
Journal of Supercomputing manuscript No.
(will be inserted by the editor)

DKEMA: GPU-Based and Dynamic Key-Dependent Efficient
Message Authentication Algorithm

Hassan N. Noura1, Raphaël Couturier1, Ola Salman2, and Kamel Mazouzi1

1Univ. Bourgogne Franche-Comté (UBFC), FEMTO-ST Institute, France
2American University of Beirut, Electrical and Computer Engineering Department,
Beirut 1107 2020, Lebanon

the date of receipt and acceptance should be inserted later

Abstract Recently, benefiting from the advancement in
the Graphic Processing Unit (GPU) technology, there is
an increased interest in implementing and designing new
efficient cryptographic schemes. Existing cryptographic
algorithms, especially the Message Authentication Algo-
rithms (MAAs) such as Hash Message Authentication
Code (HMAC) and Ciphered Message Authentication
Code (CMAC) are not designed to benefit from the GPU
characteristics, which results in degraded performance of
their GPU implementations. This gives rise to a trade-
off between the design concept and the performance
level. In this paper, a new MAA, called ’DKEMA’, is
proposed to better suit the GPU functionality. This
scheme is based on the dynamic key-dependent scheme
with one round of substitution and diffusion operations.
The experimental results show that the proposed solu-
tion is highly effective on Tesla V100 and A100 GPUs,
the throughput is respectively more than 400GB/s and
500GB/s. Therefore, DKEMA can be considered as a
promising MAA candidate for GPU implementation,
achieving the desired cryptographic properties such as
high randomness, collision tolerance in addition to mes-
sage and key avalanche effect. The experimental results
show that the proposed solution, based on the dynamic
key approach, is immune towards well-know authenti-
cation and cryptanalysis attacks. In addition, DKEMA,
consisting of one round compression function, presents
an enhancement in terms of performance compared to
existing algorithms (e.g. AES and SHA).
The code is available in GitHub: https://github.com/
rcouturier/GPU-DKEMA.git.

Keywords Lightweight GPU message authentication
algorithm; Security and performance analysis; Par-

Address(es) of author(s) should be given

allel keyed hash function; Dynamic key dependent
cryptographic primitives; Cryptanalysis

1 Introduction

With the data and Internet proliferation, there is a need
to protecting all kinds of resources and data from various
types of threats targeting different security services such
as data confidentiality, Data Integrity (DI), and Source
Authentication (SA). These security services are typi-
cally ensured by employing cryptographic algorithms.
Existing attacks can be classified into two main classes:
active or passive. While passive attacks can seriously im-
pair the data confidentiality and user privacy, active at-
tacks can compromise the data authentication, integrity,
and availability. Moreover, an active attacker may in-
sert, modify or delete data contents. Using Message Au-
thentication Algorithms (MAAs) can solve the problems
related to message authentication attacks. However, this
requires a distributed scheme and a robust key exchange
mechanism. Typically, symmetric-key message authen-
tication or digital signature (asymmetric-key) schemes
can be used to ensure data integrity and source authen-
tication. Furthermore, conventional symmetric message
authentication algorithms are either block cipher-based
or hash-based.

1.1 Problem Formulation

Therefore, for a set of big data applications, there is
a need to design an efficient and robust message au-
thentication algorithm (MAA) to strike a good balance
between the security level and the performance. How-
ever, the existing MAAs, such as CMAC, HMAC, were
not designed to be implemented in parallel since they

https://github.com/rcouturier/GPU-DKEMA.git
https://github.com/rcouturier/GPU-DKEMA.git

2 Hassan N. Noura, Raphaël Couturier, Ola Salman and Kamel Mazouzi

are based on the chaining block operation mode, where
each block requires the output (compressed block) of
the previous block. In addition, these solutions require
a high number of rounds and consequently high compu-
tation complexity and latency overhead.

Thus, to reach better efficiency, MAA should be de-
signed to exploit the main benefits of parallelism. To
validate the efficiency of such a scheme, the implemen-
tation could be realized on Graphic Processing Units
(GPUs) as they are main parallel accelerators in the
market. Moreover, a parallel MAA presents an accelera-
tor for high security applications, benefiting from the
GPUs included in heterogeneous-based systems.

1.2 Related Work

Existing MAAs use the Merkle-Damgard concept (see
Fig. 1) that is based on the chaining operation mode
between message blocks. In addition, they use a com-
pression function that iterates a round function for a
high number of iterations to reach the desired crypto-
graphic properties and immunity against cryptanalysis.
The compression function of MAAs can be divided into
two main classes: cipher-based or hash-based.

Cipher-based MAAs use strong block or stream ci-
pher such as the Advanced Encryption Standard (AES) [1].
Examples of well known cipher-based MAAs are: Ga-
lois Message Authentication Code (GMAC) or Ciphered
Message Authentication Code (CMAC) operation mode.
Besides, hash-based MAAs use hash function mecha-
nisms such as the Hash Message Authentication Code
(HMAC) that uses the Secure Hash Algorithm (SHA)-2
and SHA-3. In addition, the round function can either be
based on a Feistel Network (FN) such as Data Encryp-
tion Standard (DES), or on Substitution-Permutation
Network (SPN) such as AES [2]. SPN lends itself to
parallel implementation and requires a lower number of
rounds compared to FN, and hence, SPN exhibits lower
latency and requires less resources than FN.

To reduce the execution time of existing crypto-
graphic algorithms, GPU implementations are being
adopted. The parallel cryptographic algorithms can ben-
efit from the hundreds and even thousands of cores in a
GPU to accelerate and parallelize their required compu-
tations.

Standard cryptographic algorithms, such as AES,
have been implemented on GPUs with parallel operation
modes such as the counter mode [3–5], which resulted

(a)

(b)

Fig. 1: (a) Structure of the Merkle-Damgard algorithm
used traditionally to construct a message authentication
algorithm, where H0 represents a secret key and the
message is divided into nb blocks {b1, b2, . . . , bnb} that
have a fixed size in addition to f , which represents the
compression function. (b) Structure of the proposed
parallel MAA.

in an impressive speed-up compared to the CPU im-
plementation [6]. It is worth noting that the efficient
implementation of an algorithm on a GPU requires the
expertise to optimize the use of the GPU architecture [7].
GPUs can also be employed for implementing pseudo-
random number generators such as in [8, 9].

Recently, an optimized and efficient implementation
of AES on GPU was presented in [5]. It achieved an
excellent performance and the authors made consider-
able optimization compared to the previous works. A
more recent implementation of AES on GPU based on
the PHAST library was presented in [10]. This imple-
mentation is more generic and it resulted in about 10%
enhancement in terms of performance compared to [5].

On the other hand, the security level of existing
symmetric ciphers, such as AES or keyed hash function

DKEMA: GPU-Based and Dynamic Key-Dependent Efficient Message Authentication Algorithm 3

such as HMAC (using SHA-2 or SHA-3), against ana-
lytic attacks depends on applying a round function for
a higher number of rounds r. This leads to a trade-off
between the security level and the required latency and
resources. Existing cryptographic algorithms, that are
based on the static structure, have proven their resis-
tance against analytic cryptanalysis [2, 11, 12]. However,
the static structure of the round function makes these
algorithm suffering from different security issues [13].
Unfortunately, fixed cipher structures lend themselves
to future potential attacks [11,12], that benefit from the
fixed structure (substitution and diffusion primitives)
to recover the secret key [2]. Examples of such attacks
include implementation attacks such as side-channel
attacks and fault attacks [2]. Hence, countermeasures
against implementation attacks are required, at the cost
of more latency and resources overhead. This could re-
duce the performance of the corresponding algorithms
and make them unsuitable for some of the future sys-
tems and applications [14].

Moreover, since the cipher primitives are static, the
required number of rounds r is high to achieve the
desired cryptographic properties. Recently, a new kind
of cryptographic algorithms is presented to reduce the
number of rounds to 1 or 2, where different substitution
and diffusion operations are performed within each input
message in a dynamic pseudo-random manner [15–17].
Also, another advantage of the dynamic cryptographic
approach is that it provides better resistance against
implementation attacks.

1.3 Contributions

In this paper, the proposed message authentication solu-
tion follows the recent dynamic key-dependent approach
of [15, 17, 18]. A high security level is achieved since the
cryptographic primitives are updated for each new input
message and the message avalanche effect is achieved
based on the key avalanche effect.

The proposed message authentication scheme uses
an efficient and simple compression function that uses
dynamic substitution tables in addition to two different
Pseudo Random Number Generators (PRNGs) with a
large number of seeds. To the best of our knowledge,
the proposed solution is the first message authentication
algorithm designed to run on GPU. Indeed, as DKEMA
is designed to benefit of parallelism, it is implemented
on GPU instead of CPU since GPU provides better par-
allel computation capabilities (multi-threads concept)
compared to CPU.

Therefore, the technical contributions of this paper
compared to the existing solutions can be summarized
as follows:

– Efficiency: DKEMA is designed to be executed in
parallel instead of using the chaining mode as it is
the case for most of the existing MAAs. In addition,
DKEMA uses a simple compression function that
uses simple operations. This compression function is
iterated once for each input block. This minimizes
the latency compared to existing MAAs that require
a higher number of iterations.

– Optimized implementation: The GPU implementa-
tion of DKEMA is optimized according to the GPU
characteristics (each block is processed by a thread)
and its implementation is optimized (with memory
management) to reach best performance compared
to existing MAAs that cannot be implemented in
GPU (due to chaining operation mode).

– Robustness against attacks: DKEMA is based on a
dynamic key-dependent approach and cryptographic
primitives. This makes it highly resistant against
cryptanalysis attacks.

– Adaptability: the DKEMA cryptographic structure
can be used to construct an efficient and robust
stream-cipher that can be employed to ensure data
confidentiality. This means that all data security ser-
vices can be ensured in this work since DKEMA can
ensure data integrity, source authentication and the
proposed stream cipher can ensure data confidential-
ity.

1.4 Organization

The rest of this paper is organized as follows: Section 2
describes and analyzes existing GPU based ciphers im-
plementations. In Section 3, the proposed dynamic key
derivation process is presented in addition to the con-
struction techniques of the required cryptographic prim-
itives. Then, in Section 4, DKEMA structure and its
corresponding compression function, along with the func-
tionality of each operation are described in detail. The
robustness of DKEMA and its performance are assessed
in Section 5 and Section 7, respectively. Finally, in Sec-
tion 8, the conclusion and future directions are pre-
sented.

