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Abstract Several recent research has centered on max-

imizing Internet of Things (IoT) devices’ lifetime by

deploying data reduction techniques on IoT nodes to

reduce data transmission. Data compression methods

can be seen as a direct way of achieving energy ef-

ficiency. The trade-off between compression ratio and

data distortion is usually considered when using a lossy

compressor. This paper proposes a light SZ compressor

with a maximal compression ratio without considering

this trade-off. The proposed approach was tested on

ESP Wroom 32 and WiFi LoRa 32 microcontrollers.

Given the importance of data quality arriving at

the gateway for analysis, the proposed lossy compres-

sor with a high compression ratio can discard important

data features and patterns. This paper solves this prob-

lem by proposing a method for data enhancement based

on the U-Net architecture. Therefore, the contribution

of this paper is twofold: (1) Efficient data reduction

approach for energy optimization at the level of IoT

nodes. (2) 1D U-Net-based data recovery approach at

the level of the edge.

Keywords IoT · Energy efficiency · LoRaWAN ·
Lossy compression · Data reduction · Deep learning ·
SZ · Data denoising

1 Introduction

Numerous and diverse sensors generate a massive amount

of data in the IoT, which must be processed and stored

with slight data loss. Additionally, the market for low-

power, long-range sensory data transmission is growing
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rapidly. The majority of data collected from IoT devices

is time series data. A time series is a collection of data

that represents the values of a phenomenon through

time. Time series data are used in a wide variety of

applications, including healthcare, social sciences, envi-

ronmental science, and computer networks.

Many of the IoT devices deployed are smart objects

that store, process and transmit data. Such devices are

still working on batteries and resource constrained. One

of the direct ways to transmit the collected data effec-

tively and keep the IoT devices working for as long as

possible is to use a data reduction technique which does

not require heavy processing and enables a high reduc-

tion in data volume. In other words, the energy needed

for the computation and transmission of the reduced

data should be less than the energy needed for the orig-

inal data transmission. Such surveys [15][19] explored

different approaches to data compression for IoT ap-

plications. Although lossy compression algorithms de-

liver a high reduction ratio, the high decrease in data

size comes at a cost, namely data distortion. When it

comes to medical applications, where data quality is

critical, the impact of data compression techniques on

the data obtained for analysis is controversial. The goal

is to reduce energy use and data volume while maintain-

ing data quality. Deep learning approaches have lately

demonstrated excellent results in removing compression

artifacts from images. Similarly, this approach was em-

ployed to time series data.

1.1 Related work

With advancements in deep learning and Neural Net-

works (NNs), it became possible to recover or denoise

a highly distorted signal. In [1], the author proposed a
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hybrid approach of a Recurrent Neural Network (RNN)

and a Denoising Autoencoder (DAE) for electrocardio-

grams (ECGs) signal denoising. The proposed model

has been trained with synthetic ECG data, and it was

found that the network trained with synthetic data

showed better performance than the network trained

with original data. In [24], the authors proposed a DAE

and wavelet transform approach for ECG signal de-

noising. The wavelet transform is used to remove ba-

sic noise, while the DAE handles complex remaining

noise that is difficult to remove using traditional meth-

ods. For denoising non-Gaussian noise in gravitational

waves, the authors in [17] proposed an unsupervised

model that uses bi-directional Long Short Term Mem-

ory (LSTM) and a DAE. While various publications

investigate recurrent layers for time series denoising,

there has been a recent shift toward other methods

for this problem. The Generative Adversarial Network

(GAN) models have attracted the interest of the scien-

tific community since its introduction in 2014. Recent

advances in medical time series denoising have included

the use of different variants of GANs, Convolutional

Neural Network (CNN)-based GANs, and DAE [26].

The authors in [2, 10] proposed generative adversarial

approaches to remove the noise from ECG time series

and produce realistically looking ECG signals. The re-

sults obtained were encouraging and demonstrate the

potential medical use of GANs.

1.2 Motivation and contribution

Motivated by recent advances in deep neural networks

and their signal denoising capabilities, in addition to

the need for energy efficiency in IoT applications, this

paper proposes an efficient lossy data compressor for

resource-constrained IoT devices. In addition, it pro-

poses a deep learning-based autoencoder model for data

enhancement at the edge/sink node. The work con-

ducted in this paper is a continuation of the one pro-

posed in [3]. The previous work considers the trade-

off between compression ratio and data distortion and

provides a compression strategy that maximizes data

compression while retaining a high level of reconstruc-

tion quality. On the other hand, this work disregards

this trade-off and instead emphasizes on increasing the

compression ratio in order to conserve more energy.

