
Learning Structured Information from Small

Datasets of Heterogeneous Unstructured

Multipage Invoices

David Emmanuel Katz1, Christophe Guyeux2,
Ariel Haimovici1, Bastian Silva1,

Lionel Chamorro1, Raul Barriga Rubio 1 and
Mahuna Akplogan1

1 smartlayers.io, 2 Université de Bourgogne Franche-Comté, France

May 5, 2022

Abstract

We propose an end to end approach using graph construction and semantic
representation learning to solve the problem of structured information extrac-
tion from heterogeneous, semi-structured, and high noise human readable docu-
ments. Our system first converts PDF documents into single connected graphs
where we represent each token on the page as a node, with vertices consisting
of the inverse euclidean distances between tokens. Token, lines, and individ-
ual character nodes are augmented with dense text model vectors. We then
proceed to represent each node as a vector using a tailored GraphSAGE algo-
rithm that is then used downstream by a simple feedforward network. Using
our approach, we achieve state-of-the-art methods when benchmarked against
our dataset of 205 PDF invoices. Along with generally published metrics, we
introduce a highly punitive yet application specific informative metric that we
use to further measure the performance of our model.

1 Introduction

The problem of structured information extraction from human readable for-
mats to machine readable formats has been an active area of research for both
academia and industry due to economies of scale that automated technologies
of data extraction provide corporations with. This information extraction is of
interest to many disciplines, which see it as a decision support tool and a way
to save money. For example, the medical information services of hospitals in
most countries in the world must, from the patient record, extract the medical

1



procedures performed and encode them according to the ICD10 nomenclature,
so that the social security can reimburse the hospital on a fee-for-service basis.

While automatic information retrieval from scanned documents is mature
to a certain extent, and there have been a number of success stories, there is
substantial room for further application specific innovations. Some documents
are more difficult to process, and some applications have specific needs that
are difficult to satisfy. For example, the sensitive nature of corporate financial
information makes solutions without high levels of accuracy at a target level
entity unfeasible.

First of all, each company has its own template, and therefore, in the produc-
tion phase, we have new templates not contained in the learning set. Moreover,
the vast majority of companies interested in automatic information recognition
from invoices are small, and can only manually annotate a few dozen to a few
hundred invoices. In other words, the learning set is very small, and therefore
unsuitable for traditional large scale deep learning techniques. Finally, some
fields of these invoices are sensitive and require perfect recognition, such as the
invoice amount or the tax percentage. The simple addition or deletion of a digit
in these numbers has a large impact in these final results.

This is why we wanted to place ourselves in the following specific context,
which has not been looked at much in the literature: small knowledge base, not
representative of the variety of templates, and high accuracy required. Consid-
ering this specificity, the main contribution of this article is twofold. On the
one hand, a system is proposed that achieves competitive results using a small
amount of data compared to the state-of-the-art systems that need to be trained
on large datasets, that are costly and impractical to produce in real-world appli-
cations. On the other hand, we propose to report the Levenshtein ratio [13] of
predicted entities and annotated entities, as a good f1−score is not a guarantee
of a correct recovered target entity such as a VAT or Invoice Number.

The remainder of this article is organized as follows. State of the art meth-
ods for invoice extraction are presented in the next section. Our proposal is
explained in details in Section 3. An experimental evaluation is provided in
Section 4, and obtained results are discussed too. This research work ends by a
conclusion section, in which the contribution is summarized and intended future
work is outlined.

2 State of the art

The extraction of information from documents like invoices has long been seen as
a task of sequence labeling: after extraction with a OCR tool of the whole text
from documents, each obtained token receives a label that follows a rule-based
approach for old methods. These rules were defined by humans and based on
trigger words, regular expressions, or even linguistic descriptors (e.g., amounts
are in the neighborhood of “total” or “VAT”). Such rule-based approaches
are used, for instance, in [10] and [6]. Then, as in a lot of fields of research,
rule-based methods have been supplanted by machine learning ones [9], like ran-

2



dom forests [19] or support vector machines [21]. During the most recent years
(2020’s) deep learning methodologies have surpassed other traditional machine
learning techniques, as the experimental evidence of [14] provides.

