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a b s t r a c t

Fuel cell durability being one of the technical bolts regarding the technology industrialization in the
automotive sector, durability improvement methods are particularly relevant. Fault tolerant control
process enables to increase fuel cell durability by detecting and correcting fuel cell faults in real
time. Fuel cells are prone to faults because they are very sensitive to operating conditions. In vehicle
application, fault risk is exacerbated as dynamic conditions are often encountered. Dynamic conditions
make the fuel cell control harder because it impacts reactants supply, thermal management, water
management. . . If not corrected, those faults degrade the fuel cell and reduce its remaining useful
lifetime.

Fault tolerant control consists in diagnosing faults, then taking corrective actions to resolve those
faults. This article treats the diagnosis part, which consists in detecting and identifying faults, in vehicle
application. Vehicle applications engender several constraints as the reduced cost, the hydrogen usage
and computation limitations or the safety regulations for algorithms implementation. Three steps are
necessary for diagnosis: real time measurements, useful information extraction, and classification. In
this article, a state-of-the-art of methods for each of these steps independently is presented. In the last
section, useful explanations to convert offline diagnosis algorithm into an embedded diagnosis tool are
provided.

© 2022 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Glossary

PEFMC Proton Exchange Membrane Fuel Cell
FDI Fault detection and isolation
FTC Fault Tolerant Control
EIS Electrochemical Impedance

Spectroscopy
PCA Principal Component Analysis
LDA Linear discriminant Analysis
(K)FDA (Kernel) Fisher Discriminant Analysis
ANFIS Adaptive Neuro-Fuzzy Inference Sys-

tems
SVM Support Vector Machines
DB scan Density Based clustering
KNN K-Nearest-Neighbor
GMM Gaussian Mixture model
DA Discriminant Analysis
FFT Fast Fourier Transform

1. Introduction

Global warming, air pollution and health issues incite the use
f other transportation propulsion solutions rather than tradi-
ional thermal engines. Electric vehicles having no local green-
ouse gases emission, they present a particular interest for
ehicular applications. This trend intensified the last few years
nd the global electric car stock reached 5 million vehicles in
019 (Mawonou et al., 2021). Hydrogen fuel cells are electro-
hemical devices converting the chemical energy contained in
ydrogen into electrical energy. Fuel cell vehicles only require
everal minutes to fill the tank and their autonomy is higher
han the one of battery vehicles. Proton Exchange Membrane Fuel
ells (PEMFCs) are a promising technology for vehicular applica-
ion due to their high efficiency and low operating temperature
around 80 ◦C).

However, fuel cell durability and reliability are limiting fac-
ors to their commercialization. Fuel cells are prone to faults.
6688
Faults are anomalies leading to performance losses and degra-
dation (Andújar et al., 2018; Zheng et al., 2013; Petrone et al.,
2013; Zheng et al., 2021). The five main faults are fuel cell flood-
ing, drying, fuel or oxidant starvation and catalyst poisoning. As
presented in Section 3, those faults are not specific to automotive
fuel cell systems, but their cause are related to the ancillaries,
which are specific to the automotive application. To avoid early
degradation, diagnosis tools are very useful as they enable to
detect and identify faults in real time. From Fault Detection and
Identification (FDI), it is possible to take corrective actions to
correct the faults. Diagnosis with associated corrective actions is
called Fault Tolerant Control (FTC).

A bench of different methods and approaches can be used
to perform diagnosis. Andújar et al. (2018) presented the exist-
ing methods enabling to diagnose faults in the hydrogen line,
air/cooling subsystem, electrical circuit and even in the stack
itself on air-cooled polymer electrolyte fuel cells. Yang et al.
(2021) reviewed recent studies dealing with Solid Oxide Fuel Cell
diagnosis.

Diagnosis methods are usually separated into model based
and non-model-based approaches depending if diagnosis requires
a fuel cell model or not (for more information, please refer
to Section 5). Zheng et al. (2013) introduced non-model based
approaches while Petrone et al. (2013) reviewed the different
model-based diagnosis methods used to detect faults in fuel cells.
Yuan (2020) presented new developments dealing with model-
based observers, also called internal state observers, applied to
fuel cells.

Benmouna et al. (2017) presented both models based and non-
model-based diagnosis methods with an illustrative example of
anode flooding. Lin et al. (2019b) reviewed recent fuel cell diag-
nosis studies. The authors separated the different diagnosis tech-
niques into model based, data based and filter-based approaches.
Tang (2020) reviewed recent studies using EIS to diagnose fuel
cell faults. Electrochemical Impedance Spectroscopy (EIS) is a fuel
cell characterization method widely used for diagnosis purposes.