This will very certainly result in highly distorted re-

constructed data. To address this issue and restore the

data’s quality, this paper proposes a deep learning ap-

proach for data enhancement using a temporal convo-

lutional network framework.

The contributions of this paper in relation to the

previous work are: (1) Enabling a higher compression

ratio in IoT nodes, hence significantly lowering the amount

of data transferred. (2) Developing and evaluating the

proposed approach on microcontrollers with fewer re-

sources than a wearable device. (3) Using a 1-D convo-

lutional autoencoder based on the U-Net architecture,

enabling improved data recovery at the edge.

The experimental results obtained validate and em-

phasize the added value of this paper’s contribution by

demonstrating the ability of the proposed approach to

strongly compress time series and recover the data at

the edge without affecting the quality.

1.3 Organization

The rest of this paper is as follows. Section 2 gives a

background information on IoT data compression and

Autoencoders. The proposed data compression approach

is discussed in section 3. Section 4 explains the ad-

vantages of the proposed approach in the context of

LoRa-based applications. Section 5 details the proposed

deep learning model for data enhancement. Experimen-

tal setup and results are described in section 6 and dis-

cussed in section 7. Section 8 discusses the limitations

of the work presented in this paper and suggests some

future research directions. Section 9 concludes this pa-

per.

2 Background

This section provides background information on IoT

data compression and denoising autoencoders.

2.1 IoT data compression

Data compression methods can be classified into two

categories: lossless compression (no data loss involved)

and lossy compression (leads to some data loss). In loss-

less compression, the maximum amount of data that

may be compressed without loss is limited. Typically,

the primary attribute to evaluate is the Compression

Ratio (CR) while selecting an algorithm, as expressed

in Equation 1:

CR =
size orig

size comp
, (1)

where size orig is the size of the uncompressed data,

and size comp is the size of the compressed data.

Lossless compression algorithms function by remov-

ing redundant data. The most often used lossless com-

pression algorithms include Arithmetic Coding, Huff-

man coding, Run-length Encoding (RLE), and dictionary-

based general-purpose algorithms such as Lempel-Ziv
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compression. Sprintz was recently proposed in [5] for

IoT as an effective lossless compression algorithm for

multivariate integer time series.

A lossy compression technique may allow for the

removal of some redundant data during transmission.

Numerous IoT applications do not require perfect sig-

nal reconstruction and can evaluate lossy signals such as

in [3]. Lossy compression has a higher compression ra-

tio than lossless compression, enabling IoT systems to

transfer fewer data. Curve fitting, fractal resampling,

box car, and wavelet, Fourier, and Chebyshev compres-

sion are all examples of lossy compressors.

2.2 Autoencoders

An autoencoder (AE) is a neural network (NN) that ex-

tracts features from a dataset using data-driven learn-

ing. An Autoencoder has the same number of input and

output nodes. It is trained to rebuild the input vector

rather than apply a label to it. The addition of noise to

the encoding stage is an effective method for increasing

the model’s robustness. Denoising Autoencoder (DAE)

addresses the problem of the hidden layer having more

nodes than the input layer, causing the AE to dupli-

cate those values without merely identifying relevant

features. A randomly changed version of the input is

used to train the AE. The output of the AE is matched

with the original values, not the modified values, once

the data has been processed through it. Due to the ran-

dom distortion of the input, the DAE is considered as

a stochastic form of an AE, with the undistorted ver-

sion of the original input serving as the target for the

decoding process.

Apart from being employed as a regularization method,

the goal of DAE is to reduce noise from the input rather

than learning the exact representation of a sample in

order to reproduce it from low-dimensional character-

istics. DAE is now being used to restore photos that

have been damaged. This DAE feature has also been

effectively applied to 1D signals, such as time series de-

noising. The model proposed in this paper is based on

DAE’s theory.

3 The proposed data compression with SZ

This section introduces the SZ compression method and

explains its implementation on low-power system-on-a-

chip microcontrollers.

3.1 Background

The authors in [9] proposed the Squeeze (SZ) lossy

compressor to efficiently compress run-time High Per-

formance Computing (HPC) snapshots. SZ is a versatile

compressor since its compression errors are controlled

by an absolute or relative error bound that the user

can manage. Additionally, SZ is applicable to both one-

dimensional floating-point arrays and multi-dimensional

arrays.