2 Background and Preliminaries

In this section, the AES block cipher that can be em-
ployed with authentication operation mode such as
CMAC and GMAC will be described. Then, we de-
scribe the main GPU architecture characteristics. After

4 Hassan N. Noura, Raphaël Couturier, Ola Salman and Kamel Mazouzi

Fig. 2: Message authentication algorithm: signature and verification. Besides, a cipher-based MAA can be used
instead of Keyed hash function.

this, the different AES implementations on GPU will
be presented. Finally, we review the recent dynamic-key
approach used to construct lightweight cipher schemes
and we present our threat model. Let us indicate that
the well-known MAA structure (Merkle-Damgard) is
illustrated in Fig. 2. It should be noted that all used
notations and abbreviations are included in Table 1 and
2, respectively.

2.1 AES

AES [19] is a block cipher that processes data in blocks
of 128 bits (16 bytes), and it uses keys of size 128, 192
and 256 bits. The design of AES depends on the SPN
principle. It includes a round function that is iterated
for r times depending on the secret key size. The number
of rounds, r, is equal to 10, 12, and 14 for a secret key
of size 128, 192, and 256 bits, respectively. This round
function consists of four operations, except for the last
iteration. These operations can be described as follows:

– RoundKeyAddition: it mixes the plain input block
with the specific round key.

– ByteSubstitution: this operation employs a substitu-
tion table, S-Box, to ensure the confusion property.

– ShiftRows and MixColumn operations are used to en-
sure the diffusion property. Note that the MixColumn
operation is eliminated in the last round.

2.2 GPU Architecture

In this work, we are referring the Nvidia GPU archi-
tecture terminology, as this architecture is mainly used
for most of GPU cards. The GPU architecture presents
a high number of concurrent threads to maximize the
efficiency (throughput) compared to the CPU architec-
ture. There are hundreds and thousands of computer
cores within a GPU. The GPU hardware is built to run
several threads in parallel, even if the bottleneck is the
memory access itself. Users can use a number of threads
that surpass the number of cores to benefit from GPU’
s computing capacity. In fact, while some threads are
waiting for data from the registry (’inactive’ threads),
other threads can execute their instructions (’active’
threads). Specifically, Nvidia GPUs consist of Streaming
Multiprocessors (SMs), as illustrated in Fig. 3-a, that
vary in number for different GPU types. SMs consist
usually of 32 cores components that can only perform
one instruction at a time. Each SM can execute multiple
warps at the same time. A warp is a collection of 32
threads, that can be executed simultaneously on an SM.

Typically, several types of memory exist in a GPU: a
global memory that is the slowest one, a cache memory,
a texture memory, a shared memory, a local memory,
and a small number of fast access registers. Thus, the
memory management in GPUs is indeed critical and
essential. Fig. 3-b presents the memory hierarchy in
Nvidia GPU devices as follows:

– Registers: these are thread-private, which implies
that thread-specific registers are not accessible to

DKEMA: GPU-Based and Dynamic Key-Dependent Efficient Message Authentication Algorithm 5

(a) CPU-GPU functionality

(b) Nvidia memory hierarchical

Fig. 3: CPU and Nvidia GPU architecture (a) and Nvidia GPU memory hierarchical level (b)

6 Hassan N. Noura, Raphaël Couturier, Ola Salman and Kamel Mazouzi

Table 1: Table of notations

Notation Definition
K Secret key
No Nonce
DK Dynamic Key
KS1 and KS2 First and second substitution sub-keys
Krg The seed generation sub-key
S1 and S2 The first and the second produced dynamic substitution tables
Seedi The ith seed
N Number of possible seeds
Qg Word precision that can be 32, 64 or 128.
l Number of bytes of the input message
nb Number of blocks in an input message
M The plain-text message
|M | The length of plain-text message
bi The ith block of plain message
sbi, j The jth sub-block of the ith message block
ci The ith compressed block
sci, j The jth sub-block of the ith compressed block
n The number of possible active threads
Nw The number of words per block (processed by a thread)
Tb Number of bits per block and it is equal to Nw ×Qg
CTR represent a word counter that uses for each block (thread) and it is depend

of the number of block i and number of sub-block j
x%y produces the remainder of an integer division between x and y
x <<< y rotated left of x (bits representation) for y times

Table 2: Table of abbreviations

Abbreviation Definition
DKEMA Dynamic Key-Dependent Efficient Message Authentication
DI Data Integrity
SA Source Authentication
AES Advanced Encryption Standard
DES Data Encryption Standard
SHA Secure Hash Algorithm
MAA Message Authentication Algorithm
MAC Message Authentication Code
GMAC Galois Message Authentication Code
CMAC Ciphered Message Authentication Code
HMAC Hash Message Authentication Code
FN Feistel Network
SPN Substitution-Permutation Network
PRNG Pseudo Random Number Generator
KSA Key Setup Algorithm of RC4
CF Compression Function
RF Round Function
MD Merkle Damgrad
GPU Graphic Processing Unit
SMEM Shared Memory
CG Cooperative Groups

other threads. The compiler makes judgments on
register use.

– L1/Shared memory (SMEM): each SM includes an
on-chip memory that may be utilized as an L1 cache
or a shared memory. The L1 cache is privately acces-
sible by threads. While all threads in a Cuda block
can use the shared memory simultaneously.

– L2 cache: it is shared among all SMs and it is acces-
sible to every thread throughout each Cuda block.

– Global memory: this refers to the size of the GPU’s
frame buffer and the DRAM included within the
GPU.

DKEMA: GPU-Based and Dynamic Key-Dependent Efficient Message Authentication Algorithm 7

2.3 Optimized AES GPU Implementation

Based on GPU, the improvement of the AES has been
the subject of several research works [20], especially
on the implementation techniques used for the AES
kernel function. In the following, the most recent work
to improve AES on GPU platforms are described, where
the enhancement can be achieved at two main levels:

1. Kernel optimization: these techniques try to min-
imize the kernel time released inside the GPU to
reach maximum throughput. These optimizations
can be done at two levels:
– GPUmemory optimization: to enhance the kernel

performance of AES, finding the best memory
configuration for input and intermediate data is
very vital. With AES, three different data with
different sizes should be stored inside the GPU
memory, including:
– Input data: existing works recommend to

store it in the global memory. We recom-
mend, if AES is applied with the counter
mode (as a stream cipher), to not transfer
the input data to the GPU, towards reduc-
ing the data time transfer. "Exclusive or"
between message and produced keystream
can be applied on the CPU.

– Cryptographic primitives: substitution/per-
mutation tables, and round Keys should be
stored on the shared memory [21,22], which
is the fastest one compared to other memo-
ries such as the global one.

– Parallel granularity and Cuda thread configura-
tion: detecting the optimal number of blocks per
grid and the number of threads per grid block
forms the thread granularity strategy. Thus, al-
lowing a single thread to process more than one
input block will result in reducing the required
number of threads. This can improve the through-
put, but will increase the load of functions per-
formed by each thread, which will reduce the
performance of the AES kernel. Therefore, the
selection of the number of blocks and the number
of threads per block depends on the desired per-
formance of the AES kernel, which depends also
on the characteristics of the employed GPU. Be-
sides, [21, 22] recommends to encrypt two blocks
per thread to achieve best performance for AES
(Geforce 1080 GPU).

2. Data transfer optimization between CPU-GPU: the
focus of these techniques is to reduce (minimize) the
data transfer time between CPU and GPU and vice
versa to maximize the throughput and consequently
the speedup. GPU-CPU data transfer is essential

for any GPU implementation. This is the case when
the data should move from CPU memories to GPU
memories or vice versa. Thus, the time required
for this transfer via the PCI express bus must be
taken into consideration and is known as the "data
transfer time". It affects the real throughput of the
GPU implementation. In general, the data transfer
time is longer than the execution time of the kernel
itself. Recent work recommends using the strategy of
streaming technique and unified memory to overcome
this overhead [23] .

2.4 Dynamic Key-Dependent Cryptographic
Algorithms

Traditional symmetric cryptographic algorithms, such as
AES, have a static structure: the substitution or permu-
tation table consists of constant values, and the multi-
plication of columns is carried out always with the same
diffusion matrix. Throughout the encryption/decryption
processes, the confusion and diffusion primitives are kept
fixed. The secret key is used only to produce a set of
round keys.

The dynamic cryptographic approach consists of the
use of a secret key with a nonce to produce a dynamic
key used to produce dynamic cryptographic primitives,
which can be changed for each new message or set of
messages (depending of the configuration). Therefore,
dynamic-key based cryptographic algorithms use vari-
able substitution and/or diffusion primitives, which in-
creases their level of robustness against security attacks.

Recently, there is a tendency to rely more on the
dynamic-based approach to construct efficient and light-
weight security schemes [15,16,24,25]. In addition, the
use of the dynamic operation mode was presented in [26],
where blocks are selected in a pseudo-random manner
for each input message. All dynamic cryptographic algo-
rithms were designed to be realized on limited devices
and not on a powerful device such as GPU. Differently, in
this paper, dynamic cryptographic primitives are used to
ensure the confusion and diffusion properties in DKEMA
scheme designed according the GPU characteristics.

2.5 Threat Model

In this work, we consider two types of data integrity
attacks or errors, as described in the following.

– A malicious attacker could modify the data without
being able to generate the correct MAC value of the
modified message. In this case, any MAA can detect
the malicious data manipulation.

8 Hassan N. Noura, Raphaël Couturier, Ola Salman and Kamel Mazouzi

– A more dangerous attack is when a malicious at-
tacker tries to deduce, by cryptanalysis, the secret
key to modify the data and regenerate a new valid
MAC value.

After reviewing the main concepts needed to under-
stand the rest of this paper, we describe in the next
section the dynamic key and primitives construction.

3 Dynamic Key Derivation Function and
Cryptographic Primitives Construction

The proposed dynamic key generation and cryptographic
primitives construction are illustrated in Fig. 4. The re-
quired cryptographic primitives (seeds and substitution
boxes) are dynamic, being function of the dynamic key.
The secret session key K is mixed with a nonce (unique
for every input message) No to create a dynamic secret
block O = K ⊕ No, which will be hashed by using a
secure cryptographic hash function to produce the dy-
namic key (DK).

In this paper, SHA-512 is used as a hash func-
tion, given that it ensures high collision resistance and
can be employed for small messages (blocks of 512
bits length). This results into a different DK for each
new input message. The dynamicity of DKEMA makes
it more resistant against strong message authentica-
tion attacks. Then, the dynamic key DK, that has a
length equals to 512 bits, is divided into three sub-keys
{KS1, KS2 Krg}.

