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A B S T R A C T
The perfect absorption of bending waves by thermally tunable subwavelength absorbers is

analytically and experimentally demonstrated in this work for a reflection problem in beams.
These absorbers are local resonators located at the end of a semi-infinite beam and consist of
thin blades covered with a layer of Shape Memory Polymer (SMP), the stiffness and damping
of which strongly depend on the temperature. The resonators therefore present both energy
leakage from the absorbers to the beam and inherent losses thanks to the presence of the SMP.
In particular, the situation in which the inherent losses balances the energy leakage is known
as the critical coupling conditions and leads to the perfect absorption of the incident wave in
the reflection problem. It is shown that these conditions can be simultaneously fulfilled for
the different blades of the resonating system by tuning the temperature of the SMP and the
geometry of the blades. The analytical results are based on the Impedance Matrix Method. The
experimental validation highlights the possibility of achieving multi-frequency subwavelength
absorption in the case of multi-blades configurations.

1. Introduction
In the last decades, a large number of solutions have been proposed for controlling vibrations in structural

waveguides. The use of viscoelastic materials is a common and efficient solution to achieve damping over a wide
frequency range [1, 2]. In this case, the vibration damping results from heat dissipation obtained with the shear forces
in the viscoelastic material. More efficiency in narrow frequency band can be achieved by using local resonators,
such as Tuned Vibration Absorbers (TVAs) or Tuned Mass Dampers (TMDs) [3]. These solutions are extensively
covered in the literature and consist in trapping the wave energy inside the TVA at a target frequency [4, 5, 6]. A wide
variety of designs have been proposed in various contexts to reduce the vibration of target modes (civil engineering,
machinery, rolling motion of ships, ship hull vibrations, aircraft vibrations, etc.) [7]. Being often compact, TMDs can
also be periodically arranged to decrease the vibrational response of structures by making use of destructive Bragg
interferences at specific frequency ranges called bandgaps or stop bands [8, 9, 10, 11, 12].

In the case of a beam like structure, a local sub-wavelength resonator can be practically made by extending the beam
with a very thin beam segment, called blade, the first mode frequency of which matches a targeted frequency of interest.
The absorption by this kind of system has already been studied in the case of a reflection and transmission problem
[13]. Perfect absorption, or zero reflection, occurs when the inherent losses of the resonator exactly compensates the
energy that leaks out through the interface between the resonator and the surrounding medium. This phenomenon is
called critical coupling [13, 14, 15].

One way to control the inherent losses in the system is to bond a thin layer of damping material to the resonator.
However, fulfilling the critical coupling conditions requires to precisely adjust the inherent losses of the system, which
is difficult in practice when using conventional damping materials. The damping properties of such materials do not
depend only on the type of material used, but also on the way the material is bonded to the structure and on the ambient
temperature. Practical conditions can therefore deviate from ideal analytical and numerical conditions. Moreover, the
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modification of the losses in the system implies to change the viscoelastic material which can also be arduous. The
investigation of other methods to control more effectively the inherent losses of the resonators is therefore of great
interest.

In this work, the possibility of tuning the subwavelength resonator properties by using temperature is investigated.
To this end, we use a shape memory polymer (SMP) whose properties strongly depend on temperature. In particular,
by increasing the temperature and reaching the glass transition temperature of the SMP, the SMP softens and becomes
more dissipative. This particular temperature is localised in the transition state where the material changes from a
glassy state to a rubbery state. We use tBA/PEGDMA which has been characterized in previous studies [16] and for
which it is possible to precisely adjust the damping of the system by thermal control [17].

The objective of the paper is to demonstrate the possibility of controlling the reflection of the bending waves at the
end of a beam by achieving perfect absorption at one or two a priori targeted frequencies. The use of local resonators
(single or double blades) critically coupled by thermal control allows such control. This mechanical system constitutes
a tunable absorber on given geometry specifications.

Three subwavelength absorber configurations are chosen and presented in Sec. 2. A model to compute the reflection
coefficient is developed and used to evaluate the thermal and geometrical tuning in Sec. 3. Then, the experimental
results compared to the analytical simulations are shown in Sec. 4.