Among these machine learning based approaches, a collection of tools are
available that share the same hypothesis, which is: all possible templates are
available in the training set. This is the case for instance in [8], in which a
database of field positions is required for each template. This is the case too
for [15], where all (field, pattern, parser) triplets must be manually provided
for each template, while other approaches of this kind can be found in, e.g., [6]
and [4] for a specific invoice framework. Such an hypothesis is however prob-
lematic in our context, as in practice, every new customer comes with its own
particular form of invoice, which most of the time presents a new template,
different from anything already known.

In recent years, deep learning methods have outperformed the more classical
ones, both in terms of precision and recall. The most known deep learning
based approaches are listed hereafter. Note that these methods frequently need
a huge training dataset, which can only be produced by big companies in invoices
context.

CloudScan is a commercial software proposed by Tradeshift [17]. It is based
on a recurrent neural network that has been trained to recognize 8 fields on a
corpus of 300k invoices. A good point is that this platform requires no config-
uration and does not rely on statistical models. However, half of the 8 fields
presented an f1−score lower than 0.87 (e.g., 0.76 for order ID), while to be use-
ful in the invoice information extraction context, a larger score is required. And
while invoices are often written in both vertical and horizontal directions, they
only choose to apply a left-to-right order. This problem of not considering the
spatial information into the key information extraction process is circumvented
by CUTIE [23], which stands for Convolutional Universal Text Information Ex-
tractor. This is a model based on spatial and contextual information provided
to a convolutional neural network coupled with a word embedding layer. Ob-
tained results are quite good, but it presuppose to be able to extract a gridded
version of the text, which is problematic in the invoice case. Furthermore, as is
a shared theme across invoice extraction models such as [14], its learning stage
needs thousands of labeled documents.

Finally, and to the best of our knowledge, the only article that faces the
same constraints than us about the dataset size is [11]. They propose two
methods which are based on neural networks, and focus on the trade-off between
data requirements and performance in the extraction of information. The first
method consist to adapt Named Entity Recognition systems for fields extraction
of invoices, by fine-tuning BERT [7] to this specific task. The second “class-
based” method adapted the features of CloudScan and proposed some extra
features to automatically extracts the features, with no preprocessing step nor
dictionary lookup. However, the f1−scores they obtain are always close to 0.80,
which are far from being useful in practice. Furthermore, the smallest set they
consider for learning is still huge (20k), which is very far from the concrete use
context we aim at. Finally, they only use 1D information as their method is

3



Natural Language Processing oriented, while invoices structure is 2D.

3 Methodology

Our task consists of taking a set of raw PDF documents with every word on
every page being labeled, in order to train a statistical model that can infer the
label of all of the words on every page of a new unobserved document. Every
document can contain one or more tokens, totaling n tokens in a dataset: the
label can be UNDEFINED ℓu, or a given target entity ℓi, where ∀i ∈ [1, n], ℓi is
one of the text listed in Table 1. The layout and structure of every document
is obviously not unique.

’Invoice Date’, ’Invoice Number’, ’Client Name’,
’Company Tax Number’, ’Total Invoice Money’, ’Client Address’,
’Logo’, ’Total Invoice Money w/o Tax’, ’Company Address’,
’Company Phone Number’, ’Payment Conditions’, ’Total Tax’,
’Due Date’, ’Client Account Number’, ’Client Tax Number’,
’Tax Percentage’, ’Company Name’, ’Additional Bussines Information’,
’Company Bank’, ’IBAN/Account Number’, ’Company Email’,
’Client Contract Number’, ’Company Website’, ’Route Number’,
’Client Delivery Address’, ’Order Number’, ’Penalites’,
’Additional Financial Information’, ’Delivery Details’, ’AdditionalTaxInformation’,
’AdditionalLegalInformation’, ’Date Ordered’, ’Client Phone Number’,
’Company Order Number’, ’Client Email’, ’Incoterm’,
’LineItemsTable’, ’Delivery Date’, ’Company Contract Number’

Table 1: List of target features for the information extraction process

Our process can be separated into 5 key steps preceded by a preprocessing,
namely: Training of graph embedding, Feature Extraction from words, Feature
Merger, Feedforward Network, and Word Token Merger, see Figure 1. These
steps are described hereafter.

