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Abstract—In Digital Holography (DH), it is crucial to extract
the object distance from a hologram in order to reconstruct its
amplitude and phase. This step is called auto-focusing and it is
conventionally solved by first reconstructing a stack of images
and then by sharpening each reconstructed image using a focus
metric such as entropy or variance. The distance corresponding
to the sharpest image is considered the focal position. This
approach, while effective, is computationally demanding and
time-consuming. In this paper, the determination of the distance
is performed by Deep Learning (DL). Two deep learning (DL) ar-
chitectures are compared: Convolutional Neural Network (CNN)
and Vision transformer (ViT). ViT and CNN are used to cope
with the problem of auto-focusing as a classification problem.
Compared to a first attempt [1] in which the distance between
two consecutive classes was 100um, our proposal allows us to
drastically reduce this distance to 1xm. Moreover, ViT reaches
similar accuracy and is more robust than CNN.

Index Terms—Digital holography, CNN, Efficientnet, Densenet,
Vision Transformer, ViT, Transformer

I. INTRODUCTION

Digital holography (DH) is an emerging field in imaging
applications [2]. It is mostly exploited in 3D image processing,
surface contour measurements, microscopy [3], and even in
microrobotics [4]. A major challenge in microrobotics and/or
photonics is to be able to determine metrics in the context
of complex imaging devices. Among those metrics, the 3D
positioning of micro-objects is particularly interesting. With
earlier hologram image reconstruction, the overall experimen-
tal setup needed to be determined ahead of time including
object’s depth position [5], otherwise many diffraction calcu-
lations were needed to be applied for various depth settings.
According to [6] and [7], these techniques consume a lot
of time as they necessitate many diffraction calculations and
signal processing, and thus heavy computations were required
in this scope. Nowadays, Deep Learning (DL) is reshaping
the world of computer science and is used in many applica-
tion areas including DH. Particularly, DL helped in coping
with time consumption and heavy computation concerns of
the older techniques to determine depth position: instead of
applying many diffraction calculations, training a deep neural
network enabled to determine the depth predictions [8] and [9].
These predictions can be approached either as a classification
problem [5] [10] [11] or as a regression problem [8] and [9].
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A first approach using a classification has been pre-
sented in [1] showing that residual neural networks such as
Densenet169 and Densenet201 can achieve good results and
determine the auto-focusing distance with a precision of a
scale of 100pm.

In this paper, the problem of determining the distance
of a view captured by a holographic camera is addressed
by modeling it as a classification problem. The outcomes
proved that the built networks are capable of performing
predictions with an accuracy level of 99% at a micrometer
scale, using 10 classes for the classifications, where each class
corresponds to a different distance from the object varying
with a step of 1 micrometer (so this corresponds to a distance
100 times smaller than in [1]). The proposal is presented
thereafter throughout the following sections. Section 2 presents
some of the existing literature, more specifically on deep
learning and its benefits for addressing classification problems
in digital holography. The context of this study is highlighted
in the following section. Section 4 is dedicated to a detailed
presentation of the proposed deep neural networks and the
experimental results. Finally, a conclusion aims to summarize
the findings and the potential future works.

II. RELATED WORK

First, DL is approached globally before digging deeper into
its use in DH, then a presentation of what a transformer
model means and how this architecture has been applied
to classification problems is given. A Convolutional Neural
Network (CNN) is a well-known DL architecture that is widely
used for analyzing and classifying images by extracting and
learning features directly from them [12]. Many CNN models
are available, each having its own particularity and advantages.
Densenet [13] (a densely connected network) is one of them,
it is known for its significant results when compared to other
models. It even necessitates fewer parameters for training
[14]. According to the authors of this CNN model [13],
Densenet networks do not encounter optimization issues, even
when scaling to hundreds of layers. Their main motivation to
create this model was to cope with the vanishing of the input
information that occurs at the output of the network after it
has passed through many layers, as well as the vanishing of
the gradient in the opposite direction. In the following, some



works in the literature that tackle DH using DL are discussed.
Many studies in DH focus on reconstructing the target object’s
amplitude and phase once its distance is known; a process
referred to as “autofocusing”. In particular, identifying the
object distance is crucial for the object reconstruction [5]. In
the literature, autofocusing has been explored by exploiting
advances in DL (also called learning-based approaches). To
be more specific, two main approaches are investigated to
tackle the problem: using classification [S] [10] [11] and using
regression [8] and [9].