As mentioned above, multiple studies present the state of the
art of offline fuel cell diagnosis. However, online diagnosis and
more particularly embedded diagnosis for vehicle applications is
much less presented in the literature. In automotive applications,
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Fig. 1. General process of embedded fault diagnosis tool development: experimental data, online and offline process.
a lot of constraints and challenges are encountered for embed-
ded diagnosis tool development process. Those constraints are
addressed in Section 2.4.

This article objective is to clearly present the existing methods
and approaches to develop an embedded fuel cell diagnosis tool.
Diagnosis tool development mainly consists in 3 steps: the exper-
imental step, the offline step, and the online step. The different
approaches for each of these steps will be presented in this paper.
Note that embedded diagnosis is necessarily online, but online
diagnosis can be delocalized if there is a communication path
with an external computer.

The second section of this article presents an overview of on-
line embedded diagnosis tool development process, so the reader
understands the global context of this article and the constraints
of embedded application. The third section describes common
fuel cell faults and their causes in fuel cell vehicles. Fuel cell
diagnosis requires real time data acquisition (treated in the fourth
section of this article), useful information extraction (presented
in Section 5) and classification (explained in Section 6). Section 7
6689
provides to the reader some tips to embed the algorithm in a
vehicle. Finally, Section 8 concludes this article.

2. General presentation of fault detection and isolation (FDI)
tool development

The ‘‘Fault detection and isolation’’ tool (FDI) allows the de-
tection and identification of faults occurring in a system. This
information is very useful when applied to fuel cell systems as
corrective actions can be taken, leading to an increase of the fuel
cell lifetime (Dijoux, 2019; Aubry et al., 2020).

The goal of this section is to explain the FDI tool conception
process in detail, specifically for embedded application. As pre-
sented in Fig. 1, the development of an onboard FDI tool can
be separated into three major steps. They are the experimen-
tal, offline and online steps. Those steps are presented in the
firsts three sub-sections, which are not specific to automotive
applications. The fourth section is dedicated to the explanation
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f the additional constraints linked to the embedded automotive
pplication.

.1. Experimental part

Experimental data is required to develop an FDI tool. The
mount and type of data depends on the useful information
xtraction method. There are two main categories of useful in-
ormation extraction methods: the ones that are based on a fuel
ell model and the ones that are not.
The experimental data can be composed of the different mea-

ured fuel cell operating conditions (temperature, pressure, cur-
ent. . . variations). This data is used for model-based diagnosis
ethods (explained in Section 5.2), which consists of comparing

he outputs of a fuel cell model with the same outputs of real-
ime measurements. The amount of required experimental data is
ow if the model is based on physical equations (grey box model)
nd large if it is a black box model as data is required to train the
odel. For model-based diagnosis methods, experimental data is

equired to calibrate the fuel cell model.
The experimental data can also be composed of the differ-

nt measured fuel cell operating conditions, when faults are
eliberately generated on the fuel cell. This data is used for non-
odel-based methods (presented in Section 5.1), which consist of

dentifying fault patterns. All the faults that one wants to detect
ust be experimentally generated. This leads to a substantial
mount of data.
The experimental data generation is one of the trickiest parts

f diagnosis. Data should accurately represent the phenomena
ccurring in vehicular applications, even though data collection
s performed on a test bench. Data quality is of primary impor-
ance for diagnosis as it uses machine learning tools. The quality,
eliability and repeatability of the experiments are crucial (Cadet
t al., 2014).

.2. Offline part

The objective of the offline part is to select the database,
he data processing method, the useful information extraction
ethod, and the classifier.
To achieve this, multiple methods are tested offline, on a

omputer. The methods leading to the best chance of detecting
nd identifying a fault online are then selected.

.2.1. Database formation and labeling
In diagnosis applications, the real time measurements are

ompared to a database during the classification. This database
ubstantially influences the diagnosis results. The data may come
rom different sensors or characterization techniques. As the se-
ection of the measurements and characterization method is very
mportant, a focus is presented on this subject in Section 4.

Labeling the database is another important step in the diag-
osis tool conception. Labeling consists in attributing a label or
class (typically healthy, flooded, dried. . . .) to the experimental
ata. This step is especially required for non-model based useful
nformation extraction methods. This is tricky because it requires
he identification of exact fault, the moment when it is created, as
ell as its duration. Also, if two faults are generated at the same
ime, this could bias the database and the diagnosis results.