Initialization We first concatenate pages into a single image file for each doc-
ument. Then, big connected components are deleted, which removes spe-
cific lines, mainly in tables. This helps the OCR tool to extract boxes
within table cells. Concretely, this deletion is operated as follows. The
image is converted in grayscale, and a thresholding is applied to it (by
using THRES BINARY INV+THRES OTSU from OpenCV [2]). We ex-
tract the objects with OpenCV’s findContours, and we take the rectangle
circumscribed to the object. If its length or width is less than 0.1* that
of the image, we hide the rectangle. This preprocessing allows to remove
various elements such as signatures.

Finally, text boxes and their content are recognized thanks to Tesseract
v.5.0 [20], leading to a set of {(wi, xi

1, y
i
1, x

i
2, y

i
2, ℓ

i)|i = 1..n}, where for all
i, wi corresponds to the string of characters inside the bounding box i,
xi
1, x

i
2, y

i
1, and yi2 correspond to the Cartesian coordinates of the corners

of this box, and ℓi corresponds to the unique label associated manually
to the string character in box i. An example of such tuples: (”9,270.00
EUR”, 100, 100, 200, 200, ”INVOICE AMOUNT”).

4



Figure 1: Main pipeline

5



Training of graph embedding Using the OCR output of Tesseract, we con-
struct a weighted undirected graph for every document in our dataset. The
graph nodes are the ocr tokens and the edges are such that two boxes are
horizontally connected if they are contiguous in the same line, and they
are vertically connected if they have any overlap in the horizontal axis
and have no other box vertically between them. The edges are weighted
proportional to the inverse of the Euclidian distance between box centers,
as depicted in Figure 2. An additional heuristic to decrease memory foot-
print is that we do not draw edges between tokens that are separated by
5 horizontal lines.

Figure 2: Weighted undirected graph from a given piece of invoice

The individual word cannot be included as an attribute of each vertex
in the GraphSAGE [12] step to come, so instead a list of 11 Boolean
statistics are produced for each word vertex, cf. Table 2. And words
within each node are replaced by these Boolean attributes. The graph
construction and graph training process actually does not only take in the
11 Boolean features, but they take in also 3 additional numerical features
(to parameterize the nodes in the graph): One multishot vector with the
characters of the token (this what we call “Simple Character Encoding”),
a one hot vector of the token within the all of the tokens in the corpus
(any unseen token is labelled as Undefined), and finally a single TF-IDF
score of the token with respect to all the tokens in the document and the
dataset.

Finally, an untrained GraphSAGE model is used by training it on the
graph structures described above, this model being selected for its ability
to encode vertices with properties (here, the Boolean statistics). A fully

6



is alpha is digit like email
like num like url is lower
is punct is quote is space
is title is upper

Table 2: The 11 Boolean statistics used in token encoding

trained GraphSAGE model is produced at this stage, fitting an embedding
for each node in the graph, the task being the classification of the 39
annotated labels of Table 1, see Figure 3. This step converts each node
of the previous graph into a vector Xg of size 1 × 1024, as illustrated
in Figure 4. This 1024 dimension vector systematically represents the
bounding box in question, and also captures via the embedding processes
samples and aggregations of neighboring nodes.

Figure 3: GraphSAGE training pipeline

Figure 4: t-SNE [22] reduction of a GraphSAGE embedding, in which inherent
structures of the documents are unveiled.

7



Feature Extraction from words Needed for further downstream processing,
we proceed to augment our GraphSAGE nodes by including an embedding
of each line and character using USEM [3]. This stage takes the output of
the OCR model and aggregates every token with a concatenation of every
token that exists on the same horizontal line. An one hot representation
at the character level for each token has been applied, while a multihot
representation of the tokens in the document has been considered as text
vectorizer at the line level.

Both sequences of characters, further referred to as tokens and line tokens
(the individual word, and the line) are passed onto a standard Google’s
Universal Sentence Encoder USEM from TensorFlow [1], to produce two
embedding vectors Xw for words, and Xl for lines, both of size 512.