The focus is first put on the classification approach and
its adoption in the literature. In this approach, [10] and [11]
were the first to work on predicting depth in DH in discrete
values. In [10], the authors demonstrated that autofocusing
in DH can be achieved using DL. They adopted a CNN
that is built on top of the AlexNet architecture. They started
off with a number of holograms that they prepared first by
eliminating the “zero-order” and the “twin-term”. They used
21 classes for the labeling and they applied data augmentation
on the prepared holograms to increase the size of the dataset.
Moreover, the network was trained with manually defined
depth values. 90% of the data was used to train the network
and the remaining 10% for the validation. Their learning rate
was set up to the value of 0.01. As they concluded, their
network did not scale properly. Moreover, they stated that
their network “generalized well” at a millimeter scale without
mentioning the obtained accuracy level to prove it. The authors
of [13] used a CNN to predict the object distance by training
their network with hologram-specific labels that correspond to
the actual distances. They used a uniform technical setup to
capture 1,000 holograms, ending up with 5 distance labels.
Their experimental results proved that the network is able to
predict the distance without any knowledge of the technical
setup and with less time consumption than the traditional
methods. This proves that they coped with the issues that
were encountered in the work [10]. However, although they
provided estimates at a millimeter scale (axial range of =3 mm,
which is appropriate for imaging systems), they only worked
on 5 classes, which may not be enough to generalize their
findings.

As shown in [1], a first step has been reached using either
Densenet169 or Densenet201. To train the model, 10,101
images were used with a split rule of 70% / 30%. All the
images (hologram) used were simulated holograms.

Vision Transformer architecture (ViT) has been introduced
with the advent of the transformer architecture, mainly used
in the field of language translation (NLP). ViT follows the
core concepts of a transformer network which is based on the
concept of self-attention. As pointed in [17] “attention is all
we need”. Such a network is based on an encoder which is
built using self attention map mechanism. Contrary to CNN,
ViT does not imply any convolution layer. The input image
is split in patches and fed into ViT network. ViT architecture
achieved state-of-the-art performance on Imagenet.

In this paper, 2 different architecture (CNN and ViT) are
used to tackle the problem of depth prediction in the DH

context. Each architecture classifies in 10 classes and at a
micrometer scale. It uses a dataset of 3,600 images that are
augmented and split using the 80-20% rule, without using the
training images in the testing. The model is pre-trained using
Imagenet. Experimental results presented thereafter prove that
the network is able to predict depth with 99% of accuracy.

III. PROPOSED SOLUTION

The objective is to localize objects at the micrometre scale.
We use holograms of a target to retrieve the 6 degrees of
freedom (6 DOF) of a structured target. The target is generated
in such a way that it encodes the position (X and Y) using
a binary code. The object image needs to be reconstructed
first. For that purpose, engineers rely on the known methods
which imply a series of Fourier and inverse transformations.
These transformations consume most of the time and do not
allow one to get an idea of the re-constructed object (6 DOF)
in a real-time approach. In this paper, a method is proposed
to extract the reconstruction distance Z (which is the distance
along the optical propagation) only using deep learning and
classification models. As input, produced holograms on a
distance Z over 10um are considered. Each hologram (see
Figure 1) is recorded using the same target. In this paper, this
problem is approached using classifier models (ViT & CNN).
For that purpose, the set of holograms has been split in 10
classes. Each class contains a total of 360 holograms. The
digital holography microscope used produces holograms with
a resolution equal to 1024x1024.

A series of deep-learning architectures (CNN & ViT) has
been compared using the following crop approaches to create
four datasets of input images (holograms) either taking the
original hologram or its negative version (Figure 2):

o A region of interest (ROI) is cropped at the center of the

hologram (512x512).

o A Sobel filter is applied on the hologram image and a

ROI is cropped at the center of the hologram (512x512).