The compression process can be divided into three

steps: (1) transforming multi-dimensional array to 1D

array, (2) compressing the linearized array using best-

fit curve-fitting models, (3) compressing unpredictable

data by examining their binary representation. The sec-

ond step of SZ attempts to forecast each data point by

using the previous data point’s value, fitting a line to

the previous two consecutive data points, or fitting a

curve to the previous three consecutive values. The fore-

casted data point is replaced with a two-bit code that

indicates the type of prediction model. If the predicted

data point does not fall inside the given error-bound,

it is labeled as unpredictable and encoded using binary

representation analysis. Finally, lossless methods like as

Huffman encoding and LZ77 are used by SZ.

This technique is an excellent candidate for IoT

applications due to its adherence to the defined error

bound and ability to compress multidimensional arrays

of floating values. This approach, however, performs

well on a PC/server in its current state, but not on

a device with severe resource constraints. In [3], SZ

was deployed on a wearable device by slightly altering

the algorithm using the Android NDK toolkit. Because

microcontrollers may have higher resource constraints

than wearable devices in terms of memory, space, and

processing, additional modifications to SZ should be

done to ensure that it works well on any low-power

IoT device. The next section discusses the lightweight

version of SZ.

3.2 Light SZ for IoT

As previously stated, SZ is a lossy compression tech-

nique optimized for use in high-performance computing

environments. Numerous modifications are necessary to

adapt the code for use with ESP-32 like devices. Nu-

merous SZ versions have been proposed for a variety

of use cases, including visualization, accelerated I/O,

memory and storage footprint reduction, and more ad-

vanced use cases such as compression of NN models and
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training sets1. The SZ version considered in this paper

for adaptation is v2.1.5.

To begin, the code is lengthy (about 20,000 lines)

and was written for 64-bit processors. Thus, the first

adaption involved altering several pointers and types

to expressly require the compiler to utilize 32-bit point-

ers. Then, because the code was written for various data

types (double, float, int), only the float case was con-

sidered. Keep in mind that the storage capacity of IoT

devices is quite limited, which is why all unneeded com-

ponents have been deleted. Numerous big buffers were

utilized in the code, however they were minimized to al-

low the code to run on ESP-32 processors. Because SZ

can compress the output of lossy compression in a loss-

less manner using Gzip or Zlib, only Zlib was selected

due to its ease of usage on Arduino devices. Finally, be-

cause developing code with an Arduino is more difficult

than developing code on a standard machine, it took us

long to modify it. Indeed, the Arduino ecosystem lacks

an effective debugger.

4 LoRa for IoT

In this section, we will first provide a brief introduc-

tion on LoRa and LoRaWan for IoT. Moreover, the

advantages the SZ compression algorithm provides in

the context of LoRa-based sensor network applications

is explained.

4.1 LoRa and LoRaWan: Definition

LoRa (Long Range) is a wireless communication pro-

tocol that combines extremely low power consumption

and a long-range. While long-range is heavily depen-

dent on the environment and any obstacles in the trans-

mission line of sight, LoRa has a range of tens of kilome-

ters. These characteristics provide LoRa an advantage

over more power-hungry and/or short-range communi-

cation protocols such as Zigbee, Bluetooth Low Energy,

WiFi, 3G, and LTE.

LoRaWAN (Long Range Wide Area Network) is a

Low Power Wide Area Network (LPWAN) protocol ex-

plicitly designed for the IoT. It is intended for long-

range, low-power operation, with sensor devices pow-

ered by batteries or energy harvesting systems. It takes

full advantage of LoRa’s capabilities to provide services

like reliable message delivery, end-to-end security, loca-

tion, and multicast capabilities.

1 https://szcompressor.org/

Table 1: Spreading Factor, Bandwidth, and Data Rate

4.2 Network Topology

While most networks adopt the mesh network topology,

LoRaWAN uses the star network architecture. This en-

ables the sensor end-devices in the LoRaWAN network

to periodically go to sleep after each transmission. In

comparison, end-devices in a mesh topology are gener-

ally constantly on, repeating transmissions from other

devices to extend range. This is a crucial part in the

low power consumption and long battery life of LoRa

end devices. As seen in Figure 1, The LoRa Network

Architecture comprises of four major parts:

– End Devices: These are sensors or actuators at the

network edge that perform various functions and

have different requirements.