Label unpacking OCR software is not entity aware and will, in an apparently
random fashion, split up words or merge them together to create OCR
tokens. And due to the potentially poor quality of the documents in
question, the OCR model can potentially omit or even add characters
that create additional noise. However, these tokens are the only piece of
observation we will obtain from unseen data. This is why our annotation
process focuses on capturing entire entities that appear on a document.
Entities can occupy several words, or even several lines, therefore we need
a specific phase that conducts collision detection on the OCR output, to
match it with our annotated observations to assign every OCR token i a
label ℓi.

If a OCR output token is within the area of an annotated token, then the
OCR token is assigned the label ℓi; if there is no annotated token that
surrounds the OCR token, then the OCR token is assigned a label ℓu for
undefined. After running the label unpacking, we are left with out target
vector P with an integer representing each target entity.

Feature Merger With our graph and word embedding vectors created for ev-
ery word in our document, we proceed to merge our features into a single
matrix that can be used for downstream processes: Xg, Xw, and Xl are
concatenated to create an individual 1× 2048 vector. All tokens are then
grouped together to form a matrix X.

Feedforward Network We elected to use a simple feedforward network for
the classification task. We train the network using only a subset of 10
target features of particular interest (see Table 3). The network consists
of three dense layers of 1024 neurons with activation ReLU plus a dense
softmax layer with 10 neurons, while the GCAdam optimizer has been
chosen. Due to extreme unbalance of target entities with undefined in our
dataset we use sparse categorical cross entropy cost function and f1−score
for evaluation.

Word Token Merger Due to the nature of our use case, our individual OCR
tokens are not suitable for direct consumption by downstream processes.

8



’Company Name’, ’Invoice Number’,
’Invoice Date’, ’Company Tax Number’,
’Due Date’, ’Tax Percentage’,
’Total Invoice Money’, ’Total Invoice Money w/o Tax’,
’Payment Conditions’, ’Total Tax’

Table 3: List of 10 target features used in the classification task

Our pipeline must take care of assuring end users that the exact sequence
of characters (including newlines and spaces) are extracted from a doc-
ument and labeled with a specific target entity e, hence our training –
and most importantly evaluation – pipeline will score target entities at
an annotated level, requiring that individual OCR tokens be merged to-
gether following a heuristic that depends on a distance metric. Tokens are
merged horizontally and/or vertically if their bounding boxes are within
ϵ distance from each other and whose labels ℓ match. The word token
merger finally produces merged word tokens with next bounding boxes.

4 Experiments

4.1 Experimental protocol

Our invoice dataset consists of individual images for each page of every invoice
of our 205 total private invoices. Invoices where assigned a human labeller to
draw bounding boxes on every occurrence of a target entity on the page. A
second human labeller was used to review the work of the first one. The target
entities where one of the labels listed in Table 1. The dataset contained one
third of documents in spanish, english and french respectively. It has been split
into 70% for training and 30% for testing.

In order to understand the performance gain in introducing graph embed-
ding, we present two baseline methods that are trained directly on OCR tokens
and labels, and we compare them to the proposed method. These baseline mod-
els consist of a ridge classifier on the one hand, and a neural network on the
other hand. They have been trained on the TF-IDF [18] vector of the tokens
and the bounding boxes. At each time, the f1−score is computed, and it is
compared to the results obtained by CloudScan [16] and by Hamdi et al. [11].

These two tools have been chosen, because CloudScan is a very recent and
well-known professional deep learning based software that achieves state-of-the-
art results, and because [11] is the study the closest of our particular context.
Furthermore, they both provide f1−scores, or precision and recall. We do not
provide further comparison, because these two tools have the highest scores in
the literature. And as it has been evoked before, existing work are not directly
applicable to our specific context. Finally, document datasets are always private
in this area of research, which makes reproducibility and comparison at least
questionable in practice.