The size of each substitution sub-key is equal to 16
bytes (128 bits), while the size of the seeds generation
sub-keyKrg is equal to 256 bits (32 bytes).KS1 andKS2

are used to produce two different substitution tables
(S1 and S2), while Krg is used as a seed for a PRNG
to produce N different seeds. In the following, the used
sub-keys are described in detail.

– Substitution sub-keys KS1 and KS2: they rep-
resent the first and the second 16 most significant
bytes, that are used to produce the substitution ta-
bles S1 and S2, respectively. Let us indicate that
the substitution process is done at the byte level
in contrast to other operations that are realized at
the word level (64 bits). Therefore, the length of
each substitution table is 256 bytes. The employed
technique to produce dynamic substitution tables
is described in [13]. This method employs the Key
Setup Algorithm (KSA) of RC4. First, KSA-RC4 is
iterated with KS1 to produce the first substitution
table S1. Then, it is iterated with KS2 to produce
the second substitution table S2.

– Seeds sub-key Krg: it represents the first 32 least
significant bytes of DK and it is used to produce N

seeds. In this step, RC4 is iterated for N×Qg
8 times

to generate N different seeds, where N represents
the possible number of threads, and Qg represents
the precision of the employed generator, which can
be equal to 32, 64 or 128. The output key-stream
is reshaped to form a matrix of size N × Qg

8 , where
each element is a byte. Each row of this matrix is
converted to a binary sequence that has a length
equals to Qg bits. This binary sequence forms a word
of Qg bits and represents one of the N seeds. Any
repeated row (seed) is eliminated from this list and
RC4 is re-iterated to produce a new seed in this
case. Note that RC4 is iterated to produce dynamic
cryptographic primitives to achieve a high level of
security, where N is selected according to the desired
security level.

These steps guarantee a high level of sensitivity,
where any tiny change in the dynamic key would re-
sult into a completely different set of cryptographic
primitives, as shown in Section 5.2. The parameters’
derivation is illustrated in Fig. 4. After detailing the
dynamic key generation and the corresponding crypto-
graphic primitives construction, in the next section, we
present DKEMA scheme.

4 Proposed Message Authentication Algorithm

This section describes DKEMA, being a keyed hash
function that uses a simple Compression Function (CF),
that requires a single iteration of the proposed Round
Function (RF) in contrast to existing symmetric MAAs,
such as HMAC and CMAC, that use multi-rounds and
mutli-operations cryptographic algorithms.

Besides, Fig. 5 presents the high level scheme of
DKEMA solution. For each new input message, a dy-
namic key and a set of cryptographic primitives are gen-
erated at the CPU level. After this, the CPU transfers
the message M and the required cryptographic primi-
tives CM to the GPU. Then, the GPU implementation
of MAA will be iterated on M using the corresponding
CM (seeds and substitution tables). Let us indicate
that the GPU implementation of DKEMA is parallel at
the grid level (details are shown later in Fig. 9). This
means that a part of the message (a set of blocks) will
be selected. Furthermore, for each thread on each grid,
an input block will be compressed by using the proposed
single round function. Then, the compressed blocks of
each grid will be mixed ("exclusive or") together and the
final result will be compressed another time. In parallel,

DKEMA: GPU-Based and Dynamic Key-Dependent Efficient Message Authentication Algorithm 9

Fig. 4: The proposed Key derivation function and its corresponding construction of cipher primitives

Fig. 5: High level scheme of DKEMA communication between CPU and GPU.

all grid compressed blocks will be mixed another time
and then compressed to produce the MAC of M . After
this, the MAC will be transferred to CPU.

4.1 Basic Concepts

The main properties of the proposed solution are:

1. High-security level
2. Reduced computational complexity
3. Simple and parallel hardware and software imple-

mentations

To gain these properties, DKEMA scheme is based on 3
main concepts:

10 Hassan N. Noura, Raphaël Couturier, Ola Salman and Kamel Mazouzi

– Parallel Computing: this algorithm is designed to
be parallelized. All the threads are independent of
each other and they could be all executed in parallel
(see Fig. 6), even if it is not possible to schedule all
of them at the same time. The SMs contain each 32
synchronized threads and a shared memory. Hence,
the same operation (compression function kernel) can
be applied on these synchronized threads but with
different inputs. Thus, the 32 threads are iterated to
perform the compression function.

– Flexible Structure: the structure of DKEMA al-
lows for any size of input blocks (256, 512 and 1024).
Moreover, any PRNG that exhibits good perfor-
mance and satisfies the randomness properties could
be used. For example, in this paper, we use "split-
mix64", which was selected due to its simplicity and
efficiency for a word precision equals to 64 bits.

– Efficient & Lightweight Combination of Cryp-
tographic Primitives: the selected PRNG (accord-
ing to word precision) is combined efficiently with
substitution and binary diffusion operations to pro-
duce the compressed blocks. The proposed technique
benefits from the shared GPU memory (substitu-
tion tables and compressed blocks). On the other
hand, DKEMA can be adapted to be a stream cipher
(where each thread produce a keystream block). The
produced key-stream has a stable randomness and
uniformity degree in addition to high periodicity.

4.2 Proposed Parallel Authentication Algorithm

The originality of this work is that DKEMA is designed
to suit better the GPU characteristics, compared to
existing MAAs. Furthermore, the proposed approach
satisfies the message and key avalanche properties since
for each new input message, a new dynamic key and
new cryptographic primitives are generated. Moreover,
the input message can be applied to any data type such
as image, video, text, etc.

DKEMA requires a single round of the proposed com-
pression function (CF), authenticating Nw sub-blocks
simultaneously in one iteration. DKEMA presents a par-
allel structure different to the Merkle Damgrad (MD)
structure, that employs the chaining operation mode.
Instead, DKEMA applies the compression function in
parallel, as shown in Fig. 6 and Algorithm 1.

Hence, after generating the cryptographic primi-
tives, the input message M is padded, if necessary, to
have a length divisible by the size of the data block,
Tb = Nw ×Qg, which could be set to 128, 256, 512, or

1024 bits. Let us indicate that Tb should be multiple
of Qg (Nw words and each ones has Qg bits). Besides,
Qg can be 32, 64 or 128. Then, M is divided into nb

blocks (b1, b2, . . . , bnb), where nb = |M |
Tb . The choice of

Tb is related to the required security level. Afterwards,
each data block bi, 1 ≤ i ≤ nb, goes through the com-
pression function, f (see Fig. 7 and Algorithm 2). After
processing all blocks, a final mixing (exclusive or) oper-
ation between all compressed blocks (c1, c2, . . . , cnb)
is done. Then, the mixed block is compressed using CF ,
where its corresponding output represents the MAC
value. Thus, the MAC can be calculated according to
the following equation:

ci = CF (bi) i = 1, 2, 3, . . . , nb

MAC = CF (⊕nb
i=1ci) (1)

In the following, DKEMA Compression Function (CF),
and Round Function (RF) are described.

4.2.1 Compression Function

The compression function consists of dividing the input
message blocks into Nw words, (sbi, 1, . . . , sbi, Nw), of
Qg bits length each. In fact, the compression function
is also designed to be realized in parallel, where the
sub-blocks can be processed in parallel, as illustrated in
Fig. 7, by using the proposed round function that will
be iterated once.
After processing all sub-blocks, a binary diffusion mixing
operation is applied on the processed sub-blocks, which
results into the compressed block (ci = ci, 1, . . . , ci, Nw).
The 4× 4, 8× 8, 16×16, and 32×32 binary diffusion ma-
trices, selected in [27], can be used for Nw= 4, 8, 16,
and 32, respectively.

4.2.2 Round Function

The proposed round function is applied for each sub-
block (word level) and it uses two substitution tables S1

and S2, and a seed which is dynamically chosen based on
the block and sub-block number from a set of generated
seeds (N), as shown in Fig. 8.

At each iteration of this round function (see Fig. 8),
an input jth sub-block (sbi,j) of the ith block is processed
according to the following equation (Eq. 2):

x = sbi, j ⊕ Seed(i+j%N)+1 ⊕ CTRi, j

temp = ROTL(x, CTRi, j%Qg)

sci, j = Splitmix64(Substitution(temp, S1, S2)) (2)

In details, the jth sub-block (word of Qg bits) of the
ith block is processed by applying these five steps:

DKEMA: GPU-Based and Dynamic Key-Dependent Efficient Message Authentication Algorithm 11

Fig. 6: Scheme of DKEMA (S1 and S2 can be the same substitution table S).

Algorithm 1 Proposed MAA (DKEMA)
Input:
Message M ;
Substitution tables (S1 and S2);
N seeds: Seeds = {Seed1, Seed2, . . . , SeedN}
Output: MAC

1: procedure DKEMA(M, S1, S2, Seeds, Nw)
2: Tb← Nw ×Qg . Number of bits per block
3: M ← Padding(M, Tb) . Padding the last block if it is necessary
4: nb← |M|

Tb
. Calculate the number of blocks nb per message

5: . Divide message M into nb blocks, each blocks consists of Nw words and each one has Qg bits.
6: {b1 , b2, . . . , bnb} ← DivideMessageToBlocks(M)
7: MAC ← Zeros(1, Nw) . Initialize a MAC block of Nw zeros words.
8: . In GPU implementation, each block is compressed independently at each thread
9: for i = 1→ nb do
10: Y ← ProposedCompressionFunction(bi, S1, S2, Seeds, Nw) . See Fig. 7 and Algorithm 2
11: MAC ←MAC ⊕ Y

12: Return: MAC

Algorithm 2 CF of DKEMA
Input:
ith input block bi;
Substitution tables (S1 and S2);
N seeds
Output: ith compressed block ci

1: procedure ProposedCompressionFunction(bi, S1, S2, Seeds, Nw)
2: . Divide bi block into Nw sub-blocks and each one consists of Qg bits precision.
3: sbi, 1, sbi, 2, . . . , sbi, Nw ← DivideBlockToWords(bi)
4: ci ← Zeros(1, Nw)
5: for j = 1→ Nw do
6: ci, j ← ProposedRoundFunction(sbi, j , S1, S2, Seeds) . Illustrated in Fig. 8 and presented in Eq. 2
7: temp← temp⊕ ci, j

8: temp← ProposedRoundFunction(temp, S1, S2, Seeds)
9: ci ← BinaryDiffusion(temp, ci)
10: Return: The ith compressed block ci, which consists of Nw words.

12 Hassan N. Noura, Raphaël Couturier, Ola Salman and Kamel Mazouzi

Fig. 7: Scheme of the proposed lightweight compression function for the ith block (thread) with Nw =4. S1 and S2

can be the same substitution table S (depending on the configuration).

Fig. 8: Scheme of the proposed lightweight round function for the jth sub-block of the ith block (thread).