– Gateways: In single-hop wireless communication, gate-

ways connect to the network server using standard

IP connections and relay messages between the cen-

tralized server and end devices.

– Network Server: LoRa network server connects the

application server and gateways. It sends commands

from the application server to the gateways and re-

ceives data from the gateways.

– Application Server: The application server decides
what to do with the end-user data. Operations such

as data visualization could be done here.

4.3 Spreading Factor and Data Rate

LoRa uses variable bandwidth and spreading factors

(SF7-SF12) to adjust the data rate to the transmission

range (see Table 1). A longer range could be allowed by

increasing the spreading factor at the cost of the data

rate. The bandwidth and spreading factor can be se-

lected based on the link parameters and the data level

to be sent. A larger spreading factor enhances trans-

mission performance for a given bandwidth while de-

creasing data rates, increasing transmission time.

4.4 Rules and Regulations

LoRa operates on a free ISM frequency bands. For in-

stance, in Europe, LoRa uses the 863 to 870 frequency
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Fig. 1: LoRaWAN Network Architecture

band to transmit data packets. Anyone is allowed to use

these frequencies and no licence is required. However,

this means there is a lots of interference. Therefore, lim-

itation rules are set by several international organiza-

tions, otherwise these bands will become unusable. For

instance, in Europe users must comply to the following

rules:

– The maximum transmission power must be limited

to 14dBm.

– Only a duty cycle of 0.1% to 1.0% per day is allowed.

– Maximum allowed antenna gain is +2.15 dBi.

The duty cycle is the most problematic for IoT ap-

plications. This basically means that a LoRa IoT-device

is allowed to transmit one packet of data every ”X”

seconds. ”X” depends on several parameters, such as

the Spreading Factor (SF), Bandwidth (BW), and pay-

load size. For instance, assuming a LoRa device oper-

ating on the following parameters, SF = 12, BW =

125 Khz, and Payload Size = 59 bytes. For a 1% duty

cycle, this device is allowed to transmit one packet ev-

ery 04:23(mm:ss) approximately (X=236 seconds). For

more information, readers are advised to check this

LoRa air time calculator [13].

4.5 SZ compression for LoRa Sensor Networks:

Motivation

As previously stated, LoRa end-devices have a maxi-

mum data rate of approximately 50kb/s. In compari-

son to the majority of other technologies, this rate is

the slowest, which makes it unsuitable for some ap-

plications that demand high data rates. Additionally,

LoRa-IoT devices must adhere to certain transmission

duty cycles.

Data compression can be used to mitigate the im-

pact of these limitations on LoRa-based IoT applica-

tions. Assume a sensor operates at 256Hz and acquires

256 floating-point samples per second, equating to 1024

bytes of data. Suppose this sensor uses SF7 and the pay-

load is 230 bytes (transmission time = 36 seconds). So,

six packets over 3.6 minutes are required to send the

1024 Bytes to the gateway. By heavily compressing the

data and reducing the size from 1024 to 100 bytes, just

one packet is required to transport the compressed data

in less time.

By reducing the quantity of data that needs to be

transmitted, we can accomplish the following benefits:

– With a lengthy period of time between transmis-

sions mandated by the Duty Cycle, the time neces-

sary to communicate the acquired data set to the

gateway is significantly decreased.

– Because transmission consumes battery power, fewer

transmissions leads to reduced battery usage, pro-

vided that compressing the data set consumes less

power than transmitting it.

Section 7 will discuss the impact of compression on

transmission time and energy consumption.

5 The proposed 1D U-Net for data

enhancement

This section describes the proposed technique for re-

moving compression artifacts from collected time series

data. It is feasible to have paired data for these types



6 Joseph Azar et al.

of situations. In other words, the uncompressed form

of the reconstructed data can be used as the output to

train the network.

The approach presented in this section to enhance

the compressed time series is inspired from [8]. The au-

thors in [8] proposed a fully convolutional network that

is based on the U-Net architecture originally presented

in [16] and composed of an encoder decoder with skip

connections. Given the time series nature of the data to

be processed, we propose a 1D U-Net with skip connec-

tions between encoder and decoder layers on the same

level.

