes (see the bottom part of Fig. 7d) is
mostly positive as usually assumed in negative dielectrophore-
sis (K < 0). However, it can locally have a negative value (e.g
at location (x, y) = (205µm, 20µm)), meaning that the particle
can be locally attracted by the electrodes substrate. We show
that it is possible to locally generate an attractive DEP force
in negative dielectrophoresis with a combination of several
electrodes having independent voltages.

This inverse FSM model can thus be used to implement a
closed-loop control, as presented in the next section.

V. CLOSED-LOOP ACTUATION

In order to precisely control a particle along a reference
trajectory, we use a vision-based closed-loop controller (Fig.
8). We consider a desired position XDes =

[
xDes yDes

]T
as the input. The error ϵ =

[
ϵx ϵ̃y

]T
is built using the

available measure xm along x⃗ and using the reconstruction
of the experimental position ỹ along y⃗. Indeed, the measure
along y⃗ is not accessible in our device as it requires the
use of advanced microscopes or image processing [27]. A PI
controller computes the error ϵ to obtain the reference position
Xc, enabling to determine FDes

DEP via the inverse dynamic model
and the required voltages U via the inverse FSM model. The
calculated voltages U are then applied to the physical system
inducing the particle motion measured by image processing
(see Fig. 8). The control is mainly in 1D and the reference
trajectories to follow are provided along x⃗. However, as the
generated DEP force along x⃗ and y⃗ are coupled, the position
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Fig. 9. Determination of the parameters of the simulated annealing algorithm.
Computation time required to inverse the model and position error for different
values of ϵstop. Those data are obtained through open-loop simulations where
the target is a saw shape trajectory with a slope of 60 µm/s and a range
of 40 µm with a constant altitude. The dotted curve represents the mean
position error value on x⃗ and the standard deviation. The squared curve is the
mean computing time and the standard deviation. Each point is obtained for
a different value ϵstop. The chosen value is ϵstop = 1.10−14.

of the particle on y⃗ is needed to compute the DEP force on
x⃗. Thus, The trajectory of the particle on y⃗ is estimated with
the FSM model.

A. Definition of the parameters of the FSM model inversion

Two main parameters must be tuned to obtain good results
while using the simulated annealing approach. The first one is
the control loop sampling frequency fcl, and the second one is
the stopping condition ϵstop (Eq. 20). Indeed, the particularity
of the annealing optimization technique is its possibility to
deliver sub-optimal solutions if the convergence time is not
sufficient. To limit this risk, the algorithm must have enough
time to converge. It requires that the control loop sampling
time is larger than the time required by the algorithm to
converge. Indeed, during a control period, 1

fcl
, the program

must be able to perform the following tasks: to process the
image, to minimize the energy of the system and to apply
voltages. The largest computational time is the simulated
annealing algorithm. On the other hand, the control loop
frequency must be high enough to maintain the performances
of the closed-loop system. This trade-off will be discussed in
the following.
To define the best value of ϵstop (Eq. 20), open-loop simulations
have been performed. The targeted trajectory is a saw shape
trajectory of slope 60 µm/s with a range of 40 µm along x⃗
and a constant position yDes = yinit along y⃗. The computation
time of the inverse FSM model and the precision on x⃗ are
computed for different values of ϵstop (See in Fig. 9). The value
ϵstop = 10−14 seems to be a good compromise. Indeed, with

a higher value, the computation time stays under 5ms but the
precision decreases. A lower value leads to a large uncertainty
of the computing time making difficult to determine the
control-loop frequency fcl. Considering ϵstop = 10−14, the
mean computation time is around 1.3ms. Taking into account

Fig. 10. Results of experiments in closed-loop representing the mean
difference and the standard deviation between the particle and the targeted
trajectories. The targets are saw shape trajectories with slopes of 30, 60, 90,
120, 150, 180 and 210 µm/s.

the computing time of the image processing and considering
that fcl must be at least 2 times lower than the total computing
time, the chosen frequency for the closed-loop is fcl =160Hz
and will be used for the experiments presented in the following
section.