2. Configuration of the subwavelength absorbers

(a) (b) (c)

(g)
Thermal chamberAccelerometersSource free free

(d) (e) (f)

Figure 1: (a) Schematic view of the single-blade (A). (b) Resp. dual-blade (B). (c) Resp. dual-blade (C). The geometry
of the blades are reported in Tab. 1. hA = 5 mm, hB = hC = 10 mm and hSMP = 2 mm. (d) Photograph of single-blade
(A) realised by wirecut electrical discharge machining. (e) Resp. dual-blade (B). (f) Resp. dual-blade (C). (g) Schematic
view of the experiment set-up. The configurations (A), (B), (C), denoted k in a general case, are hung up in a thermal
chamber. The reflection coefficient at 𝑥 = 0 is measured using a voice-coil source at xS about 1 cm from the free edge
and 5 accelerometers 25 mm apart halfway between xS and 𝑥 = 0. The lenghts li and lj denote the length of the blades. 𝐙i
and 𝐙j denote the impedance matrices of the blades at 𝑥 = 0+ and 𝐙k denotes the impedance matrix of the whole system
at 𝑥 = 0−.

G. Raybaud et al.: Preprint submitted to Elsevier Page 2 of 10



Thermally controlled subwavelength absorbers: G. Raybaud et al, JSV

The system under study is a structural waveguide subjected to bending waves and consists of an aluminium beam
of regular cross section. Blade resonators are placed at the end of the beam. A layer of SMP of thickness hSMP = 2 mm
is also placed on each blade. These resonators present therefore both inherent losses through the presence of the SMP
layers, and energy leakage since the flexural field can propagate from the resonators to the waveguide through the
interface connecting the 2 systems and vice-versa [13, 14].

Three configurations are considered (see Fig. 1): a single-blade configuration (A) (see Fig. 1(a)) and two dual-blade
configurations with detuned (B) (see Fig. 1(b)) or close (C) resonance frequencies (see Fig. 1(c)). These configurations
are realized and photographed in Figs. 1(d), 1(e) and 1(f), respectively.

3. Analytical model of the reflection coefficient of the beam termination
The reflection coefficient is computed using the Impedance Matrix Method which is a convenient method for

variable property waveguides [18, 19, 20], adapted from an acoustic context [21]. In the case of blades covered with
uniformly heated SMP, the properties of the termination do not depend on the 𝑥 axis outside the junction. The resolution
is then more direct. The Transfer Matrix Method is an alternative method to reach the same result [22].

In the framework of Euler–Bernoulli model for beams in harmonic regime [23], the state vector 𝐗T = [𝑤 𝜃 𝑄𝑀]
is composed of the displacement 𝑤, the slope 𝜃, the shear force 𝑄 and the bending moment 𝑀 . The time convention
is chosen to be 𝑒−𝑗𝜔𝑡. The governing equations can be written in the state-space as

𝜕𝐗
𝜕𝑥

= 𝐇𝐗, (1)

with

𝐇 =

⎡

⎢

⎢

⎢

⎣

0 1 0 0
0 0 0 1∕𝐸∗(T)𝐼

−𝜌𝑆𝜔2 0 0 0
0 0 −1 0

⎤

⎥

⎥

⎥

⎦

=
[

𝐇1 𝐇2
𝐇3 𝐇4

]

. (2)

H is the transition matrix, which is a compact formulation of the Euler–Bernoulli model, where 𝜔 is the angular
frequency, 𝜌 is the mass density, 𝑆 is the beam cross-sectional area and 𝐼 is the moment of inertia. 𝐸∗(T) = 𝐸(1+ 𝑗𝜂)
is the local equivalent complex storage modulus describing the elastic (with the Young’s modulus 𝐸) and viscous
properties (with the loss factor 𝜂) of the sandwich beam compound by the aluminium and SMP layers at temperature
T. The equivalent parameters of the multi-layer termination are computed in Eq. (2) using the Ross Ungar Kerwin
mixing law [24] (see [25]).The impedance matrix Z, which relates the kinematic and the force in 𝐗, can be expressed
by solving the Riccati equation (see Eq. (A.4) in [18]):

𝜕𝐙
𝜕𝑥

= −𝐙𝐇1 − 𝑗𝜔𝐙𝐇2𝐙 +
𝐇3
𝑗𝜔

+𝐇4𝐙. (3)

This equation is linear since it does not depend on the 𝑥 axis for 𝑥 < 0. It can therefore be directly solved from the
free end condition at 𝑥 = li to 𝑥 = 0+ for each blade i (with i = 0 , 1 , 2 or 3 ).