.2.2. Filtering and windowing
Experimental data may require filtering to isolate the useful

nformation. Filters are especially required when a fast Fourier
ransform is used to extract the useful information of a signal, to
void edge artifacts. Multiple tapering windows may be used.
6690
Moreover, the data acquisition frequency can be optimized
to obtain good diagnosis result without requiring large stor-
age space. Usually, many data samples are acquired at once, in
blocks. This is called interrupt buffered acquisition. The number
of samples in the blocks corresponds to the window length. This
parameter also has an impact on diagnosis results.

Finally, data can be normalized or standardized. Normalization
consists in rescaling the data in between 0 and 1. Standardization
consists in rescaling the data to have a means of 0 and a standard
deviation of 1. Data normalization or standardization are used to
be able to compare various data sources, which are not initially on
the same order of magnitude (for example stack temperature and
cell voltage). This avoids giving one parameter more importance
than another.

2.2.3. Useful information extraction and selection
Numerous methods exist to extract useful information. They

may or may not require a fuel cell model. A synthesis of the useful
information extraction methods is presented in Section 5.

For non-model-based methods, multiple tools exist to select
the best features. The first type is dimensions reduction methods
such as PCA (Principal Component Analysis), LDA (Linear discrim-
inant Analysis), FDA (Fisher Discriminant Analysis), KFDA (Kernel
Fisher Discriminant Analysis) (Li et al., 2014). In dimension reduc-
tion methods, only the most relevant information is kept. With
this method, the non-relevant or redundant information can be
removed which results in a better classification result since the
noise is lower. Moreover, this minimizes the data storage space
required in the vehicle.

For example, Li et al. (2018) and Zheng et al. (2021) used a
PCA algorithm to directly select the features while removing the
non-relevant information.

Another method to select the useful information is the GINI
calculation. This statistical formula determines the impurity of a
feature as presented on Fig. 2. The GINI impurity is a measure
of the likelihood of an incorrect classification. Its value varies
between 0 and 1, with 0 being the best feature, with no impurity
and 1 being a totally impure feature. The idea is to compare
the false positive and false negative samples when the feature is
activated to the true positive and true negative samples. This can
be used to grade the features as well as their threshold and select
the best ones.

For model-based method, the residual between the model and
the real time measurement is the useful information. Therefore,
the useful information selection consists in selecting the model.

2.2.4. Classification algorithm selection
A classification algorithm determines the category to which

a set of data belongs (typically faulty, fault type or healthy cat-
egories). As for useful information extraction methods, classi-
fiers are numerous. Therefore, they are presented in a dedicated
section (see Section 6).

The classifier selection consists in choosing the algorithm pro-
viding the best performances for the studied case, without requir-
ing too much computational time (this parameter is limited by
the automotive microcontroller performances).

Multiple classification algorithms have internal variables. Their
optimization should also be studied to obtain the best classifica-
tion probability.

2.3. Online part

Online diagnosis detects and identifies a fault in real time,
during fuel cell operation. The process is described in Fig. 1.

First, the real time data is acquired. The nature of the data
corresponds to the selected data type during the offline phase



J. Aubry, N.Y. Steiner, S. Morando et al. Energy Reports 8 (2022) 6687–6706

(
v
t
p
c

r

i
t
(

t
i
p
a

r
o
m
a
i
r
t
H
(
f

c
s
c
a

2

v
s
c
c
t
e

Fig. 2. GINI feature impurity coefficient explanation.
see Sections 2.2.1 and 4). Typically, the data type is cell or stack
oltage, temperature, pressure. . . measurements. If characteriza-
ion methods are used as EIS or polarization curves, the resulting
arameters (as the impedance, the exchange current density. . . )
an also be used as input data.
Then, these real time data samples are filtered with the pa-

ameters determined offline (see Section 2.2.2).
An additional computation is performed to extract the useful

nformation from the real time data. The useful information ex-
raction method has also been preliminarily determined offline
see Sections 2.2.3 and 5)

Finally, the real-time extracted useful information is compared
o the selected embedded experimental database. This compar-
son is performed using a classifier, which type and internal
arameters have been determined during the offline classification
lgorithm selection (see Sections 2.2.4 and 6).
In some model-based applications, a complex classifier is not

equired. The classification is performed by evaluating the value
f the residual between the model and the real time measure-
ent. Typically, if the difference between the real time voltage
nd the voltage determined by the model in healthy conditions
s high, the fuel cell is considered as faulty (for more information,
efer to Section 6). In this case, only a threshold value is required
o identify whether the fuel cell is in healthy or faulty condition.
owever, different thresholds values, or multiple fuel cell models
healthy and faulty) must be embedded to be able to identify the
ault.