Fig. 1: Original hologram (1024x1024)



IV. RESULTS

All trainings have been executed on a NVidia GPU V100
series. A simple split rule on the input dataset has been
applied: 80% for training and 20% for validation, basically
3,400 images in total. 200 random images have been extracted
from the full dataset of holograms to build our test dataset
randomly. Each training has been executed with a max of 200
epochs. An early stop on the valuation loss with a patience of
20 epochs is considered during training. Below the proposed
approaches are compared either by applying a Sobel filter on
the hologram passed to the neural network or without any
filter applied. The results show for each configuration the value
of the valuation loss (val. loss) and valuation accuracy (val.
accuracy, Figure 3) after 200 epochs (Tables I & II). The best
models are taken from the comparison and further analyzed to
give results during inference on a test dataset (Figure 4). All
the models have been trained with the following frameworks:
Tensorflow and Keras. The Adam optimizer has been used
with a learning rate of 10~%. For the CNN, a Global Average
Pooling layer has been added before the prediction layer (full
connected layer).

List of architectures compared:

o Densenet201 and Densenet169 (CNN)
o Efficientnet B4 and B7 (CNN)
e ViT (Vision Transformer) B_16, B_32 and L_32

(a) No Sobel filter (original image) - (b) Sobel filter (original image) - SFO
NFO

(c) No Sobel filter (negative image) - (d) Sobel filter (negative image) - SFN

NSN

Fig. 2: Four different datasets of 512x512 images(holograms) used for training

SFO

val. loss  val. accuracy

ViT_L32 0.89 0.56
ViT_B32 1.03 0.56
ViT_B16 0.88 0.72
EfficientnetB7  0.69 0.71
EfficientnetB4  0.19 0.93
Densenet201 0.15 0.95
Densenet169 0.27 0.9

NSO
val. loss  val. accuracy
0.66 0.69
0.61 0.72
0.36 0.85
0.08 0.9735
0.16 0.94
0.31 0.89
0.34 0.9

TABLE I: Test results considering the original images with (SFO) or without

Sobel filter (NSO) applied

SFN NSN
val. loss  val. accuracy  val. loss  val. accuracy
ViT_L32 1.38 0.37 1.11 0.51
ViT_B32 1.25 043 0.57 0.75
ViT_B16 0.67 0.68 0.22 0.9074
EfficientnetB7  0.03 0.9941 0.13 0.95
EfficientnetB4  0.59 0.72 0.33 0.88
Densenet201 0.24 091 0.75 0.62
Densenet169 0.05 0.9955 0.61 0.71

TABLE II: Test results considering negative images with (SFN) or without
Sobel filter (NSN) applied. Bold values correspond to best results.

4 scenarios are considered for each model (Figure 2). The
results are shown in Table I and Table II:

o SFO: Sobel filter applied on the original hologram.
« NSO: No sobel filter applied on the original hologram.
o SFN: Sobel filter applied on the negative hologram.
o NSN: No sobel filter applied on the negative hologram.

Below, the performance on the test dataset for the best mod-
els trained with Densenetl169, EfficientnetB7 and ViT_B_16
are analyzed (Figure 4). The inference is executed using a test
dataset with a total of 200 images, 20 images per class. Each
image per class is selected randomly to minimize the chance
effect during inference. The error (distance error in ym) during
inference is evaluated taking ROI pointing the same region as
the one taken during training or the bottom left corner (Figures
5, 6,7, 8,9 and 10). This error, independently of the chosen
architecture either Densenet169, EfficientnetB7 or ViT_B16,
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Fig. 3: valuation accuracy (val. accuracy) per model architecture
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Fig. 5: ViT_B16 inference results considering images cropped at the center
(a) Test results for the best models (EfficientnetB7, Densenetl69 or of the input hologram
ViT_B_16). A ROI at the center of the original hologram has been considered:
in case of a CNN, a Sobel filter is applied on the negative version of the
hologram. For ViT_B16, negative images have been used without any Sobel
filter applied.
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- Fig. 6: ViT_B16 inference results considering images cropped in the bottom

left corner of the input hologram

(b) Same test as the figure (a), but taking ROI in the bottom left corner of
the hologram instead at the center.