9



precision recall f1-score
Name

Total Tax 0.00 0.00 0.00
Invoice Number 1.00 0.05 0.10
Invoice Date 0.00 0.00 0.00
Total Invoice Money 0.00 0.00 0.00
Tax Percentage 1.00 0.05 0.10
Company Name 0.28 0.33 0.30
Total Invoice Money w/o Tax 0.00 0.00 0.00
Payment Conditions 0.90 0.15 0.26
Due Date 0.00 0.00 0.00
Company Tax Number 0.68 0.13 0.22
UNDEFINED 0.79 0.98 0.87

Table 4: Baseline 1: Linear Ridge Classifier

precision recall f1-score
Name

Total Tax 0.23 0.16 0.19
Invoice Number 0.88 0.35 0.50
Invoice Date 0.67 0.49 0.57
Total Invoice Money 0.40 0.31 0.35
Tax Percentage 0.71 0.77 0.74
Company Name 0.48 0.49 0.48
Total Invoice Money w/o Tax 0.30 0.14 0.19
Payment Conditions 0.87 0.23 0.36
Due Date 0.43 0.55 0.48
Company Tax Number 0.63 0.25 0.36
UNDEFINED 0.87 0.91 0.89

Table 5: Baseline 2: Neural Model

Note finally that our implementation uses Tesseract V, StellarGraph’s Graph-
SAGE implementation [5], and Tensorflow 2.4.3. And we have trained our model
in Google cloud platform using a TESLA V100 GPU.

4.2 Obtained results

In what follows, we present the classification statistics and sequence scoring
statistics, and some observations and conclusions from them.

Obtained results with the two baselines are provided in Table 4 for the linear
ridge classifier, and in Table 5 for the neural network. Results from CloudScan
are reproduced in Table 6, while scores obtained by Hamdi et al. can be found
in Table 7. Finally, our own scores are provided in Table 8.

10



Field LSTM
Number 0.760
Date 0.774
Currency 0.905
Order ID 0.523
Total 0.896
Line Total 0.880
Tax Total 0.878
Tax Percent 0.869

Table 6: f1−scores of CloudScan for unseen templates

Fields NER-based class-based
docType 0.87 0.90
docNbr 0.69 0.86
docDate 0.85 0.82
dueDate 0.82 0.84
netAmt 0.51 0.74
taxAmt 0.54 0.77
totAmt 0.51 0.86
currency 0.80 0.89

Table 7: f1−scores of the two methods proposed in Hamdi et al. [11]

precision recall f1-score
Name

Total Tax 0.93 0.86 0.89
Invoice Number 0.97 1.00 0.98
Invoice Date 0.98 1.00 0.99
Total Invoice Money 0.98 0.97 0.97
Tax Percentage 0.76 1.00 0.86
Company Name 0.98 1.00 0.99
Total Invoice Money w/o Tax 0.97 1.00 0.98
Payment Conditions 0.96 1.00 0.98
Due Date 1.00 0.98 0.99
Company Tax Number 0.87 1.00 0.93
UNDEFINED 1.00 0.72 0.84

Table 8: Our Model: Graph Embeddings + Word/Character Embeddings

From the results it is clear that a linear ridge classifier has the worst statisti-
cal results, the two state-of-the-art tools do much better than our two baselines.
We can also see that adding the embedding phase to the neural network, which
is exactly our proposed method, allows to greatly improve the scores. We can
also see that the two state of the art tools produce, in the end, a rather bad

11



classification, with many f1−scores either mediocre, or even very low. Finally,
our method obtains much better f1−scores, proving that our classification can
be used in practice. Let us however remark that it is very hard to compare these
types of models across different datasets, and it is not totally fair to compare
such f1−scores, as the quality of the annotations, data, nature of labels, and
many other minor details can have a major impact in predictive power.

To further illustrate this results, we propose the use of a finer metric that
exactly computes at which edit distance our results are to the ground truth.
Obtained results are summarized in Table 9 for further investigations. The
average of document averages Levenshtein scores by field is equal to 0.77, while
the full average over the whole corpus is of 0.78. These results start to look
good, if we take into consideration that we have customized the Levenshtein
ratio as follows: if a token is misclassified, the entire Levenshtein score is set to
0, given that the information is not correctly extracted and has no tangible use
to end users. This additional penalization allows us to optimize for industry
usability. Concretely, these scores more refined than a simple f1 mean that our
method is useful in practice, in the specific context of this study, even though
further improvements are welcome. Note that due to the very low classification
score of the baselines, the final Levenshtein ratio is not reported as it is close to
0. Similarly, we cannot compute this ratio for the two state of the art tools, as
we do not have access to their database.