5.1 Motivation

While the recurrent layer is an appealing conceptual

choice for processing time series data, recent literature

suggests that CNN can accomplish what LSTM has

been employed for and excels at, namely analyzing se-

quences, but in a much faster and more computation-

ally efficient manner[4, 14, 22, 27]. The authors in [22]

showed that CNNs outperform LSTMs with and with-

out attention on a prediction problem while requiring

significantly less training time.

Additionally to the aforesaid, the U-Net architec-

ture was adopted for time series denoising in this pa-

per due to its recent use for time series segmentation.

For example, in time series segmentation applied to

sleep staging, the U-Time, a temporal fully convolu-

tional network based on the U-Net[14], attained or ex-

ceeded state-of-the-art models from the literature as

well as CNN-LSTM.

5.2 Architecture

As illustrated in Figure 2, the proposed architecture

accepts a 1D signal input of size n and is divided into

three parts: the contraction, the bottleneck, and the ex-

pansion. The contraction part consists of several con-

traction blocks. Each block receives an input and ap-

plies two one-dimensional convolution layers with a ker-

nel size of three, followed by batch normalization and

one-dimensional maximum pooling with a pool size of

two. Following each block, the number of feature maps

is doubled, allowing the architecture to efficiently learn

complicated structures. The bottommost layer functions

as a link between the contraction and expansion layers.

The expansion, like the contraction, is composed of

multiple blocks. The decoding phase begins with the

bottommost layer and an upsampling process that con-

sists of an upsampling layer with a size of two, followed

by a one-dimensional convolution layer with a kernel
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1 64 64

n n
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64 128 128
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n/4

256

n/4

256

n/4

256

n/8

512

n/8

512

n/8

512

n/8 n/16

1024

n/16

1024

n/8

1024

n/8

512

n/8

512

n/4

512

n/4 n/4

256 256

256

n/2 n/2 n/2

128 128

n

128

n n

64 64

n

1

Output 
time series 

3x Conv 1D + ReLU
3x Conv 1D + ReLU + BN
Max pool 1D 2x 
Up + 2x Conv 1D + BN
1x Conv 1D + Sigmoid
Copy and concatenate

Fig. 2: Schematic diagram of the proposed deep encoder-
decoder network architecture

size of two and batch normalization. The input of each

expansion block is connected by the feature maps of the

corresponding contraction layer, and the concatenated

results are passed to two one-dimensional convolution

layers with a kernel size of three, followed by an upsam-

pling layer. Following each block, the number of feature

maps is reduced by half to maintain symmetry. This

procedure ensures that the contraction part’s learned

features are employed in reconstructing the time series.

Take note that the number of expansion blocks equals

the number of contraction blocks.

Given an input range of [0,1], We map the final top

decoder layer back to the clean output signal using 1D

convolution with a kernel size of one, followed by sig-

moid activation. Similarly, we use binary cross-entropy

as the loss function and a stochastic gradient descent

variant (’Adam’) as the optimizer. Note that param-

eters such as the number of contractions, expansions,

and filters are the same as in the original implementa-

tion of U-Net [16].

6 Experimental setup

Two microcontrollers were considered to evaluate the

lightweight SZ compressor, namely the ESP Wroom 32

and WiFi LoRa 32. ESP Wroom 32 is a microcontroller

unit designed for low-power sensor network applications

and can use WiFi and Bluetooth for transmission. WiFi

LoRa 32 is a popular IoT development board developed
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by Heltec Automation (TM) and supports communica-

tion via LoRa.

Two experiments were conducted. The objective of

the first experiment is to determine the impact of the SZ

compressor on energy consumption and the time needed

for processing and transmitting the data to the gateway.

We used a USB Tester to detect the voltage and current

drawn and determine the amount of energy utilized in

milliwatt hours by the microcontroller connected to the

USB port. The used devices in the first experiment are

shown in Figure 3.

(a) esp wroom 32 (b) Wifi LoRa 32 (c) USB tester

Fig. 3: The materials utilized to determine the impact
of data compression on energy consumption and process-
ing/transmission time

The objective of the second experiment is to en-

hance the transferred data to the gateway using the

1D U-Net described earlier. We consider in this paper

the context of healthcare applications and, more par-

ticularly, physiological time series such as electrocar-

diogram (ECG) and photoplethysmogram (PPG). The

challenge of working with such data is that the quality

is a primary concern for doctors to analyze and extract

meaningful information. The heavy compression of SZ

may limit the analysis of physiological data. In the fol-

lowing section, we demonstrate how the proposed 1D

U-Net enhances the quality of the compressed data.