Fig. 4: Test results for the best models: Densenetl169, EfficientnetB7 and
ViT_B_16 over the 10 classes (0 to 9).

1.0

is bounded by 1 — 3um. In case of ViT_B16, a slightly higher 0.8
number of errors is visible due to the lowest performance of
the model. Even if the model is pointing a different zone than % os
the one used during training, ViT_B16 performs well and the £
max absolute error in number of classes is of 1 class (1—3um). g 0.4
V. VIT vs CNN °
According to our results and considering the same ROI as 0.0

the one used during training, the best architecture for our 0 o 00 . 200

purpose seems to be EfficientnetB7. Such a model achieves Inferences

a better performance compared to a model trained using ViT.  gig 7. EfficientnetB7 inference results considering images cropped at the
A ViT network should perform as well as a residual neural center of the input hologram

network such as Densenet or Efficientnet [15], even reaching
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Fig. 8: EfficientnetB7 inference results considering images cropped in the
bottom left corner of the input hologram
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Fig. 9: Densenet169 inference results considering images cropped at the center
of the input hologram
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Fig. 10: Densenet169 inference results considering images cropped in the
bottom left corner of the input hologram

a higher performance. The reason must be linked to how
these neural networks see the holograms (images passed to the
neural network) during training. Different figures are proposed
as shown on Figure 11, Grad-Cam’s (as described in [16]) for
CNN and the attention map for ViT.

Grad-cam is giving an idea of where a CNN network
is looking during training. The figure shows where
the neural network focuses after the last convolution
layer  (block7d_project_conv  for EfficientnetB7 and
conv5_block32_2 conv for Densenetl69) before batch
normalization and prediction layer (dense layer). The network
seems to focus its attention on specific location inside the
hologram. In case of Densenet169, the CNN strongly focuses
on these specific locations inside the hologram. For ViT
models, the attention map (Figure 11) is generated. This
demonstrates that the model tries to look globally inside the
hologram which significantly influences the performance of
the model during the training and the inference. It seems
that ViT is slightly less accurate during training (val.loss and
val. accuracy) than CNN (Densenet169 or EfficientnetB7).
Densenet169 focuses more on specific asperities which
explains the obtained results (Figure 3), the valuation
accuracy reaches an higher value compared to EfficientnetB7
or ViT_BI16. It seems that the CNN architecture learns the
shape of the target more than the physical phenomena. During
inference and taking the same ROI for the test dataset, we
can see that EfficientnetB7 performs slightly better than
Densenet169. This goes in the direction of our assumption as
EfficientnetB7 tries to consider the hologram more globally
during training. Taking a different ROI, ViT_B16 achieves a
better performance. This is totally explainable as the attention
map shows, ViT_B16 is learning from the whole hologram
and not specific locations (this is due to the self-attention
[17]). ViT models seem to focus their attention on the
phenomena more than the target. The general performance of
the model is slightly impacted, but the max absolute error
stays in an acceptable range bounded by 1 — 3pm.

VI. CONCLUSIONS

Our experiments showed that the reconstruction distance
can be found for digital holography using deep learning
techniques, especially classification models. The 1—3um scale
has been reached for a dataset of holograms on a scale of
10pm. This solution allows to surpass by a factor 2 to 3 the
optical resolution of the microscope (using a 10x microscope
objective) knowing that the optical resolution is defined as:
r = \/(NA)? = 6.6um (with NA = 0.3: numerical aperture
and A = 0.6um). The max error of one class stays below or
equal to 1 — 3pm when the model fails to recognize the right
distance. ViT models are more robust when pointing arbitrary
ROI than CNN networks. In future work, our focus will be on
regression models. A regression might help to reach a higher
accuracy as the problem of auto-focusing is not a discrete, but
a continuous function.
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Fig. 11: Grad-Cam (CNN) and attention map (ViT) of the best architecture
(EfficientNetB7, Densenet169 & ViT_B_16)
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