At the junction (see Fig. 1(g)), the continuity of displacement and slope, and the balance of forces and moments
give the following system for one or multiple attached blades:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑤(0−) = 𝑤(0+)
𝜃(0−) = 𝜃(0+)
𝑄𝑘(0−) =

∑

𝑖𝑄𝑖(0+)
𝑀𝑘(0−) =

∑

𝑖𝑀𝑖(0+)

. (4)
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In terms of impedance, these relations can be written in a compact way as a simple impedance addition considering
two blades 𝑖 and 𝑗 (see Fig. 1(g)):

𝐙k(0−) = 𝐙i(0+) + 𝐙j(0+), (5)
where 𝐙i(0+) and 𝐙j(0+) are the impedances of the blades i et j before the junction and 𝐙k(0−) is the impedance of the
full termination after the junction (see Fig. 1(g)). The index k denotes the beam configuration (A), (B) or (C).

In order to calculate the reflection matrix R at 𝑥 = 0−, the final step consists in switching from the state to the
wave formalism, which leads to

𝐑 = [𝑗𝜔𝐙𝐄2 − 𝐄4]−1[𝐄3 − 𝑗𝜔𝐙𝐄1], (6)
where E is the matrix whose columns are the eigenvectors of −𝑗𝐇 (see Eqs. (A.5) to (A.10) in [18]). Although

R is a matrix whose diagonal components describe the reflection of propagative and evanescent waves, the following
sections will focus only on the far-field propagation (𝑥 → −∞). The component R11, which carries the energy and is
frequency dependent, is therefore only considered and denoted R in the following.

(a)

(e)

(b)

(c)

(d)

Figure 2: (a) Position of the zero under parametric variation. The variation of temperature is followed by the color marker
and the dashed white trajectory. The blue (resp. red) markers correspond to the white trajectory with a variation of length
(resp. thickness). The colormap corresponds to log|R| of the nominal configuration at 20°C. The black frame corresponds
to the zoom of (b) and (c). (b) Complex frequency plane of log|R| (colormap) of the nominal configuration at 44°C. (c)
Complex frequency plane of log|R| of the nominal configuration at 51°C. The white dashed line indicates the trajectory of
the zero when the temperature increases. The markers corresponds to the position of the first zero at 44°C, 48°C and 51°C.
(d) |R| as function of Re(f) for the 3 temperature configurations at 44°C, 48°C and 51°C corresponding to the markers of
(c). (e) Caption block for the parametric variation.

The modulus of R is plotted in Fig. 2(a) in the complex frequency plane for a nominal geometry. This nominal
geometry is chosen to be a beam of thickness h = 10 mm extended by the blade 1 . The background color map
corresponds to log|R| plotted in the complex frequency plane in the case where the system is quasi-conservative with
the SMP at room temperature (20°C): at this temperature, the SMP is in a glassy state with a very small loss factor.
One pole (yellow spot), for which |R| is singular, can be noticed as well as a zero (blue spot) at a specific complex
frequency. The real part of the frequency associated to the pole and zero corresponds to the resonance frequency of
G. Raybaud et al.: Preprint submitted to Elsevier Page 4 of 10
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Figure 3: Temperature and frequency dependence of the Young’s modulus 𝐸 and the loss factor 𝜂 of the shape memory
polymer (tBA/PEGDMA) governed by the empirical formula in [16].

the system, whereas the imaginary part corresponds to the amount of losses in the system. In the conservative case,
these losses are directly the energy leakage propagating from the blade to the beam. As the time convention is 𝑒−𝑗𝜔𝑡,
the frequency of the poles has a negative imaginary part. In a conservative case, the frequency of zeros and poles are
complex conjugate due to the temporal invariance property of the scattering matrix. As a consequence, the position
of the poles can be controlled by introducing losses into the system. If the losses exactly compensate the leakage, the
zero is exactly located on the real frequency axis. This phenomenon is called the critical coupling [14, 15].