1. Calculate a counter CTR by concatenating the block
number i and the sub-block number j. The counter
will be converted to a word of Qg bits.

2. Mix sbi,j with the selected seed (CTR modulo N)
and CTR using the logical "exclusive OR".

3. Then, a bit-wise left-rotating is applied on the output
for CTR%Qg positions.

4. In this step, the substitution process is realized but
at the byte level. This means that the output word
is converted to Qg

8 bytes. After this, these bytes are
substituted by using two substitution tables (S1 and
S2). The first substitution table is used to substitute
the bytes with even indexes, while the second substi-
tution table S2 is used to substitute the bytes with
odd indexes. For example S1 is used to substitute
the bytes with index i with i = 2, 4, 6, . . . and S2

is used to substitute the bytes with index j with

j = 1, 3, 5, Then, the substituted bytes are
re-converted to word of Qg bits length.

5. Iterate the selected PRNG once. The output of split-
mix64 is a word of 64 bits. Here, splitmix64 is used
as a proof of concept. Otherwise, any secure and
efficient PRNG can be used instead of splitmix64
if the required size of word is 128 or 256 bits. Let
us indicate that this step is introduced to achieve
better message and key avalanche effects.

Then, the compressed sub-blocks are "exclusive or"ed
together to produce the word r1 = sc1⊕ sc2⊕ sc3⊕ sc4.
Then, r1 is compressed by using the proposed round
function to produce t. Then, a binary diffusion process
is applied between t and sc1, sc2, sc3, sc4, as shown
in the following for the case of Nw = 4, to obtain the

DKEMA: GPU-Based and Dynamic Key-Dependent Efficient Message Authentication Algorithm 13

compressed sub-blocks.
c1
c2
c3
c4

 =

sc1 ⊕ t

sc2 ⊕ t

sc3 ⊕ t

sc4 ⊕ t

where ⊕ represents the XOR operation.

In the following, the GPU implementation of DKEMA
is described in detail.

4.3 GPU implementation of DKEMA

DKEMA relies on a single pass reduction using multi-
block Cooperative Groups (CG). Nvidia introduced this
new feature in Cuda 9.0. CG allow scalable cooperation
among groups of threads. In the following, we detail the
way CG are used to build an efficient implementation of
DKEMA on GPU. It should be noted that we present
only the version with 256 bits input block.
Besides, Fig. 9 presents the GPU implementation of
DKEMA, which mixes all compressed blocks at the grid
level first, then it mixes the obtained MAC blocks of
the first step. Afterwards, the obtained result is com-
pressed to produce the final MAC. The different steps
of the GPU implementation of DKEMA, presented in
Algorithm 4, are listed and described as follows:

– For each block, two parts of the shared memory are
used. The size of each part is equal to the number
of threads per block.

– In lines 11 and 12, shared arrays sdata and sdata2
are initialized.

– In lines 13 to 15, Sbox8 is copied into the shared
memory array ssbox. It is essential to use the shared
memory for this variable.

– The first loop starts in line 17. This loop iterates
all elements of the input data stored in the global
variable g_idata. Here the CG is used to let each
thread of each block working on a different part of
this array. For each new iteration of this loop, the
increment is the size of the grid, i.e. the total number
of used threads (number of blocks multiplied by the
number of threads per block).

– Line 18, the input data is read and xored with DK,
which represents the dynamic key. As the dynamic
key is of 512 bytes length, it is first cast to 64 bits.
This means only 64 numbers of 64 bits are available.
Then, the dynamic key (casted to 64 bits) is xored
with the loop iteration i.

– Line 19, the result of the last step is left rotated
(using 64 bits) ssbox[i&255]&63 times.

– Line 20, the kernel apply_sub_and_prng is called.
This kernel is presented in Algorithm 5 and is ex-
plained in the following. Then, a substitution is ap-
plied on the last result and the PRNG splitmix64 is
called in order to produce a new 64 bits number.

– Line 21, the result of the substitution process is
stored in the second shared memory array sdata2.

– Given that MAA works with an input block of 256
bits length, only 1 thread over 4 executes the block,
starting line 23. Due to the fact that threads on the
same warp are necessarily synchronized, all groups
of 4 consecutive threads are synchronized (so it is
useless to use an explicit synchronization). Line 23
consists of xoring the 4 previous results computed
by the group of 4 threads. Then, the kernel ap-
ply_sub_and_prng is called to do the same as in
Line 20.

– Lines 26 to 29, each obtained substituted word (Line
21) is xored with the computed word value obtained
in Line 23. This step is done to reduce the required
number of xor (optimization). The result of this step
is stored in the first shared memory. Consequently,
after this step, all the threads have computed the
compression function (illustrated in Fig. 7).

– After the first loop, a synchronization of all the
threads in the same block is required (line 32). Then,
the kernel reduceBlock is called. The description of
the reduceBlock kernel, presented in Algorithm 6, is
detailed in the following.

– After this kernel, only the first thread of each block
executes the lines 35 to 38. These lines are used to
put the 4 numbers of 64 bits corresponding to the
Message Authentication Code (MAC) of the block re-
lated text in the global memory, at the corresponding
location based on the block id.

– Line 40, the whole grid is synchronized. Then, only
the first thread of the whole grid executes the second
loop. This loop aims at xoring all the 4 numbers
of 64 bits of all the blocks together. Consequently,
the message authentication of the whole text is com-
puted.

– Lines 48 to 53, presenting the same mechanism de-
scribed in Lines 23 to 29, this step consists of the final
round applying the apply_sub_and_prng kernel in
order to obtain the final MAC.

Algorithm 6 aims to mix ("exclusive or") the com-
pressed blocks. The principle of this kernel is to xor all
4 numbers of 64 bits. The first loop (line 8) is executed
on all 32 threads in parallel. 32 corresponds to the size
of a warp. For each iteration of the loop, the number
of the xor operations is divided by 2. Due to the fact
that some threads do no execute the condition line 9, a
synchronization is required (line 14). In lines 10 to 12,

14 Hassan N. Noura, Raphaël Couturier, Ola Salman and Kamel Mazouzi

Fig. 9: Scheme of DKEMA using CF

we compute the xor between the element tid and tid+i.
In line 16, all the threads of the block are synchronized.
Then, only the first four threads of this block is used to
make the xor between all the 32 elements.

Algorithm 5 is used to apply the Sbox on a 64 bits
integer. Line 2 converts the 64 bits pointer into a 8 bits
pointer. Then, the 8 bytes are substituted by using the
substitution table on each byte. Finally, the Splitmix64
PRNG is applied on the obtained result.
After detailing the implementation of DKEMA on GPU
(Nvidia Tesla V100 and Tesla A100), it should be noted
that DKEMA can be adapted to any other Nvidia GPU.
Thus, there is no need to any modification or special
requirements with less performed GPUs.

Algorithm 3 splitmix64 code

1 __device__ i n l i n e
2 ulong sp l i tm ix64 (ulong x)
3 {
4 x+= 0x9e3779b97f4a7c15 ;
5 x^= (x >> 30) ∗ 0xbf58476d1ce4e5b9 ;
6 x^ = (x >> 27) ∗ 0x94d049bb133111eb ;
7 x ^= (x >> 31) ;
8 re turn x ;
9 }

In the following, the SplitMix-64 pseudo-random
generator, used in DKEMA, is described.

4.4 SplitMix-64

The "SplitMix-64" algorithm [28], presented in Algo-
rithm 3, is a fast splittable PRNG. It has a 64 bit state
as input and output. By applying two standard statisti-
cal randomness test suites (DieHarder and TestU01), it
has been shown that "SplitMix-64" is efficient for time-
critical applications. The Splitmix64 PRNG presents
numerous advantages including a low execution time as
well as a simple implementation. However, it is not advo-
cated for cryptographic or security applications, because
the generated sequences of pseudo-random values are
predictable since the mixing functions are easily invert-
ible, and two successive outputs suffice to reconstruct
the internal state. In the proposed solution, SplitMix-64
is used with dynamic seeds in addition to a non-linear
operation (confusion). In this case, SplitMix-64 uses a
carefully handcrafted shift/rotate-based linear transfor-
mation. This ensures a significant reduction in latency
and the corresponding resources with a high level of
randomness. Therefore, DKEMA scheme uses a high
number of threads, and for each thread, a Splitmix64
PRNG is iterated with a different seed.

DKEMA: GPU-Based and Dynamic Key-Dependent Efficient Message Authentication Algorithm 15

(a) (b) (c)

Fig. 10: Splitmix64 Recurrence (a) and PDF (b) for a random seed. In addition, the PDF of seed sensitivity (c) of
Splitmix64 PRNG for a modified LSB bit and for 1000 times.

Three metrics were evaluated for the Splitmix64, which
are the recurrence, uniformity and the seed sensitivity
(described in Section 5.1). The seed sensitivity tests
were carried out on a set of 1, 000 random seeds (see
Fig. 10-c), where for each time, the Least significant
bit of each seed is flipped. Let us indicate that the re-
currence and uniformity results (see Fig. 10 a-b) are
obtained by iterating Splitmix64 with a random seed.
Similar results can be obtained for any seed.

After describing DKEMA and its GPU-based im-
plementation details, in the next section, we include
the experimental results that show the efficiency and
robustness of the proposed solution.

5 Security Analysis

To analyze the security of DKEMA, several security
tests were performed including randomness, uniformity
and sensitivity tests described in [13, 17]. Note that
DKEMA is flexible in terms of the Tb size. For the
security analysis, we show the results of the randomness
and uniformity tests with Tb equals to 256. Also, a
comparison is conducted between the proposed solution
and existing MAAs like CMAC and HMAC.

5.1 Randomness and Uniformity Tests

The randomness and uniformity of the obtained MAC
values are evaluated in function of the message and the
used cryptographic primitives. In this test, the MAC
values are evaluated by simulating DKEMA with 1,000

different input messages and dynamic keys.

The MAC values are computed, each of size 32 bytes,
for the messages using DKEMA. Then, each MAC value
is represented in hexadecimal format, which yields 64
hex digits. As visual results, two MAC values are shown
in Fig. 11, in addition to their recurrence results. The
distribution of the obtained MAC values are illustrated
in Fig. 12, showing that the hex values of (0 to 15) are
uniformly spread.
On the other hand, we conducted a test to compute
the number of unique bytes within each of the obtained
MAC values. Table 3 includes the results corresponding
to the percentages of unique byte elements within each
MAC value for Tb = 256. For Tb = 256 (32 bytes), the
results show that about ≈ 39.6% of the MAC values
have all of the 32 bytes unique, about ≈ 28.5% of the
MAC values have 31 unique bytes out of the 32 bytes,
and about ≈ 20% of the MAC values have 30 unique
bytes. The above results confirm that the generated
MAC values have uniform distributions with a high level
of randomness. Moreover, the entropy test is applied
on each of the obtained MAC values at the byte level
and the distribution of the obtained entropy values is
shown in Fig. 12-b. The entropy values have a normal
distribution with a mean equals to 4.88, that is close
to the ideal value (log2(Tb/8))= 5 for Tb=256, and a
low standard deviation equals to 0.0831. The entropy
results confirm that the MAC values follow the uniform
distribution that was shown in Fig. 12-a.