The process to build a real time fault detection and identifi-
ation algorithm suitable for fuel cells has been described in this
ection. All these methods must be adapted to the automotive
onstraints. The next subsection presents main constraints that
re encountered in embedded automotive applications.

.4. Embedded systems diagnosis constraints

Automotive fuel cell diagnosis is usually embedded in the
ehicle to be able to detect and identify a fault in real time. This
pecification leads to several constraints. The main ones are the
omputation time, the storage space, the safety regulations, the
ost and the volume/weight of the diagnosis system. Moreover,
he diagnosis frequency should be high enough to detect the fault
arly enough and correct it before degradations occur.
6691
2.4.1. Computational time limitations
Diagnosis requires solving many equations. In a vehicle, these

equations are computed by a microcontroller. Microcontrollers
are compressed microcomputers on a chip used in embedded
systems. Microcontrollers have a limited capacity in terms of
computation speed and internal storage capacity. As Fault Detec-
tion and Identification is developed for fault tolerant purposes,
the frequency of the diagnosis must be high enough to allow a
rapid fault correction (before irreversible degradation occurs).

The two steps requiring the highest computational time are
the useful information extraction and the classification. Therefore,
the computational time available on the automotive microcon-
troller should be considered for selecting the methods.

2.4.2. Memory space
In a vehicle, data storage capacity is limited. The compara-

tive database to which real time samples are compared during
classification must be stored in the vehicle microcontroller. This
requires internal memory space. Thus, the database should be
adapted to the available storage capacity. However, a minimum
of data samples is required as the diagnosis should be adapted to
the largest number of situations in a vehicle. In other words, the
diagnosis should work properly at the beginning of fuel cell life,
but also after several hundred or thousand hours of operation.
Therefore, the embedded data quality and representativeness are
crucial for diagnosis application.

2.4.3. Safety regulations
A vehicle controller is subject to very strict regulations to

avoid safety issues as malfunctions can have dramatic conse-
quences. Diagnosis can be implemented to a vehicle controller,
but the controller is also required for the normal driving use.
Thus, the additional diagnosis code layer must be highly checked
to avoid any malfunctions that could lead to unwanted actions on
the driving experience.

2.4.4. Cost and volume
In the automotive industry, competition is fierce, so the manu-

facturing cost is of primary importance. Thus, the cost of each ad-
ditional sensor, additional storage space, microcontroller and all
additional equipment must be considered. This directly impacts
the choice of measurement and characterization type.

Also, the volume of the equipment should be as low as possible
as the space is a critical parameter in automotive applications. For
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xample, the cooling circuit might have to be bigger to properly
ool down the electronics.
Diagnosis may also be used to limit the number of redundant

ensors while ensuring the security of the system as presented in
ef. Behravan et al. (2019).

.4.5. Impact on the driving experience
Several diagnosis methods can be based on electrochemical

haracterization methods as polarization curves, or Electrochem-
cal Impedance Spectroscopy (EIS). However, polarization curves
nd EIS measurements require several minutes to be performed.
uring that time, the produced power is not flexible. This can be
roblematic in fuel cell automotive systems because the power
emand is not known in advance and the produced power may
e lower than the power demand. A battery or an ultracapacitor
an provide the power required by the vehicle during the char-
cterization in some cases but there should not have any impact
n the driving experience.

.5. Partial synthesis

The different parts in diagnosis tool development are an ex-
erimental part, an offline part, and an online part. The optimum
lgorithms and associated parameters are determined during the
ffline part, using the experimental data. The online part is the
ntegration of the best diagnosis method in the vehicle. The
mbedded automotive application generates a lot of constraints
resented in Section 2.4.
This section objective is to give the reader an overview of

he global workflow of diagnosis tool development process. Sev-
ral steps require deeper explanations because a lot of methods
xist, and they are of primary importance for diagnosis results.
herefore, they are the core of separated sections. This is the case
or measurement and characterization methods (Section 4), use-
ul information extraction methods (Section 5) and classification
lgorithms (Section 6).
Diagnosis is required because faults occur in fuel cells. To

nderstand the context of the study, the next section is dedicated
o the presentation and explanation of the major fuel cell faults.