The losses and the elastic properties are tuned using a heated layer of SMP. The intrinsic viscoelastic properties of
this material are plotted as a function of the temperature and frequency on Fig. 3 [16]. The Young modulus 𝐸 decreases
in a monotonous way with the temperature and rapidly around 70°C at 100 Hz. This fast variation corresponds to the
glass transition. The loss factor 𝜂 increases rapidly up to the glass transition to reach a high value of 2.5, then decreases.

Figures 2(b) and 2(c) show the effect of increasing the losses on the location of the zero in the complex frequency
plane. The resulting |R| along the real frequency is also plotted in Fig. 2(d). Figure 2(b) corresponds to the system
with losses (heated at 44°C). By increasing the losses, which corresponds to increasing the temperature from 44°C to
48°C then 51°C, the zero can be moved and aligned on the real frequency axis and thus reach the critical coupling (see
Fig. 2(c)). Above that temperature, there is too much losses to achieve this goal.

Figure 2(a) depicts the variation of the zero position when the temperature and the geometry of the blade evolve.
The white dashed line under the colored markers, the color of which refers to the temperature (see Fig. 2(e)) describes
the evolution of the first zero when the temperature increases from 20 to 100°C for the nominal geometry. The shape of
the trajectory is in accordance with the intrinsic temperature dependent properties of the SMP: the zero monotonously
shifts to the low frequencies when the temperature rises and the losses increase until the glass transition state of the SMP
and then decrease. It can be observed that two different temperatures result in locating the zero on the real frequency
axis.

Figure 2(a) also shows two other parametric variations on the length li and the thickness hi, see the inset Fig.
2(e). For each increment of the geometric variation, the same temperature variation is applied. The length variation is
marked with a set of blue points of different shade. Each shade is an increment of li. When li increases, the trajectory
moves towards the low frequencies by tightening. In a similar way, when the thickness of the beam hi decreases (set of
red points), the trajectory moves towards the high frequencies and towards the positive imaginary frequencies.

This representation provides a deep understanding of the roles played by li, hi and the temperature in the position of
the zeros of R. It can be noticed that it is possible to locate a zero on the real frequency axis on a large frequency band
by playing with these 3 parameters. By considering the same process for the zeros corresponding to the higher order
modes, it is possible to locate a zero on the real frequency axis at very high frequencies. In addition, it is possible to reach
very low frequencies by playing with other parameters such as the thickness of the uniform beam (i.e., single-blade (A)).

In the following, it is proposed to build a tool providing the operating temperature that leads to a perfect absorption
at a target frequency and for a given resonator geometry. This tool is depicted in Fig. 4, in which a surface gathering all
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the configurations of length li and thickness hi that lead to a perfect absorption at a given temperature T and frequency
𝑓 is represented.

M

N
P

Q

Figure 4: Surface gathering all the configurations of length li and thickness hi leading to a perfect absorption at operating
temperature T. The absorption frequency is represented by the colormap. The points M and N are the two critical coupling
configurations for a nominal geometry occurring at 51°C and 80°C. The white line represents a chosen temperature of 80°C
and the black lines are the isolines of the target frequencies 𝑓1, 𝑓2 and 𝑓3. The points M, P and Q denote the configurations
from the temperature and frequency set point which corresponds to the intersection between the white and black lines.

To obtain the surface in Fig. 4, the previous analysis is repeated by varying the temperature and the geometry of
the blade. Then, all the configurations that give rise to a critical coupling are stored (i.e., the configurations where
the zero is located on the real frequency axis). Finally, these data are organized in the form of a surface with li, hiand T. The color scale indicates the frequency at which |R| = 0. This surface can be read as follows: for the nominal
geometry li = 15 mm and hi = 0.8 mm, the vertical line crosses the surface at two points M and N. This means that
two critically coupled configurations are found, one at 51°C for 3.5 kHz (point M) and another at 80°C for 2.2 kHz
(point N). Referring to Fig. 2(d), the trajectory of the zero intersects twice the real frequency axis at these points. The
folding of this surface corresponds to the case where the top of the trajectory of the zero in Fig. 2(a) is tangent to the
real frequency axis.