16 Hassan N. Noura, Raphaël Couturier, Ola Salman and Kamel Mazouzi

(a) (b)

(c) (d)

Fig. 11: Representation of the MAC value of two selected random messages (differ in one bit) in hexadecimal format
(values between 0 and 15) (a) and (b), and their corresponding recurrence (c) and (d), respectively.

Table 3: Percent of the different number of ASCII characters for nMAC=10000 with Tb = 256

Different number of ASCII characters 32 31 30 29 28 27 26 23

Percentage 39.6 28.5 20 8.6 2.9 0.3 0.09 0.01

5.2 Sensitivity Tests

Message and key sensitivity (avalanche effect) tests are
performed to validate that different MAC values are

DKEMA: GPU-Based and Dynamic Key-Dependent Efficient Message Authentication Algorithm 17

(a) (b)

Fig. 12: Distribution of the MAC value in hexadecimal format for 1000 random messages.

(a) (b)

Fig. 13: Variation of the Message Sensitivity (MS) versus 1,000 random dynamic secret keys (changed random bit
of the secret key) for DKEMA, (b) and its corresponding distribution, respectively.

obtained for a slight modification in the message or the
secret key.

5.2.1 Message Sensitivity (Message Avalanche Effect)

In this test, we consider two messages, which are identi-
cal except for a single bit, to be authenticated. Given
that the proposed solution is based on the concept of

18 Hassan N. Noura, Raphaël Couturier, Ola Salman and Kamel Mazouzi

different cryptographic primitives for each new message,
the sensitivity of the MAC value is guaranteed by the
key avalanche effect and the substitution-diffusion cryp-
tographic structure. To confirm this, we conducted a
sensitivity test of M , for 1,000 random keys, by comput-
ing the Hamming distance between the obtained MAC
values when the same key is used for two messages dif-
fering in one bit. This distance is computed as follows:

MSw =

∑T
k=1 MAADKw(Mw)⊕MAADKw(M

′
w)

Tb
×100%

(3)

where MSw is the obtained percentage of Hamming
distance between the MAC value obtained by using the
wth message Mw and the modified wth message M ′w
with the same dynamic key DKw; Tb is the number of
bits in the MAC value, and MACw = MAADKw(Mw)

and MAC ′w = MAADKw
(M ′w) are the obtained MAC

values using Mw and M ′w, respectively. We consider the
difference between Mw and M ′w in the Least Significant
Bit (LSB) of a randomly chosen byte.

The message sensitivity test results are shown in
Fig. 13 and statistical results are presented in Table 4.
The obtained results are similar to the obtained ones
with CMAC and HMAC. The plotted results of MS

with respect to 1,000 random keys show that, overall,
MS is approximately 50% and it follows a normal dis-
tribution. Therefore, it is clear from the results that any
minor change in the original data message results in a
very different MAC value with a difference around 50%.
Similar results are obtained for the key sensitivity test,
as shown in the following.

5.2.2 Key Sensitivity (Key avalanche effect)

This test aims at evaluating the change in the MAC
values for a small change in the dynamic key DK. In
the proposed scheme, all the cryptographic primitives,
are generated from DK. The desired behavior is that
a one bit change in DK should result in a different set
of cryptographic primitives, and thus, different MAC
values. To confirm this, we conducted a sensitivity test of
DK, for 1,000 random keys by computing the Hamming
distance between the generated MAC values for the
same message when two keys differing in one bit are
used. This distance is computed as follows:

KSw =

∑T
k=1 MAADKw(M)⊕MAADK′

w
(M)

Tb
×100%

(4)

where KSw is the obtained percentage of Hamming
distance between the MAC value obtained by using
the wth dynamic key DKw and the wth modified dy-
namic key DK ′w with the same input message Mw.
In addition, MACw = MAADKw(Mw) and MAC ′w =

MAADK′
w
(Mw) are the obtained MAC values using the

dynamic keys DKw and DK ′w, respectively. We consid-
ered a difference between DKw and DK ′w in the Least
Significant Bit (LSB) of a randomly chosen byte.

The key sensitivity test results are included in Fig. 14
and statistical results are presented in Table 4. The ob-
tained results are similar to the obtained ones with
CMAC and HMAC. The plotted results of KS with
respect to 1,000 random keys show that, overall, KS is
approximately 50% and that it follows a normal distri-
bution. Therefore, it is clear from the results that any
minor change in the secret key or nonce will result in a
very different MAC value for the same message, with a
difference around 50%.

5.3 Collision Resistance

Collision resistance is another security requirement for
any MAA. It aims at assessing the probability of having
two distinct inputs with the same MAC value. Actually,
hash functions are designed to resist collision, and to
avoid having two distinct inputs with the same MAC.
The collision resistance test was applied for 1,000 dy-
namic keys, and each time, a randomly-selected bit of a
random byte is modified in the secret key and/or in the
input message. Then, we apply DKEMA and compare
the obtained MAC values for the initial and modified
data. The number of identical ASCII characters (bytes)
at the same positions is computed based on the following
equation.

Diff =

Tb∑
i=1

D{MAC(i),MAC ′(i)}, (5)

where D(x, y) = 1 if x = y, else = 0; MAC and MAC ′

represents the MAC values of the original and modified
message, respectively; MAC(i) represents the ith ASCII
character of the MAC.

The results, shown in Table 5, show that only 3 char-
acters are equal for Tb = 256 in case of a modified secret
key, and 2 characters are equal for a modified message.
This indicates that there is a very small percentage of
similar characters in the obtained MAC values: 1) when
considering slightly different inputs with the same key,
2) when considering slightly different secret keys applied

DKEMA: GPU-Based and Dynamic Key-Dependent Efficient Message Authentication Algorithm 19

Table 4: Statistical results for message and key sensitivity (message avalanche effect) MS

Sensitivity Test Scheme Minimum Mean Maximum Standard Deviation

MS
Proposed (Tb=256) 39.453 49.7493 58.2031 3.122
HMAC 39.0625 49.949 63.671 3.1258
CMAC 39.453 50.026 62.109 3.1331

KS
Proposed (Tb=256) 38.976 49.638 59.375 3.0908
HMAC 38.6719 50.004 62.891 3.1602
CMAC 37.891 50.026 62.109 3.0708

(a) (b)

Fig. 14: Variation of the key sensitivity (KS) versus 1,000 random dynamic secret keys (changed random bit of the
secret key) for DKEMA, (b) and its corresponding distribution, respectively.

to the same input data, 3) or when considering different
secret keys and messages. As such, the proposed scheme
is immune against collision and it can resist statistical
attacks such as birthday attack, meet-in-the-middle and
differential attacks [29].

The obtained results in this section indicates clearly
that DKEMA reaches the desired cryptographic proper-
ties. In the following section, we discuss its resistance
against existing cryptanalysis attacks.

6 Cryptanalysis

In the previous section, the security of DKEMA and the
proposed stream-cipher has been tested and discussed
in terms of randomness, uniformity, high sensitivity and
collision resistance. In this section, the cryptanalysis
is presented to validate that the proposed solution is
resistant to well-known message authentication attacks.

In this section, the cryptanalysis of DKEMA is discussed
by considering key- and MAC-related attacks.

6.1 Resistance against Statistical Attacks

In contrast to the majority of existing MAAs, DKEMA
is based on the dynamic key approach, with dynamic
substitution and seeds for each input data. Previous
statistical tests, especially TestU01 and Practrand [30,
31], have confirmed the robustness of DKEMA and its
high resistance against statistical attacks.

6.2 Resistance against Brute Force Attacks

The secret-key space of the proposed authentication
algorithm is very large, 2Tb, with Tb = equals to 256
bits at least and it can be equal to 512, or 1024 bits.
To resist brute force attacks, according to Schneier [2],