We consider the ECG-ID Database published in Phy-

sionet [11] and initially presented in [21] for the ECG

data. Concerning the PPG dataset, we used a Shim-

mer3 GSR+Unit [18] to collect the data from several

PhD students from the FEMTO-ST/DISC/AND labo-

ratory, Belfort, France. To train the NN model, NVIDIA

Tesla Titan X GPU was used.

7 Results

This section summarizes the findings of the experiments

performed to validate the approach given in this paper.

The following examines four metrics: data compression,

processing and transmission time, energy consumption,

and data enhancement.

7.1 Data reduction

The approach taken in this paper is to employ a com-

pression technique that maximizes compression ratio

without regard for data distortion while also ensuring

that the compressor is suitable for resource-constrained

devices. To repair the compressor’s damage, a deep learn-

ing technique is employed to enhance the reconstructed

data. We evaluate the lightweight SZ with three error

bounds on several batches of ECG and PPG time se-

ries: 10−1, 10−2, and 10−3. Note that choosing an er-

ror bound e for SZ means that the reconstructed data

points d are within the range [d− e, d + e].

This experiment considers the cases in which the

sensors transmit data on a periodic basis. We had set

the period to t = 30s and compressed a 10kb batch

of data for 80 periods while recording the compressed

size. This procedure is repeated using the three error

bounds for the ECG and PPG data.

The results presented in Figure 4 show that in order

to attain a maximal compression ratio, a higher error

bound should be used. A 10−1 error bound gave a com-

pression ratio that ranges from 80:1 to 100:1 for the

ECG and PPG data. An error bound of 10−2 yields a

compression ratio that varies from 40:1 to 85:1. This

compression ratio falls to an average of 20:1 when SZ is

used with an error bound of 10−3. Table 2 summarizes

the obtained results.

Fig. 4: Compression of 10Kb of ECG and PPG data across 80
periods using SZ with various absolute error bound settings

To better understand the gain of using a lossy tech-

nique such as SZ compared to a lossless method, one

can consider the recent survey on time series compres-

sion published by Chiarot et al. [7]. Sprintz, one of the

most effective lossless time series compression for the

IoT[6], was evaluated with various lossless algorithms
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Table 2: SZ compression ratios on ECG and PPG sets with
three distinct error bounds

on diverse datasets in this survey. It is shown that the

compression factor ranges from 3 to 10, which is less

than using SZ with an absolute error bound of 10−3

and much less than using SZ with an error bound of

10−1.

While this article focuses on extending the life of

IoT devices, the remainder of our experiments employ

SZ compression with an absolute error bound of 10−1.

7.2 Transmission/Processing time

A significant benefit of data compression is that it re-

duces the time required to transfer data to the gate-

way. This section compares the time needed for uncom-

pressed data transmission against the time needed for

compressed data transmission. To accomplish this, the

ESP Wroom 32 was used to generate the Mackay-Glass

time series, and the time required to transfer various

sizes of this time series via WiFi to a local PC was mea-

sured. The same process was used to measure the time

needed for compressing+transmitting the data, and it

was performed 20 times for each data size. The aver-

age time required in milliseconds for transmission and

compression+transmission is depicted in Figure 5.
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Fig. 5: Comparing the time required for data transmission
with the time required for data compression and transmission
in milliseconds

We can notice in Figure 5 that using lightweight

SZ before transmission leads to a time gain of three

to ten times compared to direct transmission without

compression. It is important to note that SZ yields the

optimal performance when it compresses a larger batch

of data. This can be seen when the data size is above

20Kb in Figure 5. When using the proposed compressor

in an IoT application with the periodic transmission,

the advice that can be given is to use a longer period

t if possible. This allows for collecting and transferring

more data with lesser transmissions.

7.3 Energy consumption

This section discusses the impact of data compression

on energy consumption. This experiment evaluated two

different communication protocols: WiFi and LoRa. We

implemented the proposed compression technique on an

ESP Wroom 32 and a WiFi LoRa 32, and we estimated

the energy consumption using a USB tester.

7.3.1 WiFi
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Fig. 6: Energy consumption in milliwatt hours for transmis-
sion of original data, compressed data, and the compression
operation after 2500 cycles

The first experiment involves sending various sizes

of the Mackay-Glass time series via WiFi from the ESP

Wroom 32 to a local PC. We considered three scenarios:

– Data transmission without compression.