B. Experimental results

Using the previously defined closed-loop parameters, exper-
iments are conducted. Saw shape trajectories with a magnitude
of 40 µm and slopes of 30, 60, 90, 120 and 150 µm/s on
x⃗ and a constant position yDes = yinit along y⃗ are used as
reference trajectories. The measured position of the particle
xm on x⃗ is given by the image processing. The algorithm
estimates the position of the particle ỹ based on the FSM
model, highlighting the importance of the estimation of the
initial altitude. The results in Fig. 6 shows that yinit =7 µm
is coherent and is chosen as the initial altitude. Please note
that in order to avoid electrolysis, a 50 kHz sinusoidal signal
is used with a maximum magnitude Umax = 5V . For technical
reasons, the control is only performed using 8 electrodes.
Nevertheless, to demonstrate the performance of the FSM
model with numerous electrodes, all the 16 electrodes are
considered while computing the voltages. Even if all the
voltages are computed, eight electrodes are thus not supplied.
Since they are far from the particle and their influence is
negligible, and the control remains possible.

The results are presented in Fig. 10 and 11. On Fig. 10
the plotted values are the mean error in position following x⃗
and the standard deviation between the experimental trajectory
and the real time reference trajectory (“target real time” in
Fig. 11). Up to 150 µm/s the control allows a precision below
1.5 µm with a maximum standard deviation of 2 µm. Above
this speed, the algorithm is slower to converge than the control
loop frequency fcl. In such extreme cases, the chosen strategy
is to let the algorithm converge even if it is longer than 1

fcl
.

Thus, an accumulation of delay between “target computer
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Fig. 11. Comparison of trajectories during an experiment in closed-loop. “Experiment” (The dotted curve) represents the position of the particle through
the experiment. “Target computer time” (The squared curve) is the targeted trajectory with the computer time as reference. “Target real time” (The curve
with triangle) is the targeted trajectory where each position is precisely spaced by 6.25ms. In the plot for 60 µm/s the three curve are closed, the obtained
precision during this experiment is shown on Fig. 10. For the plot at 210 µm/s, the accumulated delay between the two targeted trajectories represents a
higher computation time than the control loop frequency, leading to a loss of the real time computing. However, the particle is following the commands sent
by the computer (represented by the squared curve) allowing a path tracking without time constraint.

time” and “target real time” occurs for 210 µm/s. The “target
computer time” (squared curve on Fig. 11) is the reference
trajectory concretely sent to the system by the computer. In this
case, the simulated annealing algorithm takes too much time
to converge and the next control voltage U is not sent after
1/fcl = 6.25ms. This phenomenon induces an accumulation
of delay observable through the increasing gap between the
curve “target computer time” and ”target real time” (curve
with triangle). However, the observed trajectory is still close
to the reference based on the computer time with a mean
precision below 1 µm and a standard deviation of 2.1 µm.
It means that the calculated control voltage for a 210 µm/s
trajectory is relevant but the computation time is too long to
be implemented in a closed loop control.
As a conclusion, until a speed of 150 µm/s, trajectory control
of particles of 10 µm with an error below 1.5 µm can be
reached with the proposed method.

VI. CONCLUSIONS & PERSPECTIVES

This article proposes a closed loop-control strategy of
dielectrophoresis-based micromanipulation platforms com-
posed of numerous parallel electrodes. The controller is based
on an inverse model using annealing optimization technique.
We show that the calculation time, in most cases, is shorter
than 5ms. Based on this inverse model, controlled trajectories
are experimentally performed with a control loop frequency of
160Hz. It is shown that it is possible to control the trajectory
of a 10 µm microbead along a reference trajectory up to
150 µm/s with a mean error of 1.5 µm, approximately equal
to a tenth of the particle diameter, and a maximum standard
deviation of 2 µm. Close to the electrodes, highly non-linear
electric fields are produced, which has the advantage of
potential high velocity displacements. However, the altitude
of the objects is more complex to predict as vertical displace-
ments are also faster. As the current performance is directly

linked to the computation time of the annealing optimisation
method, future work will focus on the improvement of the
computation capability of our experimental setup to increase
its performance and enable it to converge faster with a better
precision. Hardware modifications (increase of RAM or use of
newer CPU) as well as other computational methods (parallel
computing) are considered. Further developments will also
include the extension of this system for the control in the
two directions of the electrode plane. The future chip will be
composed of two layers of electrodes. With those improve-
ments, our future work will then concentrate on the control of
biological cells using this platform, in the framework of the
development of controlled lab-on-chip devices.
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