20 Hassan N. Noura, Raphaël Couturier, Ola Salman and Kamel Mazouzi

Table 5: Percent distribution of the number of ASCII characters with the same value at the same location in the
MAC value for the LSB of a random byte in the secret key or message (number of hits) with Tb = 256.

``````````Modified input
hits 0 1 2 3

Secret key 86.9 12.7 0.3 0.1
Message 87 12.1 0.9 -

the key space should be larger than 2192. In our case,
the key space is sufficiently large to make brute-force
attacks unfeasible. The same is true for the key space
of the dynamic key, which is 2512. Therefore, having a
large key space, DKEMA can resist against brute force
attacks.

6.3 Pseudo-collision Resistance

In a pseudo-collision attack, the attacker tries to modify
the message and the associated MAC value, by rely-
ing on weaknesses in the compression function [32,33].
However, DKEMA, which is based on dynamic key-
related cryptographic primitives, consists of a parallel
substitution-diffusion compression function of message
blocks ensuring the avalanche effect. Moreover, the com-
pression function is non-linear. This makes it impossi-
ble for attackers to retrieve useful information about a
message from the obtained MAC or to obtain another
message that can have the same MAC. In addition, a
different key-stream sequence is produced for each new
input message.

6.4 Resistance against Birthday Attacks

Birthday attacks are traditional attacks that can target
the MAA in the aim at finding two messages with same
MAC values in less than 2

N
2 trials (here N is equal to

Tb, which is the size of the MAC) [34]. In DKEMA, the
smallest MAC size is 256, which imposes 2128 trials for a
brute force attack. As stated in [35], "if an appropriate
padding scheme is used and the compression function
is collision-resistant, then the hash function will also
be collision resistant". Indeed, DKEMA, having a large
MAC value, is collision resistant, and thus, it is immune
against birthday attacks.

6.5 Resistance against Meet-in-the-Middle Attacks

Having a data content with nb blocks m1||m2|| . . . ||mnb,
the meet-in-the-middle attack aims at finding a block mi

that can replace one of the nb blocks without changing
the final MAC value [36,37]. Since DKEMA uses variable

cryptograhic primitives for each input data, this renders
such an attack impossible. To validate this, we replaced
a randomly chosen data block mi by a random block and
we computed the MAC values. This test was repeated
N = 1, 000 times. The results, presented in Fig. 15, show
that the difference between the obtained MAC values is
at least Tb/2 bits (50% of MAC bits are modified) for
Tb =256 and similar results were obtained for higher
values of Tb.

6.6 Chosen/known Plain-text/cipher-text Attacks

On the other hand, the resistance against chosen/known
message attacks is verified due to the dynamic key ap-
proach, which drastically complicates the attacker’s task.
As such, the problems of a single message failure and acci-
dental key disclosure are avoided. Furthermore, modern
attacks are ineffective since any change in the dynamic
key leads to a significant difference in the produced
cryptographic primitives and in the MAC as well. More-
over, the key sensitivity analysis demonstrated a high
sensitivity against key-related attacks. These results are
sufficient to conclude that no useful information can be
inferred from the MAC or the produced key-stream.

7 Performance Analysis

This section evaluates DKEMA and compares it to var-
ious encryption algorithms on CPU and compares its
performance on different GPU devices. This assessment
has been done on a Linux/Debian system. The compu-
tational complexity of CF in addition to the average
execution time, and speedup between CPU and GPU
implementations are presented in this part. Furthermore,
the Cuda version 11.3 is employed to implement the
required cryptographic algorithm kernels of DKEMA.

7.1 Computation Complexity

In the following, the computation delay of CF is pre-
sented. It was designed in order to reach a high degree of
security with single round and with a minimum number
of operations to decrease the computational complexity



DKEMA: GPU-Based and Dynamic Key-Dependent Efficient Message Authentication Algorithm 21

(a) (b)

Fig. 15: Percent of the distribution of changed bit number betweenH
′′

n andH versusN tests (a) and its corresponding
distribution (b), respectively.

and the associated delay. To compute the compression
delay, the following components are used:

1. TS denotes the required byte substitution time for a
block of one word .

2. Txor denotes the required logical XOR execution
time between two words.

3. TROTL denotes the required rotation left execution
time for a word.

4. TSplitmix64 represents the required delay to iterate
the Splitmix64 PRNG once.

5. TD represents the required delay of the proposed
simple binary diffusion process between Nw words.

The Computational Delay (CD) of the proposed
scheme to process one block of Nw words is:

CDMAA = (Nw + 1)× (TS + TROTL + TSplitmix64)

+ 2× (Nw + 1)× Txor + TD (6)

Furthermore, the computation time overhead of the
dynamic key and cryptographic primitives derivation
(initialization time), that are done at the CPU level
depend on the duration of the session. Moreover, these
processes are flexible and can be configured for a sub-
session time. Besides, the computation time of the dy-
namic key generation depends only on two operations,
which are:

1. The simple "exclusive or" between the nonce N0 and
the secret key

2. The hash of the output of the previous step

In addition, the required computation delay to con-
struct the cryptographic primitives for each session is :

CDCCP = TPRNG(N) + 2× TKSA (7)

where:

1. TPRNG(N) is the required delay to construct N

seeds. In this step, a PRNG or stream cipher will be
iterated to produce a keystream with N words.

2. TKSA(n) is the required delay to construct a substi-
tution table by using the KSA of RC4.

Note that the overhead imposed by the cryptographic
primitives derivation is low, since these primitives will be
produced once during a session or sub-session. Besides,
in contrast to existing compression functions, which re-
quire several rounds and multiple operations per round,
CF requires only a single round to compress one input
block, and the blocks are processed in parallel.

Besides, the complexity of DKEMA is based on 2
steps:

– The first step (first for loop in Algorithm 4) consists
of computing the compression function of all message
blocks and computing the reduction in parallel on all
threads. Thus, the complexity of this step is O(n).



22 Hassan N. Noura, Raphaël Couturier, Ola Salman and Kamel Mazouzi

256KB 512KB 1MB 2MB 4MB 8MB 16MB 32MB 64MB 128MB 256MB 512MB 1GB 2GB
Size of Message

10 1

100

GP
U 

Av
er

ag
e 

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

0.019

0.03

0.023

0.04

0.033

0.052

0.043

0.088

0.047

0.07

0.06

0.071
0.084

0.089
0.113

0.124 0.194

0.168
0.353

0.3

0.682

0.558

1.356

1.07

2.628

2.197

5.199

4.193GPU Tesla V100
GPU Tesla A100

(a) Execution Time(ms)

256KB 512KB 1MB 2MB 4MB 8MB 16MB 32MB 64MB 128MB 256MB 512MB 1GB 2GB
Size of Message

101

102

Th
ro

ug
hp

ut
 (G

B/
s)

13.976

8.715

22.417

12.987

32.206

20.27

49.296

23.752

89.426

59.806

140.678
118.415

199.487188.631

295.75
269.831

346.035
398.859 379.859

447.176
393.804

481.412

395.903

501.811

408.544
488.832

413.04

512.154GPU Tesla V100
GPU Tesla A100

(b) Throughput (without data transfer)

256KB 512KB 1MB 2MB 4MB 8MB 16MB 32MB 64MB 128MB 256MB 512MB 1GB 2GB
Size of Message

100

101

Th
ro

ug
hp

ut
 (G

B/
s)

3.7

5.0

1.2

6.1

1.8

6.4

3.1

7.4

5.3

7.9
6.8

7.6

12.3

8.3

15.2

8.3

17.5

8.5

18.6

7.7

19.6

8.5

19.9

8.6

17.5

8.3

17.6
GPU Tesla V100
GPU Tesla A100

(c) Throughput (with data transfer)
Fig. 16: Variation of the average GPU execution time (a), GPU throughput without (b) and with (c) data transfer
between CPU and GPU on Tesla V100 and Tesla A100 versus message size.



DKEMA: GPU-Based and Dynamic Key-Dependent Efficient Message Authentication Algorithm 23

256KB 512KB 1MB 2MB 4MB 8MB 16MB 32MB 64MB 128MB 256MB 512MB 1GB 2GB
Size of Message

10 1

100

101

102

Tr
an

sf
er

 ti
m

e 
(m

s)

0.05

0.49

0.08

0.41

0.14

0.54

0.28

0.58 0.52
0.72

1.01.16

2.13

1.28

3.91

2.09

7.89

3.68

15.5

6.91

34.1

13.16

62.07

25.88

122.14

59.05

254.43

117.61

GPU Tesla V100
GPU Tesla A100

(a) Data transfer time

256KB 512KB 1MB 2MB 4MB 8MB 16MB 32MB 64MB 128MB 256MB 512MB 1GB 2GB
Size of Message

0

250

500

750

1000

1250

1500

1750

2000

Sp
ee

du
p

68.61
28.62

109.76
42.63

158.39

66.07

297.02

78.17

439.7

195.36

687.47

390.2

1124.74

615.05

1451.84

890.93

1700.69

1318.64

1866.42

1460.77

1938.15

1589.78

1981.38

1640.18

2028.18

1612.02

2041.99

1725.05

GPU Tesla V100
GPU-Tesla A100

(b) Without data transfer time

256KB 512KB 1MB 2MB 4MB 8MB 16MB 32MB 64MB 128MB 256MB 512MB 1GB 2GB
Size of Message

0

10

20

30

40

50

60

Sp
ee

du
p

17.94

1.65

24.36

3.79

29.89

5.83

38.58

10.25

36.51

17.41

38.76

22.44

42.65
39.96 40.94

50.06

40.81

57.71

41.6

60.81

37.98

64.63

42.36

65.11

42.72

57.81

40.89

59.38

GPU Tesla V100
GPU-Tesla A100

(c) With data transfer time
Fig. 17: Variation of the data transfer time (a) in addition to the speedup of DKEMA on Tesla V100 and Tesla
A100 versus message size without (b) and with (c) taking in consideration the transfer time between host and
device.



24 Hassan N. Noura, Raphaël Couturier, Ola Salman and Kamel Mazouzi

– Then, the second step (in Algorithm 6) consists of
applying the reduction, which has a complexity of
O(logn). In the proposed implementation, multiple
compressed blocks will be xored per thread sequen-
tially.

7.2 Experimental Results over CPU

To compare the performance of the proposed solution on
GPU to existing MAAs (CMAC and HMAC) that can