Levenshtein Ratio
Name

Total Tax 0.70
Invoice Number 0.95
Invoice Date 0.97
Total Invoice Money 0.82
Tax Percentage 0.68
Company Name 0.81
Total Invoice Money w/o Tax 0.73
Payment Conditions 0.72
Due Date 0.94
Company Tax Number 0.74

Table 9: Levenshtein scores of the proposed method

4.3 Discussion

The main question at the origin of our experiments can be summarized as fol-
lows: can the node embedding we propose add predictive power? Intuitively, we
can think that it can, because it is always useful to look at what there is, in the
document, in the neighborhood of a given token (this is precisely what humans
do). The results obtained confirm this intuition, since without this embedding,

12



we fall back on our baselines, which contrary to our method are unable to make
a classification. And when we add embedding to a simple neural network, we
get better results than the state of the art, even though they use the best deep
learning tools. We can summarize this by saying that the embedding tool is
more important than the classification tool, at least in the particular context of
our study: embedding neighbor token significantly leads to greater predictive
and empirical results.

Another point to emphasize is that the process of unpacking and regrouping
OCR produced tokens into full target entities is not a trivial task. End users
expect high levels of quality from their invoice information extraction model,
and the only way to empirically guarantee the performance of the model is
by scoring it on its ability to produce the entire sequence of characters. Most
research today in the field only reports classification metrics of individual OCR
tokens. Using Levenshtein scores allows us to look at entity level extraction
capability and not just accuracy of classification.

Note finally that our model can scale from small to large scale due to online
learning and parallelization, while there is room for improvement creating lighter
and more powerful versions of this pipeline. We have thoroughly tested our
embedding method before arriving at our proposal, but we have only detailed
here the best embedding, due to lack of space, and because it is not useful
to show techniques that did not have adequate performance. Among these
techniques investigated were object detection approaches, that failed to produce
satisfactory results with our limited amount of data.

5 Conclusion

In this article we have studied information retrieval from multi language invoices
restricted by the amount of data that is available at training with an emphasis of
generating highly accurate results applicable to real world corporate automation
projects. To stress its real-world applicability, we proposed to consider finer
metrics based on edit-distances rather than f1 scores on token classes only. We
have been able to show that the graph node embedding step is a key driver of
increased accuracy in 2d document information extraction.

Proceeding our implementation and experimentation phases we are able to
achieve competitive state of the art results in addition to industry specific ap-
plicability. Our end-to-end approach has been detailed and we have performed
various evaluations confirming the practical interest of our approach.

In our future work, we would first like to measure the impact of the final
classifier on the quality of the results, and see if an improvement can be obtained
either by tuning the architecture or its hyper parameters. Increased efficiency
and work can be conducted in the token merging staging, by running studies
on different graph construction methods. We would also like to understand
how human-corrected predictions can be fed back into our pipeline to increase
accuracy, and what is the average marginal effect of a newly corrected prediction
our evaluation metrics. Finally, we will look at other types of documents, to see

13



if what has been done on invoices can easily be extended to other contexts of
heterogeneous documents.

Acknowledgement

The authors would like to thank Lila Benhammou founder of Humans4Help and
Co-founder of Smart Layers. This study was funded by BPIfrance in the frame
of the French Deeptech company.

References

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving,
Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner,
Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Va-
sudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Watten-
berg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015. Software available
from tensorflow.org.

[2] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools,
2000.

[3] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco,
Rhomni St John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan,
Chris Tar, et al. Universal sentence encoder for english. In Proceedings of
the 2018 Conference on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 169–174, 2018.

[4] Francesca Cesarini, Enrico Francesconi, Marco Gori, and Giovanni Soda.
Analysis and understanding of multi-class invoices. Document Analysis and
Recognition, 6(2):102–114, 2003.