– Data compression with lightweight SZ without trans-

mission.

– Data compression with lightweight SZ followed by

transmission of the compressed data.

We repeated each scenario 2500 times consecutively

for different data sizes, and we reported at the end the

energy consumption in mWh. Note that in this exper-

iment, the microcontroller does not enter a sleep state

between consecutive transmissions.

Figure 6 shows that it needs 13, 24, 33, and 43 mWh

to transmit 2500 times approximately 10Kb, 20Kb, 31Kb,

and 41Kb of floating-point data. On the other hand, it

takes approximately 8, 12, 15, and 18 mWH to compress
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Table 3: LoRa experimental parameters

and transfer (transmission+compression) the same batches

of floating-point data 2500 times. It is worth noting

that the energy required to transmit compressed data

remains constant (five mWH) as the data size grows,

although the processing energy increases slightly.

The energy savings ratio varies between around 1.5

and 2.5. For example, while transmitting 41Kb utilizing

the proposed approach, energy consumption can be re-

duced by up to 2.5 times compared to sending the data

without compression. It is possible to infer the same

conclusion as in the preceding section, namely that rais-

ing the period duration t and collecting additional data,

followed by compression and transmission, is the opti-

mal technique for maximizing energy and storage gain.

7.3.2 LoRaWan

The second experiment involves transmitting various

sizes of the Mackay-Glass time series to a LoRaWan

gateway. Similarly to the first experiment, the following

scenarios are considered: (1) data transmission without

compression, (2) and data compression+transmission.

Figure 7 shows the average values of the obtained re-

sults. Note that each scenario was repeated ten times.

In contrast to WiFi, and to adhere to the LoRaWan
Duty Cycle, the device is compelled to communicate a

limited quantity of data periodically after a predeter-

mined length of time has passed. Meanwhile, the device

is put to sleep because it is not able to communicate.

The maximum size of the transmitted packet and

the sleep duration are determined by the Spreading Fac-

tor employed (SF). Table 3 provides detailed informa-

tion.

The amount of energy consumed varies significantly

based on the SF. The greater the latter, the lower the

data rate, forcing the radio module to work for more

extended periods to send the packet, thus increasing

transmission energy. Furthermore, when the spreading

factor grows, the packet size shrinks. As a result, more

packets are required to transport the same total amount

of data, resulting in increased energy consumption. Fi-

nally, the sensor consumes some energy even while it is

in sleep mode. The more significant the spreading fac-

tor, the longer is the time on the air (ToA), forcing the

sensor to wait a long time for the subsequent transmis-

Fig. 7: The impact of the spreading factor and the data size
on energy consumption

sion. The longer the sensor waits to communicate the

data it has stored, the more power it consumes.

Figure 7 depicts all of this; the more significant the

SF, the more energy is consumed. But, even most inter-

estingly, we can observe how compression affects energy

consumption. Indeed, compressing data before trans-

mission reduces dramatically the amount of energy con-

sumed.

7.4 Data enhancement

Table 4: time- and frequency-domain features extracted from
PPG and ECG batches

This section demonstrates how the proposed deep

learning model can significantly improve the data’s qual-

ity and make analysis possible when applied to highly

compressed data. For such cases, the conventional eval-

uation technique compares the root mean square error

of the reconstructed and improved data. However, it

may not be sufficient for all applications, particularly

medical ones. Different time- and frequency-domain fea-

tures of the compressed and improved signals are ex-

tracted and compared to those extracted from the orig-

inal signals in the use case studied in this paper.

The PPG and ECG batches have an input size of

256 and 496, respectively. These numbers represent the
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Table 5: Comparison of the root mean squared error and the extracted feature values from the reconstructed and enhanced
signals with those from the original signals

sampling frequency utilized to obtain the data. The en-

tire time series were handled with a sliding window with

the same size as the sampling frequency and had no

overlap. The deep learning models enhance each win-

dow separately and then concatenate the windows to

form the improved complete time series.

The features retrieved from ECG and PPG data us-

ing time and frequency domain analysis techniques such

as FIR filters and fast fourier transform are summarized

in Table 4.