be applied on CPU, we run tests on an Intel (R) Xeon(R)
CPU E5-2698 v4. Each core of this CPU operates at a
frequency of 2.20 GHz. The optimized implementation
of these MAAs with OpenSSL [38] are executed on this
processor and their throughput results are presented in
Fig. 18-(a). This result indicates clearly that the size
of message has no effect on throughput. This is logical
as existing MAAs are based on the chaining mode and
cannot benefit from the parallel computing. This means
that the throughput is more or less constant with large
messages on CPU. It is obvious since the parallelism
capability is quite limited.

7.3 Experimental Results over GPUs

To the best of our knowledge, there is no existing MAA
that has been designed and implemented on GPU. There-
fore, to justify the efficiency of the proposed solution, the
speedup results are highlighted to compare the through-
put of DKEMA with GPU compared to CPU. The
results indicate that the speedup can reach greater than
2040 if data is located on GPU. Otherwise, if data is
located on CPU, taking into consideration the required
transfer time of message from CPU to GPU, the speedup
becomes close to 59 at maximum. Note that the per-
formance of DKEMA is evaluated on two GPUs (Tesla
V100 and Tesla A100), which are described in Table 6.

In this part, the required GPU average execution
time (milliseconds) and throughput (GigaBytes/s) ver-
sus message length of DKEMA are presented in Fig. 16.
Fig. 16 shows that the average execution time and
throughput increase when the message length increases.
It is clear from these results that using a powerful GPU
provides better speedup since the best GPU throughput
(512 GigaBytes/s) is achieved with the Tesla A100 if
no need to data transfer. In addition, the maximum
throughput reaches by using Tesla V100 is 413 GB.

On the other hand, the variation of data transfer
time versus message size is presented in Fig. 17-(a) for

two different GPUs. This result shows that the variation
of data transfer time is approximately linear in function
of message length. In addition, for message length ≤
8MB, Tesla V100 requires less transfer time compared
to Tesla A100. While for message length > 8MB, Tesla
A100 requires less transfer time compared to Tesla V100.

Besides, the GPU throughput decreases when a data
transfer is needed, as shown in Fig. 16-(c), and the max-
imum throughput become 8.3GB and 17.6 GB for Tesla
V100 and Tesla A100, respectively.

It should be noticed that we consider two possible
scenarios, where the first one assumes that input data
to be authenticated are already in the GPU. This case
can be considered as the fine-grained parallel processing
time in the GPU. In this case, the best throughput and
consequently speedup is reached (see Fig. 17-(b)) with
a factor up to 2K for Tesla A100. In practice, this sce-
nario is realistic with an application dedicated to GPU.
Therefore, only the computing times on the GPU are
taken into account. The second scenario is when data
are in the CPU, and consequently the data transfer time
from CPU to GPU must be taken into account but this
time depend on the employed hardware and the PCI
bus in addition to message length. This case is the most
real scenario of heterogeneous-based systems since they
are always based on the interaction between the host
(CPU) and the device (such as the GPU). Furthermore,
the main purpose of a device (hardware accelerator) is
to operate on specific workloads under the supervision
of the host of the system. Unfortunately, which this
scenario, less throughput and consequently less speedup
is reached compared to the first scenario as shown in
Fig. 17-(c). Although, DKEMA, in the case of complete
system interaction (Host and GPU), improves speedup
with a factor close to 59 for Tesla A100.

Moreover, comparing the obtained results in Fig. 18-
(a) to Fig. 16-(b) and (c), the CPU result shows that the
message size has no effect on the throughput, which is
constant for data length ≥ 8KB. In contrast, the GPU
results show that the throughpu increases in function
of data length. The GPU implementation of DKEMA
reaches the maximum throughput for 256MB in case
there is no need to transfer message from CPU to GPU.

Therefore, we can conclude that DKEMA has higher
throughput compared with the existing standard MAAs
(less than 1GB with CPU). In addition, we present the
ratio throughput between GPU (proposed solution) and
CPU of existing chaining MAA with or without data
transfer in Fig. 18-(b) and (c), respectively. These results



DKEMA: GPU-Based and Dynamic Key-Dependent Efficient Message Authentication Algorithm 25

8KB 16KB 32KB 64KB 128KB
Size of Message

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Th

ro
ug

hp
ut

 (G
B/

s)
CMAC-AES-128
CMAC-AES-192
CMAC-AES-256
HMAC-SHA-256
HMAC-SHA-512

(a) CPU throughput

256KB 512KB 1MB 2MB 4MB 8MB 16MB 32MB 64MB 128MB 256MB 512MB 1GB 2GB
Size of Message

0

500

1000

1500

2000

2500

3000

Ra
tio

CMAC-AES-128
CMAC-AES-192
CMAC-AES-256
HMAC-SHA-256
HMAC-SHA-512

(b) Throughput ratio between DKEMA (GPU) and existing standard MAAs (CPU) without data transfer

256KB 512KB 1MB 2MB 4MB 8MB 16MB 32MB 64MB 128MB 256MB 512MB 1GB 2GB
Size of Message

10

20

30

40

50

60

Ra
tio

CMAC-AES-128
CMAC-AES-192
CMAC-AES-256
HMAC-SHA-256
HMAC-SHA-512

(c) Throughput ratio between DKEMA (GPU) and existing standard MAAs (CPU) with data transfer time

Fig. 18: The throughput of existing standard MAAs (CMAC and HMAC) implemented by OpenSSL on Intel(R)
Xeon(R) CPU E5-2698 v4 @ 2.20GHz. In addition, the throughput ratio between DKEMA (GPU Tesla V100) and
existing standard MAAs (CPU) without (b) and with (c) data transfer for message length varying between 8KB
and 128KB.



26 Hassan N. Noura, Raphaël Couturier, Ola Salman and Kamel Mazouzi

Table 6: GPU devices during bench-marking

Tesla A100 Tesla V100

– Compute capability: 8.0
– Global memory: 40,000 MB
– GPU frequency: 1.41 GHz
– Memory frequency: 1,215 MHz
– Number of Cuda cores: 6,912

– Compute capability: 7.0
– Global memory: 16,152 MB
– GPU frequency: 1.53 GHz
– Memory frequency: 877 MHz
– Number of Cuda cores: 5,120

show that the ratio is higher and increase in function of
message length. Furthermore, ratio Fig. 18-(c) is reduces
as GPU throughput is reduced when data transfer is
needed.

All these results validate that DKEMA on GPU
is faster compared to well-used non-parallel MAAs on
CPU, and best performance is reached when no need to
data transfer.

8 Conclusion

In this paper, we propose a new MAA solution, DKEMA,
designed for GPU implementation. This solution, being
dynamic key-dependent, and one-round based, can en-
sure a high level of efficiency and robustness. For the
best of our knowledge, we are the first to design a paral-
lel MAA targeting a GPU implementation, which makes
it preferable for limited latency applications. Moreover,
DKEMA scheme offers a high degree of randomness,
which was validated by a set of statistical tests. More-
over, the implementation of DKEMA is very simple
compared to other existing MAAs (no chaining opera-
tion mode and one round single compression function).
The robustness of DKEMA and stream cipher have
been assessed and confirmed via cryptanalysis along
with different benchmark tests. Note that other existing
cryptanalysis techniques are designed to target static
structures, which is not the case of DKEMA. Finally,
the execution time and throughput tests show that, com-
pared to existing MAAs such as CMAC and HMAC,
DKEMA has a lower cost in terms of processing and
execution time. As future work, the design of an efficient
parallel message authentication-encryption algorithm
will be investigated based on the GPU characteristics.

Acknowledgement

This paper is funded by the EIPHI Graduate School
(contract "ANR-17-EURE-0002"). We also thank the
supercomputer facilities of the Mésocentre de calcul de
Franche-Comté.

References

1. Frederic P. Miller, Agnes F. Vandome, and John McBrew-
ster. Advanced Encryption Standard. Alpha Press, 2009.

2. William Stallings. Cryptography and Network Security:
Principles and Practice. Pearson Upper Saddle River, NJ,
2017.

3. Qinjian Li, Chengwen Zhong, Kaiyong Zhao, Xinxin Mei,
and Xiaowen Chu. Implementation and Analysis of AES
Encryption on GPU. In High Performance Comput-
ing and Communication & 2012 IEEE 9th International
Conference on Embedded Software and Systems (HPCC-
ICESS), pages 843–848. IEEE, 2012.

4. Guang-liang Guo, Quan Qian, and Rui Zhang. Differ-
ent Implementations of AES Cryptographic Algorithm.
In High Performance Computing and Communications
(HPCC), IEEE 7th International Symposium on Cy-
berspace Safety and Security (CSS), pages 1848–1853.
IEEE, 2015.

5. Rone Kwei Lim, Linda Ruth Petzold, and Çetin Kaya
Koç. Bitsliced High-performance AES-ECB on GPUs. In
The New Codebreakers, pages 125–133. Springer, 2016.

6. Raphaël Couturier. Designing Scientific Applications on
GPUs. Numerical Analysis & Scientific Computating.
Chapman & Hall/CRC, 2013.

7. Nvidia, CUDA. A C Programming Guide,
version 9.0. https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html.

8. Jacques Bahi, Raphaël Couturier, Christophe Guyeux,
and Pierre-Cyrille Héam. Efficient and Cryptographically
Secure Generation of Chaotic Pseudorandom Numbers on
GPU. The Journal of Supercomputing, 71(10):3877–3903,
2015.

9. Wai-Kong Lee, Hon-Sang Cheong, Raphael C-W Phan,
and Bok-Min Goi. Fast Implementation of Block Ciphers
and PRNGs in Maxwell GPU Architecture. Cluster Com-
puting, 19(1):335–347, 2016.

10. Biagio Peccerillo, Sandro Bartolini, and Çetin Kaya Koç.
Parallel Bitsliced AES through PHAST: a Single-Source
High-Performance Library for Multi-Cores and GPUs.
Journal of Cryptographic Engineering, pages 1–13, 2017.

11. Like Chen and Runtong Zhang. A Key-dependent Ci-
pher DSDP. In Electronic Commerce and Security, 2008
International Symposium on, pages 310–313. IEEE, 2008.

12. Runtong Zhang and Like Chen. A Block Cipher using