[5] CSIRO’s Data61. Stellargraph machine learning library. https://github.
com/stellargraph/stellargraph, 2018.

[6] Andreas R Dengel and Bertin Klein. smartfix: A requirements-driven sys-
tem for document analysis and understanding. In International Workshop
on Document Analysis Systems, pages 433–444. Springer, 2002.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding.
ArXiv, abs/1810.04805, 2019.

14

https://github.com/stellargraph/stellargraph
https://github.com/stellargraph/stellargraph


[8] Daniel Esser, Daniel Schuster, Klemens Muthmann, Michael Berger, and
Alexander Schill. Automatic indexing of scanned documents: a layout-
based approach. In Christian Viard-Gaudin and Richard Zanibbi, editors,
Document Recognition and Retrieval XIX, volume 8297, pages 118 – 125.
International Society for Optics and Photonics, SPIE, 2012.

[9] Ralph Grishman. Information extraction: Techniques and challenges.
In International summer school on information extraction, pages 10–27.
Springer, 1997.

[10] Ralph Grishman and Beth M Sundheim. Message understanding
conference-6: A brief history. In COLING 1996 Volume 1: The 16th Inter-
national Conference on Computational Linguistics, 1996.

[11] Ahmed Hamdi, Elodie Carel, Aurélie Joseph, Mickael Coustaty, and An-
toine Doucet. Information extraction from invoices. In International Con-
ference on Document Analysis and Recognition, pages 699–714. Springer,
2021.

[12] William L Hamilton, Rex Ying, and Jure Leskovec. Inductive represen-
tation learning on large graphs. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, pages 1025–1035,
2017.

[13] V. I. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions
and Reversals. Soviet Physics Doklady, 10:707, February 1966.

[14] Bodhisattwa Majumder, Navneet Potti, Sandeep Tata, James B. Wendt,
Qi Zhao, and Marc Najork. Representation learning for information extrac-
tion from form-like documents. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics (ACL 2020), pages 6495–
6504, 2020.

[15] Eric Medvet, Alberto Bartoli, and Giorgio Davanzo. A probabilistic ap-
proach to printed document understanding. International Journal on Doc-
ument Analysis and Recognition (IJDAR), 14(4):335–347, 2011.

[16] Rasmus Berg Palm, Ole Winther, and Florian Laws. Cloudscan - a
configuration-free invoice analysis system using recurrent neural networks.
In 2017 14th IAPR International Conference on Document Analysis and
Recognition (ICDAR), volume 01, pages 406–413, 2017.

[17] Rasmus Berg Palm, Ole Winther, and Florian Laws. Cloudscan-a
configuration-free invoice analysis system using recurrent neural networks.
In 2017 14th IAPR International Conference on Document Analysis and
Recognition (ICDAR), volume 1, pages 406–413. IEEE, 2017.

[18] Anand Rajaraman and Jeffrey David Ullman. Data Mining, page 1–17.
Cambridge University Press, 2011.

15



[19] Pappu S Rao and Vasumathi Devara. To improve the web personalization
using the boosted random forest for web information extraction. Recent
Advances in Computer Science and Communications (Formerly: Recent
Patents on Computer Science), 13(6):1264–1268, 2020.

[20] Ray Smith. An overview of the tesseract ocr engine. In Ninth international
conference on document analysis and recognition (ICDAR 2007), volume 2,
pages 629–633. IEEE, 2007.

[21] Aixin Sun, Myo-Myo Naing, Ee-Peng Lim, and Wai Lam. Using sup-
port vector machines for terrorism information extraction. In International
Conference on Intelligence and Security Informatics, pages 1–12. Springer,
2003.

[22] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.
Journal of machine learning research, 9(11), 2008.

[23] Xiaohui Zhao, Endi Niu, Zhuo Wu, and Xiaoguang Wang. Cutie: Learning
to understand documents with convolutional universal text information
extractor. arXiv preprint arXiv:1903.12363, 2019.

16


	Introduction
	State of the art
	Methodology
	Experiments
	Experimental protocol
	Obtained results
	Discussion

	Conclusion