Using this surface, it becomes possible to find the geometrical configurations of blade meeting the critical coupling
conditions at the targeted frequencies and fixed temperature. In the case of a SMP temperature fixed at 80°C and targeted
frequencies 𝑓1 = 2.2 kHz, 𝑓2 = 1.2 kHz and 𝑓3 = 2 kHz, the configurations for which the critical coupling conditions
are met correspond to the intersections of the white and black lines in Fig. 4, and denoted by the point N, P and Q. The
geometry and temperature corresponding to these points are given in Tab. 1. The blade 0 has been subjected to the
same analysis with a thinner uniform beam in order to reach lower frequencies.

4. Numerical and experimental application
The systems (A), (B), (C), represented in Figs. 1(a),(b),(c), are designed from the previous study. The single-blade

(A) has a thickness of hA = 5mm and is ended by the blade denoted 0 . The dual-blades are thicker, hB = hC = 10mm,
for manufacturing reasons, and are ended by the blades 1 and 2 for the configuration (B) and the blades 1 and
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Table 1
Geometry, target frequency and operating temperature for each blade.

Blade 0 1 2 3
li (mm) 20 15 18.8 15.5
hi (mm) 0.3867 0.8 0.71 0.79
𝑓 (Hz) 500 2200 1200 2000
T (°C) 85 80 80 80

Table 2
Numerical and experimental TRef for the systems (A), (B) and (C).

System (A) (B) (C)
Tnum
Ref (°C) 85 80 80

Texp
Ref (°C) 95 90 88

3 for the configuration (C). The length li and the thickness hi of the blades, as well as the operating temperature T
and the target frequency 𝑓 of each blades are detailed in the Tab. 1.

The double-blade systems are therefore built from an analysis which considers each single-blade independently,
without accounting for the coupling between blades. Figures 5(a), 5(b) and 5(c) show the variations of |R| in the
complex frequency plane. The points noted ki denote the zeros of R of the system k induced by the blade i. For
comparison, the points noted Si are the zeros of single-blade systems. The variations of R on the real frequency axis
are shown in Figs. 5(d),(e),(f).

When the blades are designed for two frequencies that are far away from each other, the zeros of the dual-blade (B)
almost correspond to the zeros of the two associated single-blades (see Fig. 5(b)). On the contrary, when the targeted
frequencies are close to each other, the zeros of the dual-blade (C) no longer correspond to the zeros of the isolated
single-blades (see Fig. 5(c)) and are thus no longer located on the real frequency axis. Both the frequencies and the
amplitude of |R| are different (see Fig. 5(f)). This could be explained by a coupling effect between the two blades.

It can be noted, however, that it is possible to exactly reach zero at one of the two target frequencies by adjusting
the temperature. Referring to the trajectory of the zero in Fig. 2(a), in order to locate C1 on the real frequency axis,
the temperature has to be lowered. Conversely, to locate C3 on the real frequency axis, the temperature should be
increased. Besides, it is possible to design a dual-blade system able to reach two critical couplings at close frequencies.
This requires to account for the coupling between both blades in the parametric study, which is not addressed in this
article. Although the perfect absorption at wide frequency range cannot be reached using this method, multi-blade
systems are still relevant solutions for widening the damping frequency range of systems.

The three systems (A), (B) and (C) (see Figs. 1(d),(e),(f)) are manufactured in aluminum beams of length L≈ 1 m by
wirecut electrical discharge machining. The layer of SMP is glued to each blade with epoxy glue. The beam is hanged
with elastic wires (Fig. 1(g)) to mimic free boundary conditions. To ensure the most uniform thermal field possible,
the beam is placed in a thermal chamber for the time of the measurements. To verify the effective temperature, a
thermal controler (RKC REX-D100 with a precision of 0.1°C) is used with the sensor located near the SMP layer. The
temperature regulation has been observed to be stable within a 1°C interval. The measurements are performed with a
temperature step varying between 5°C and 0.5°C depending on the change of the mechanical properties of the SMP
(the 0.5°C step was used close to the target temperatures). All measurements are started 2 minutes after temperature
stabilization so that the temperature can be considered as uniform in the sample. This procedure has been successfully
proven in previous works [16, 11, 26]. A voice-coil is used for the excitation to generate a white noise at 𝑥 = xS . The
displacement field is measured at five positions xi (i ∈ [1 ∶ 5]) using accelerometers located between the excitation and
the equipped end. Then, the contributions of the forward and backward propagating and evanescent waves amplitudes
are identified using an inverse technique in order to estimate R [25].