. PEMFC faults and failures in an automotive system

Fuel cells are prone to faults, especially when the current
rofile is dynamic. This section presents the most frequent and
egrading fuel cell faults. Note that those faults are present in
ll fuel cell applications. However, the ancillaries of the fuel cell
ystem differ in automotive applications, so the causes of the
ailures too. This section provides the faults causes in automotive
pplications.

.1. Fuel cell automotive system presentation

A fuel cell needs ancillaries to operate. Those ancillaries al-
ow the reactants supply and their humidification, the stack and
eactants temperature regulation and the reactants and cooling
ressure regulation. Before enouncing the different failure modes,
presentation of the automotive fuel cell system is necessary to
nderstand faults causes.
Note that a fuel cell vehicle powertrain is not only composed

f the fuel cell and its ancillaries. Electric motors, batteries, DC/DC
onverters, an overall system cooling circuit, and multiple other
omponents are also required. However, this article is focused on
he diagnosis of the fuel cell only since it is the least reliable
omponent compared to its price. Thus, only the components
eading to possible and correctable fuel cell faults are presented.
6692
3.1.1. Reactant’s supply and pressure regulation
The air supplied to the fuel cell comes from the ambient. The

air compressor extracts the ambient air and compresses it to
generate a cathodic flow. Ambient air must be filtered to avoid
CO, NOx, and SOx to be supplied to the fuel cell as these particles
are very damaging for the fuel cell as presented in Section 3.2. A
counter pressure valve is present at the cathode outlet to adapt
the cathodic pressure.

Hydrogen is stored in a tank at several hundred bars. It should
be depressurized to several bars before entering in the fuel cell.
Thus, an expander is placed upstream of the fuel cell. Fuel cells
operate with an over-stoichiometric factor. This means that a
higher quantity of reactants than the amount needed to produce
the required power is injected. This over-stoichiometry avoids
reactants starvation, which is very damaging for the fuel cell (see
Section 3.2). However, releasing the excess of hydrogen to the
exhaust is not an option for cost and safety reasons. Thus, the
non-consumed hydrogen is recirculated and reinjected to the fuel
cell inlet. Hydrogen recirculation is usually carried out using an
injector.

3.1.2. Reactant’s humidification
Fuel cell membranes must be humidified to transport H+

protons. Jung et al. (2007) described all possible humidification
methods for fuel cell systems. In automotive systems, membrane
humidifiers are usually used to humidify the inlet gases as they
are not very complex and can be easily implemented (Firouzjaei
et al., 2020). The working principle of membrane humidifiers is
that hot and wet gas or water coming from the output of the
fuel cell is supplied to one side of the membrane humidifier.
Water and heat diffuse through the membrane humidifier and
humidify the cold inlet reactants that diffuse on the other side
of the membrane (Hwang et al., 2012). The inlet gas humidity is
controlled by intermittently bypassing the humidifier.

3.1.3. Fuel cell cooling circuit
The cooling circuit controls the stack temperature. A coolant

liquid flows into the fuel cell cooling channels. This liquid must
resist to negative temperatures to avoid any freezing during win-
ter. A pump circulates the coolant, and the coolant is cooled down
using a radiator (air exchanger). The radiator fan speed is adjusted
to adapt the coolant temperature. Three parameters are regulated
to adjust the stack temperature: the coolant pump speed, the fan
speed and the flowrate of coolant exchanged with the fan (the
rest of the coolant is bypassed).

The cooling circuit also contains a heating element. This helps
the stack to heat up during cold or even freeze start (see Fig. 3).

3.2. Fuel cell faults

Fuel cells are prone to faults. The main ones are flooding, dry-
ing, anodic and cathodic starvation and catalyst poisoning. Those
faults have been widely presented in the literature. Therefore,
the faults mechanisms will not be detailed, only an overview of
the fault types, their causes and consequences are summarized
in Table 1. For more information, please refer to the references of
Table 1.