Table 5 shows the metrics taken from the original,

reconstructed, and enhanced signals. The RMSE is the

first metric used to evaluate the proposed model. For

the PPG and ECG, the RMSE was reduced from 0.05

to 0.02 and 0.05 to 0.01. It is clear that the extracted

features from compressed data, such as RMSSD and

sdNN, differ dramatically from the extracted features

from uncompressed data. Because of this considerable

discrepancy, analyzing such physiological data is unfea-

sible. Interestingly, the 1D-Unet enhanced the signals in

such a way that the recovered features closely matched

those of the original signal. Figures 8 and 9 show exam-
ples of enhanced ECG and PPG batches from the test-

ing set. These figures depict the effect of lightweight SZ

on the signal form (green signals) and how the proposed

1D U-Net recovered and enhanced the compressed sig-

nals (red signals). The proposed model allowed for heav-

ier compression, resulting in a higher compression ratio

even when signal quality was crucial.

8 Limitations and future work

There are few floating-point data compressors avail-

able for resource-constrained microcontrollers. This ar-

ticle discusses how to adapt and apply SZ compres-

sion for IoT devices. To our knowledge, there are few

lightweight compressors that can exceed SZ in terms of

compression ratio. It is important to note that SZ has

been tested against other lossy compressors and shown

to outperform them2[9]. As a result, we found that per-

2 https://szcompressor.org/tabs/performance/
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Enhanced ECG signal

Fig. 8: Illustration of the enhancement of a compressed ECG
batch using 1D-UNet

forming another compression ratio comparison will pro-

vide no further information, particularly given that not

all lossy compressors are suitable for microcontrollers.

However, one of this work’s limitations is that it does

not consider other metrics outside the compression ra-

tio and compare with more recent works. This part will

be revisited and considered in future works.

Concerning the implementation of the SZ on the

microcontrollers, we intend to further clean the code

before making it public and utilize a more recent ver-

sion of SZ since it has been updated many times when

we started working on this project. Also, we intend to

repeat some experiments using low-power management

technologies (low-power clocks, ultra-low power copro-

cessors, etc.).

Additionally, it is worth noting that the proposed

approach would perform optimally when the window

to be compressed is large. The appropriate use-case is

to initially store the acquired data in a large buffer and

subsequently compress it. If the number of samples to
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Fig. 9: Illustration of the enhancement of a compressed PPG
batch using 1D-UNet

compress is small, the proposed approach may not pro-

duce the desired results.

Another limitation of this work concerning the data

enhancement part is that it does not compare to the

most recent time series denoising techniques, such as

those based on GAN. Given that implementing and

comparing several deep learning architectures for time

series denoising is a lengthy and significant task in and

of itself, we concluded that it is more appropriate to

keep it for future work.

The input size of the 1D U-Net model in this paper

is equal to the data sampling frequency. Initial exper-

iments were conducted using slightly larger input win-

dows, such as doubling the sampling frequency. The

obtained results are similar to those presented in this

paper. In the future, we aim to test the model on more

large windows and consider different parameters than

those of the original U-Net architecture. It is also worth

noting that the size of the input time series linearly af-

fects the memory needed for the model. Table 6 shows

the relation between the batch size, input size, and the

memory required for the model in Gb.

9 Conclusion

Given that IoT devices are often limited in terms of

computation, storage, and energy consumption, data

compression might be viewed as an efficient technique

to extend the life of these devices. This article proposes

and develops a lightweight Squeeze (SZ) compressor on

real Internet of Things (IoT) hardware. The findings

indicated that the proposed method can reduce the en-

batch size input size needed memory (Gb)

16
256 0.088
512 0.136
1024 0.232

32
256 0.136
512 0.232
1024 0.423

64
256 0.232
512 0.423
1024 0.806

Table 6: Memory needed in Gb for the proposed architecture
given the input size and the batch size

ergy consumption of an ESP 32 by up to 2.5 times.

Additionally, compressing big batches of data before

transmission speeds up data transfer from the IoT to

the gateway. It has been demonstrated that the pro-

posed technique saves up to ten times the time of trans-

mission compared to the direct transmission of uncom-

pressed data. As a result, the algorithm proposed in

this research can be used for many IoT applications

that require a simple method that minimizes process-

ing/transmission time and maximizes device lifetime.

Given that this paper applies a heavy compressor and

does not consider the trade-off between compression

ratio and data distortion, the 1D U-Net architecture

was proposed for enhancing the quality of compressed

time series transferred to the gateway. The performance

of the proposed architecture was tested on real elec-

trocardiogram (ECG) and photoplethysmogram (PPG)

datasets.
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