The analytical results are compared with the experimental measurements in Figs. 5(g) to 5(p) for different SMP
temperatures. The critical couplings expected in practice are not reached exactly at the same temperature as in
simulation. TRef is used to refer to the temperature showing comparable numerical and experimental results. The
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(g) (h) (i)

(m) (o) (p)

(j) (k) (l)

(a) (b) (c)

(d) (e) (f)

Figure 5: (a) log|R| in the complex frequency plane of the single-blade (A) at 85°C. The zero and pole are marked by
the black circle and dot. The label A0 names the zero induced by the blade 0 of the system (A). (d) |R| along the real
frequency axis of the single-blade (A). (b) log|R| in the complex frequency plane of the dual-blade (B) at 80°C. The labels
B1 and B2 denote the zeros induced by the blades 1 and 2 of the system (B). The color labels S1 and S2, marked with
color circles, denote the position of the zero induced by the blade 1 and 2 of a two single-blades. (e) |R| along the real
frequency axis of the double-blade (B) in black. The dashed color lines correspond to |R| of the compared single-blades.
(c) and (f) same as (b) and (e) for the dual-blade (C) involving the blades 1 and 3. (g) to (p) present the measured |R|
in red solid lines of the systems (A) (first column: (g), (j) and (m)), (B) (second column: (h), (k) and (o)) and (C) (third
column: (i), (l) and (p)), compared to the numerical |R| in black dashed lines computed accounting for the machining
geometry. In lines (i.e., (j), (k) and (l)) are the resulted |R| for different operating temperature around TRef , see Tab. 2.

difference between Tnum
Ref and Texp

Ref is about 10°C (see Tab. 2). However, a good trend can be observed in Fig. 5, in
which the red curves show the experimental results and the dashed black curves show the numerical results accounting
for the machining geometry errors of the blades (about 0.01 mm). The slight temperature-dependence of the elastic
parameters of the aluminum is also considered [27]. The frequency offset can be explained by the thin layer of glue
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and the added mass of the accelerometers which are not taken into account in the model. It can also be explained by the
slight difference between the experimental parameters of the SMP and those obtained from the empirical model[16].

For system (A), the critical coupling is reached (see Fig. 5(j)). Around this reference temperature, it is clear that
the trend is well captured experimentally (see Figs. 5(g),(m)). For system (B), the same conclusions as for (A) can
be drawn. As expected, two critical couplings for two different frequencies are obtained (see Figs. 5(h),(k),(o)). For
system (C), the same trends as in simulation are obtained (see Figs. 5(i),(l),(p)). The critical coupling can be reached
on the first or the second drop by slightly decreasing or increasing the temperature. This is the case at 2.1 kHz for the
second drop in Fig. 5(i). The drop at 1.1 kHz comes from a twisting mode.

5. Conclusion
The system proposed in this paper is a bending subwavelength resonator enhanced by thermal control. It provides

a way to obtain a zero reflection at a target frequency by adjusting the length and thickness of a blade attached to a
beam of given width and thickness. This blade is covered with a layer of SMP whose stiffness and damping properties
depend on the temperature. It is a versatile system: if some parameters are constrained such as the geometry of the host
beam or the thickness of the SMP layer, it is still possible to adjust the blade geometry to reach a target frequency. On
the contrary, if the blade geometry is constrained, it is always possible to adapt the thickness of the SMP layer and play
with the temperature.

In addition, we showed that it is possible to design a multi-resonant system by simply adding blade endings. The
model presented is valid for more than two blades. It has been shown that these multiresonators are efficient in a
homogeneous temperature environment as long as the blades are designed for this operating temperature. A nice way
to improve the system would consist in designing a multiresonator where the temperature for each blade would be
controlled independently. In this manner, it may be possible to achieve broadband perfect absorption, at least for some
frequency ranges.
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