Hopefully, the reversible faults can be corrected. This is the
reason why early detection of faults is very important. The ob-
jective of this paper is not to go into details in faults mitigation
strategies. The reader can refer to Refs. Gallo et al. (2020), Dijoux
et al. (2017) and Aubry et al. (2020) for more information. Gallo
et al. (2020) proposed corrective actions for SOFC faulty condi-
tions regarding the fault magnitude. A Failure Mode and Effect
Analysis is presented in Aubry et al. (2020) in which corrective
actions for flooding, drying, starvation and catalyst poisoning are
suggested while in Dijoux et al. (2017), a Petri net is developed

to schedule corrective actions for fuel cell faults.
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Fig. 3. Scheme of the anodic, cathodic and cooling loop of an automotive fuel cell system.
Table 1
Faults causes and consequences in an automotive system.
Fault Brief description Causes Consequences References

Flooding

Liquid water molecules
block the active sites.
This induces starvation
phenomenon

Tear in the membrane humidifiera

• Performance losses
• Starvation Yousfi-Steiner et al. (2008):

degradation mechanisms associated
with water management issues
Owejan et al. (2009): two phases flow
modeling in fuel cells.
Lim et al. (2021): failure modes in the
cooling circuit system presentation
Polverino et al. (2017): humidification
or stack temperature control problems
causing drying

Cooling oversizingb

No radiator bypassb

Low stoichiometric factorb

Pressure higher than the saturation pressureb

Drying

Lack of water
hinders H+

protons to cross
the fuel cell
membrane

Humidifiera

• Increase of fuel cell
membrane resistance
• Increase of gas crossover
• Thermal fuel cell
membrane degradation
• Chemical fuel cell
membrane degradation

Coolant pumpa

Radiator fana

Leak in the cooling circuita

Problem in humidification controlb

Problem in stack temperature controlb

High stoichiometric factorb

Cooling under sizingb

Problem in humidification controlb

Problem in stack temperature controlb

Anodic
starvation

Lack of hydrogen
on the anodic
active sites

H2 circuit leakagea

• Cell reversal phenomenon
• platinum oxidation
• Carbon corrosion
• Catalyst degradation

Yousfi-Steiner et al. (2009): causes
and consequences of starvation on
PEMFCs
Ren et al. (2020): starvation faults in
automotive conditions
Liang et al. (2009): uneven current
distribution problems assessment
during anodic starvations
Liu et al. (2006): anodic and cathodic
comparison starvations on a 30 cm2

PEMFC
Gerard et al. (2010): experimental
study on cathodic starvation

Floodinga
Obstruction in the gas channelsa
Obstruction in the active areasa
Catalyst poisoninga

Too fast load demandb

Nitrogen purge badly regulated
(purge intervals, duration. . . )b

Injector control problemb

Cathodic
starvation

Lack of oxygen
on the cathodic
active sites

Compressor failurea

• Hydrogen Pumping
• Cell reversal phenomenon
• Catalyst degradation
• Thermal membrane
degradation

Leak on the air circuita
Floodinga
Obstruction in the gas channelsa
Obstruction in the active areasa
Catalyst poisoninga

Too fast load demandb

Compressor control problemb

Catalyst
poisoning

Poison species as CO
or H2S are adsorbed
by platinum

Air filter deficiency
• Loss of active area Zamel and Li (2011): contaminants in

PEMFCsUnpure hydrogen fueling
Internal pollutants

aMain component failure possible causes.
bControl/sizing mistakes.
4. Measurement and characterization methods

Fault Detection and Identification require real time measure-
ents to evaluate the state of health of the fuel cell. These real

ime data are obtained by sensors measurements or characteriza-
ion methods. In the first subsection, the different passive sensors
sed for fuel cell diagnosis purposes are presented. In the second
6693
subsection, a focus is made on an active characterization method:
Electrochemical Impedance Spectroscopy (EIS).

4.1. Passive measurement

Sensors are of primary importance to detect and identify faults
occurring in the fuel cell system. Different sensor types have been
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sed for diagnosis purposes. It appears that the most common
ensors are stack voltage, cathode inlet and outlet pressure, and
tack temperature sensors.
Li et al. (2014) and Li et al. (2016) chose cell voltages to

iagnose fuel cell faults. Fuel cell voltage depends on the perfor-
ances and state of health of the fuel cell. Thus, it is an indicator

or fault detection and identification. Stack voltage is usually not
ufficient for diagnosis as the fault can be hidden by the measure-
ent noise. This is particularly the case for vehicle applications
s the required power is high. Therefore, fuel cell stacks are
omposed of several tens of cells in series. It is often observed
hat the voltages of the cells located at different positions are
ifferent (Li et al., 2016). Moreover, analyzing cell voltage enables
o locate the fault and detect it before it spreads to the whole
tack.
However, measuring single cell voltages in automotive appli-

ations is not always possible due to the required data storage
pace and the number of sensors. Moreover, the pins taking the
easure must be very thin to avoid any short circuit, so their
echanical resistance might be insufficient because of vehicles
ibrations. Therefore, measuring voltage of packets of several
ells may be a good compromise.
Lim et al. (2021) used 5 temperature sensors and 5 pressure

ensors to detect failures in the cooling circuit. The large number
f sensors enables diagnosis precision and reliability. However,
his may not be feasible in a real automotive system because
he trend is to reduce the sensors for economic (and reliability)
easons.