Key-dependent S-box and P-boxes. In Industrial Elec-
tronics, 2008. ISIE 2008. IEEE International Symposium
on, pages 1463–1468. IEEE, 2008.

13. Hassan Noura, Ali Chehab, Lama Sleem, Mohamad Noura,
Raphaël Couturier, and Mohammad M Mansour. One
Round Cipher Algorithm for Multimedia IoT Devices.
Multimedia Tools and Applications, pages 1–31, 2018.

14. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan
Treatman-Clark, Bryan Weeks, and Louis Wingers. Simon

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html


DKEMA: GPU-Based and Dynamic Key-Dependent Efficient Message Authentication Algorithm 27

and speck: Block ciphers for the internet of things. IACR
Cryptology ePrint Archive, 2015:585, 2015.

15. Hassan N Noura, Mohamad Noura, Ali Chehab, Moham-
mad M Mansour, and Raphaël Couturier. Efficient and
secure cipher scheme for multimedia contents. Multimedia
Tools and Applications, pages 1–30, 2018.

16. Hassan N Noura, Ali Chehab, Mohamad Noura, Raphaël
Couturier, and Mohammad M Mansour. Lightweight, dy-
namic and efficient image encryption scheme. Multimedia
Tools and Applications, pages 1–35, 2018.

17. Hassan Noura, Lama Sleem, Mohamad Noura, Moham-
mad M Mansour, Ali Chehab, and Raphaël Couturier.
A New Efficient Lightweight and Secure Image Cipher
Scheme. Multimedia Tools and Applications, 77(12):15457–
15484, 2018.

18. Zeinab Fawaz, Hassan Noura, and Ahmed Mostefaoui. An
Efficient and Secure Cipher Scheme for Images Confiden-
tiality Preservation. Signal Processing: Image Communi-
cation, 42:90–108, 2016.

19. Joan Daemen and Vincent Rijmen. The design of Rijn-
dael: AES-the advanced encryption standard. Springer
Science & Business Media, 2013.

20. Andrew Lauritzen and Summed-Area Variance Shadow
Maps. Chapter 36. aes encryption and decryption on
the gpu | nvidia developer. https://developer.nvidia.
com/gpugems/gpugems3/part-vi-gpu-computing/
chapter-36-aes-encryption-and-decryption-gpu,
2007.

21. Ahmed Awadalla Abdelrahman, Mohamed Mahmoud
Fouad, and Hisham Dahshan. Analysis on the aes im-
plementation with various granularities on different gpu
architectures. Advances in Electrical and Electronic En-
gineering, 15(3):526–535, 2017.

22. Ahmed A Abdelrahman, Mohamed M Fouad, Hisham
Dahshan, and Ahmed M Mousa. High performance cuda
aes implementation: A quantitative performance analysis
approach. In 2017 Computing Conference, pages 1077–
1085. IEEE, 2017.

23. Ahmed A Abdelrahman, Hisham Dahshan, and Gouda I
Salama. Enhancing the actual throughput of the aes
algorithm on the pascal gpu architecture. In 2018 3rd
International Conference on System Reliability and Safety
(ICSRS), pages 97–103. IEEE, 2018.

24. Hassan N Noura, Ola Salman, Raphaël Couturier, and
Ali Chehab. Lorca: Lightweight round block and stream
cipher algorithms for iov systems. Vehicular Communica-
tions, page 100416, 2021.

25. Hassan Noura, Ola Salman, Raphael Couturier, and Ali
Chehab. Novel one round message authentication scheme
for constrained iot devices. Journal of Ambient Intelli-
gence and Humanized Computing, 2021.

26. Hassan N Noura, Ali Chehab, and Raphael Couturier. Effi-
cient & secure cipher scheme with dynamic key-dependent
mode of operation. Signal processing: Image communica-
tion, 78:448–464, 2019.

27. Hassan Noura. Conception et simulation des générateurs,
crypto-systèmes et fonctions de hachage basés chaos per-
formants. PhD thesis, université de Nantes, 2012.

28. Pseudo-random numbers/splitmix64 - rosetta code.
https://rosettacode.org/wiki/Pseudo-random_
numbers/Splitmix64.

29. Xiaoyun Wang and Hongbo Yu. How to break md5 and
other hash functions. In In EUROCRYPT. Springer-
Verlag, 2005.

30. Guy L Steele Jr and Sebastiano Vigna. Lxm: better split-
table pseudorandom number generators (and almost as

fast). Proceedings of the ACM on Programming Lan-
guages, 5(OOPSLA):1–31, 2021.

31. Augusto Parisot, Lucila MS Bento, and Raphael CS
Machado. Testing and selecting lightweight pseudo-
random number generators for iot devices. In 2021 IEEE
International Workshop on Metrology for Industry 4.0 &
IoT (MetroInd4. 0&IoT), pages 715–720. IEEE, 2021.

32. Amir Akhavan, Azman Samsudin, and Afshin Akhshani.
A novel parallel hash function based on 3d chaotic map.
EURASIP Journal on Advances in Signal Processing,
2013(1):1–12, 2013.

33. B. Yang, Z. Li, S. Zheng, and Y. Yang. Hash function
construction based on coupled map lattice for communi-
cation security. In Global Mobile Congress 2009, pages
1–7, Oct 2009.

34. Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van
Oorschot. Handbook of Applied Cryptography. CRC Press,
Inc., Boca Raton, FL, USA, 1st edition, 1996.

35. Ivan Damgård. A design principle for hash functions. In
Proceedings of the 9th Annual International Cryptology
Conference on Advances in Cryptology, CRYPTO ’89,
pages 416–427, London, UK, UK, 1990. Springer-Verlag.

36. Mohamed Amin, Osama S Faragallah, and Ahmed A Abd
El-Latif. Chaos-based hash function (cbhf) for cryp-
tographic applications. Chaos, Solitons & Fractals,
42(2):767–772, 2009.

37. A Kanso and M Ghebleh. A structure-based chaotic hash-
ing scheme. Nonlinear Dynamics, 81(1-2):27–40, 2015.

38. Viega John, Matt Messier, and Pravir Chandra. Network
security with openssl: Cryptography for secure communi-
cations. O’Reilly Media, Inc., 2002.

https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-36-aes-encryption-and-decryption-gpu
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-36-aes-encryption-and-decryption-gpu
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-36-aes-encryption-and-decryption-gpu
https://rosettacode.org/wiki/Pseudo-random_numbers/Splitmix64
https://rosettacode.org/wiki/Pseudo-random_numbers/Splitmix64


28 Hassan N. Noura, Raphaël Couturier, Ola Salman and Kamel Mazouzi

Appendices

Algorithm 4 kernel reduceSinglePassMultiBlockCG

1 __global__ void reduceSinglePassMultiBlockCG ( const ulong ∗ __restrict__ g_idata ,
2 ulong ∗ __restrict__ , g_odata , unsigned i n t n , const uchar ∗ __restrict__ Sbox8 ,
3 const uchar ∗ __restrict__ DK)
4 {
5 cg : : thread_block block = cg : : this_thread_block ( ) ;
6 cg : : grid_group gr id = cg : : th i s_gr id ( ) ;
7 extern ulong __shared__ sdata3 [ ] ;
8 ulong ∗ sdata = ( ulong ∗) sdata3 ;
9 ulong ∗ sdata2 = ( ulong∗)&sdata3 [ b lock . s i z e ( ) ] ;

10 uchar ∗ ssbox =(uchar∗)&sdata3 [ b lock . s i z e ( ) ∗ 2 ] ;
11 sdata [ b lock . thread_rank ( ) ] = 0 ;
12 sdata2 [ b lock . thread_rank ( ) ] = 0 ;
13 i f ( b lock . thread_rank ()<256) {
14 ssbox [ b lock . thread_rank () ]= Sbox8 [ b lock . thread_rank ( ) ] ;
15 }
16 uint64_t r1 ;
17 f o r ( i n t i = gr id . thread_rank ( ) ; i < n ; i += gr id . s i z e ( ) ) {
18 r1=( i )^ ( ( ( uint64_t ∗)DK) [ i &63])^ g_idata [ i ] ;
19 r1=r o t l ( r1 , ssbox [ i &255]&63);
20 apply_sub_and_prng(&r1 , ssbox ) ;
21 sdata2 [ b lock . thread_rank () ]= r1 ;
22 i f ( ( b lock . thread_rank ()&3) == 0) {
23 r1=sdata2 [ b lock . thread_rank ( ) ] ^ sdata2 [ b lock . thread_rank ()+1]^
24 sdata2 [ b lock . thread_rank ()+2]^ sdata2 [ b lock . thread_rank ( )+3 ] ;
25 apply_sub_and_prng(&r1 , ssbox ) ;
26 sdata [ b lock . thread_rank ()]^= sdata2 [ b lock . thread_rank ( ) ] ^ r1 ;
27 sdata [ b lock . thread_rank ()+1]^= sdata2 [ b lock . thread_rank ()+1]^ r1 ;
28 sdata [ b lock . thread_rank ()+2]^= sdata2 [ b lock . thread_rank ()+2]^ r1 ;
29 sdata [ b lock . thread_rank ()+3]^= sdata2 [ b lock . thread_rank ()+3]^ r1 ;
30 }
31 }
32 cg : : sync ( b lock ) ;
33 reduceBlock ( sdata , b lock ) ;
34 i f ( b lock . thread_rank ( ) == 0) {
35 g_odata [ b lockIdx . x∗ s zb l ock ] = sdata [ 0 ] ;
36 g_odata [ b lockIdx . x∗ s zb l ock +1] = sdata [ 1 ] ;
37 g_odata [ b lockIdx . x∗ s zb lock +2] = sdata [ 2 ] ;
38 g_odata [ b lockIdx . x∗ s zb lock +3] = sdata [ 3 ] ;
39 }
40 cg : : sync ( g r id ) ;
41 i f ( g r id . thread_rank ( ) == 0) {
42 f o r ( i n t i = 1 ; i < gridDim . x ; i++) {
43 g_odata [ 0 ] ^= g_odata [ i ∗ 4 ] ;
44 g_odata [ 1 ] ^= g_odata [ i ∗4+1] ;
45 g_odata [ 2 ] ^= g_odata [ i ∗4+2] ;
46 g_odata [ 3 ] ^= g_odata [ i ∗4+3] ;
47 }
48 sdata [0 ]= g_odata [ 0 ] ^ g_odata [ 1 ] ^ g_odata [ 2 ] ^ g_odata [ 3 ] ;
49 apply_sub_and_prng(&sdata [ 0 ] , ssbox ) ;
50 g_odata [0 ]= g_odata [ 0 ] ^ sdata [ 0 ] ;
51 g_odata [1 ]= g_odata [ 1 ] ^ sdata [ 0 ] ;
52 g_odata [2 ]= g_odata [ 2 ] ^ sdata [ 0 ] ;
53 g_odata [3 ]= g_odata [ 3 ] ^ sdata [ 0 ] ;
54 }
55 }



DKEMA: GPU-Based and Dynamic Key-Dependent Efficient Message Authentication Algorithm 29

Algorithm 5 kernel apply_sub_and_prng

1 __device__ void apply_sub_and_prng ( ulong ∗ r1 , uchar ∗ ssbox ) {
2 uchar ∗ r r = ( uchar ∗) r1 ;
3 r r [0 ]= ssbox [ r r [ 0 ] ] ;
4 r r [1 ]= ssbox [ r r [ 1 ] ] ;
5 r r [2 ]= ssbox [ r r [ 2 ] ] ;
6 r r [3 ]= ssbox [ r r [ 3 ] ] ;
7 r r [4 ]= ssbox [ r r [ 4 ] ] ;
8 r r [5 ]= ssbox [ r r [ 5 ] ] ;
9 r r [6 ]= ssbox [ r r [ 6 ] ] ;

10 r r [7 ]= ssbox [ r r [ 7 ] ] ;
11 ∗ r1=sp l i tm ix64 (∗ r1 ) ;
12 }

Algorithm 6 kernel reduceBlock

1 __device__ void reduceBlock ( ulong ∗ sdata , const cg : : thread_block &cta )
2 {
3 const unsigned i n t t i d = cta . thread_rank ( ) ;
4 cg : : thread_block_ti le <32> t i l e 3 2 = cg : : t i l e d_pa r t i t i on <32>(cta ) ;
5 ulong beta = sdata [ t i d ] ;
6 ulong temp ;
7
8 f o r ( i n t i = t i l e 3 2 . s i z e ( )/ 2 ; i >= szb lock ; i >>= 1) {
9 i f ( t i l e 3 2 . thread_rank ( ) < i ) {

10 temp = sdata [ ( t i d+i ) ] ;
11 beta ^= temp ;
12 sdata [ t i d ] = beta ;
13 }
14 cg : : sync ( t i l e 3 2 ) ;
15 }
16 cg : : sync ( cta ) ;
17 i f ( cta . thread_rank ( ) <4) {
18 beta = 0 ;
19 f o r ( i n t i = t i d ; i < blockDim . x ; i += t i l e 3 2 . s i z e ( ) ) {
20 beta ^= sdata [ i ] ;
21 }
22 sdata [ t i d ] = beta ;
23 }
24 cg : : sync ( cta ) ;
25 }


	Introduction
	Background and Preliminaries
	Dynamic Key Derivation Function and Cryptographic Primitives Construction
	Proposed Message Authentication Algorithm
	Security Analysis
	Cryptanalysis
	Performance Analysis
	Conclusion