Yousfi Steiner et al. (2011) used voltage measurement and
he pressure difference between the outlet and the inlet of the
athodic channel to detect flooding and drying. The pressure dif-
erence is indeed a good indicator for flooding as water droplets
ovements generate pressure oscillations across the electrode.

.2. EIS characterization

Electrochemical Impedance Spectroscopy (EIS) characteriza-
ion consists in injecting a small AC current at different fre-
uencies. The resulting voltage is analyzed, and the fuel cell
mpedance can be extracted. These excitations are repeated at
ultiple frequencies to obtain the impedance at those frequen-
ies. Usually, the AC current amplitude is equal or less than 10%
f the continuous current component.
The impedance is a state indicator: the membrane resistance,

he gas diffusivity and other internal parameters can be obtained.
aults impacting those physical parameters, EIS measurements
s a powerful tool to dynamically characterize a fuel cell and
etect failure modes. Yang et al. (2021) reviewed the different
xisting EIS studies used to diagnose faults in SOFCs. The authors
ainly presented papers using EIS to extract fuel cells model
arameters. Zhang et al. (2021) presented the different existing
EMFC characterizations methods and their online application.
Toyota used EIS measurements in the Toyota Mirai to compute

he membrane resistance (Maruo et al., 2017). This enables to
valuate the water quantity present in the stack during freeze
top and freeze start phases.
Fairweather et al. (2011) used EIS to model a Randles equiv-

lent circuit. The authors used pseudo random binary sequences
PRBSs) as excitation signal. Onanena et al. (2012) detected
looding and drying based on EIS measurements. Bouaicha et al.
2017c) presented an embedded EIS for the Nexa PEM fuel cell.
he authors used capacitors to generate the sinusoidal perturba-
ion and the STM32F4 microcontroller.

The implementation of EIS in automotive applications is not
asy. First, the AC component generation is not easily feasible in
classical electric vehicle powertrain system. The integration of
6694
an additional apparatus being able to inject an alternative cur-
rent is usually too expensive for automotive applications. More-
over, the steady state is required for the measurement duration.
The measurement duration depends on the injected AC current
frequency.

However, various solutions have been presented to overcome
those constraints.

For example, Narjiss et al. (2008) proposed to inject the AC
current through the DC/AC/DC converter. This converter is an in-
dispensable element in the classic fuel cell system to connect the
fuel cell to the DC bus. Thus, there is no additional cost. Depernet
et al. (2016) continued the work by proposing a control strategy
to avoid that EIS measurements perturbed the DC bus voltage. In
that sense, the EIS is suspended during load transient or when
the battery or ultracapacitor state of charge is low. Therefore, the
EIS procedure does not interfere the driving experience.

To reduce EIS duration time, Al Nazer et al. (2013a) proposed
broadband excitations for electric vehicles. The concept is to
inject multiple frequencies at once to obtain the impedance at
multiple frequencies at the same time. In a first article (Al Nazer
et al., 2013a), the authors proposed five different signal types:
white noise, pseudo random binary sequences (PRBSs), swept
sine, swept square; and square wave. In a second article (Al Nazer
et al., 2013b), the authors selected pseudo random binary se-
quence and square waves. These signals have been chosen to
facilitate the implementation in embedded applications as square
waves are easier to inject than sine waves. The authors com-
pared classical EIS (generated by sine waves) with square pattern
signals. They concluded that square waves and pseudo random
binary sequence signals led to a biased broadband identification,
but with a very low dispersion, which is suitable for embedded
EIS applications. In this article, the electronical circuit they used
to generate the square waves is presented. It is composed on a
transistor, a microcontroller, and a resistance.

Lu et al. (2019) injected a current pulse to generate the AC
component at multiple frequencies at once. A continuous wavelet
transform is applied to the voltage and current signals and the
information is stored in the wavelet coefficients. The authors ex-
tracted the impedance from the wavelet coefficients distribution
and the maximum likelihood estimation. This process is made at
different frequencies to obtain the EIS spectrum.

Debenjak et al. (2015) presented their system to perform fuel
cell EIS measurements for embedded applications. The conception
steps of the device are presented in detail. The AC current is
generated through the DC/DC converter. The authors applied a
continuous wavelet transform using the complex Morlet mother
wavelet. The voltage and current complex coefficients were ex-
tracted to estimate the impedance. The fault detection was based
on a threshold value.

4.3. Partial synthesis

Inlet data is crucial for diagnosing faults in PEMFCs. Two
main approaches can be found in the literature: passive mea-
surements (voltage, pressure, temperature) and characterization
methods (polarization curves, Electrochemical Impedance Spec-
troscopy (EIS)). The main advantage of passive measurements is
that it does not require additional sensors. However, the data
analysis is more complex because it is not a direct state indicator.
Polarization curves are a static characterization method, but the
characterization time is high and not suitable to vehicle applica-
tions. EIS measurements is presented in the second subsection.
It is a powerful tool to dynamically characterize the fuel cell and
the resulting EIS spectrum is an accurate state indicator. However,
the AC component generation, and the steady state required
during the characterization time make it hard to implement EIS
in a vehicle. Solutions overcoming the problems are presented in
Section 4.2.
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Fig. 4. Schematic summary of the different useful information extraction methods.
. Useful information extraction methods

To perform diagnosis, the characteristics of the fuel cell re-
ponse in faulty condition must be identified. This is the useful
nformation identification step. There are two main approaches
or useful information identification: the model based one and
he non-model based one.

The model-based approach consists in comparing the real time
easurements to a healthy fuel cell model. The non-model-based
pproach consists in processing the data to identify faulty fuel cell
esponse characteristics.

Note that it is common to split diagnosis methods into model
ased and data-based methods in the literature. However, black
ox model methods are usually classified into data-based meth-
ds because they require a lot of data, although they use fuel
ell model. In this article, useful information extraction methods
re classified into model based and non-model-based methods to
void any ambiguity (see Fig. 4).

.1. Non model based

Non model based useful information extraction methods con-
ists in analyzing signal patterns typically representative of the
ault. Usually, these patterns are not directly observable and
urther data processing is often necessary. In this article the
on-model-based data processing methods are separated into
groups: the statistical analysis, the time frequential analysis

nd dimensions reduction methods. Zheng et al. (2013) proposed
detailed review on the non-model-based methods used for

uel cell diagnosis. This review has been recently completed in
ef. Wang et al. (2021), where the authors present recent work
sing signal processing, pattern recognition, principal component
nalysis and Bayesian network methods.

.1.1. Statistical analysis
Non model based methods goal is to identify features repre-

enting a fault. Statistics are widely used in signal processing. The
ain advantage is their ease of implementation as they do not

equire many computations and are easily interpretable.
Statistics are used in a lot of fields. Simple statistics as the

ean, the standard deviation, the variance, etc. give information
n the signal pattern. These basic features evolution is generally
epresentative of the state of health of the fuel cell. For exam-
le, when a fault occurs, the mean voltage decreases. Flooding
enerates voltage oscillation as the water droplets blocks the gas
hannels before being expelled. Thus, the voltage oscillates, and
he voltage variance increases.

Some statistics calculations describe the data distribution as
he kurtosis and the skewness factors. They are more advanced
tatistics, yet their computation complexity is low and interpre-
ation easy. The skewness factor is a measure of the asymmetry of
6695
the probability distribution. This enables to have an indication on
the data distribution and on the trend of the signal. The skewness
factor is complementary to the kurtosis factor as it also gives
indication on the distribution function shape. The kurtosis factor
represents the tailedness of the distribution function. If all the
data points are centered around the same value, the kurtosis
factor is less than 3. It is equal to 3 when there is a normal
distribution and above 3 when there are extreme values.

5.1.2. Time frequential analysis
The frequential approach usually gives a lot of information in

the signal processing field. In fuel cell diagnosis applications, two
main methods are used for time frequency feature extraction: the
windowed Fast Fourier Transform and theWavelet Transform. For
more time frequency features extraction methods information,
please refer to Krishnan and Athavale (2018).

The Fast Fourier Transform (FFT) is a widely known algorithm
that decomposes a temporal signal into a frequential signal. The
most represented frequencies in the signal are highlighted and
this can be very useful to detect a faulty condition. Note that
the FFT is used with a sliding window as data are acquired
over time. There is generally a compromise to make between
time resolution (small time window) and frequency resolution
(large time window). Also, the signal is usually transformed by
a tapering function because edge artifacts could be observed on
non-periodic signals (Broughton and Bryan, 2018).

The Wavelet transform is semblable to the FFT except that the
tapering function is a wavelet function. Multiple types of wavelets
can be used to transform the signal. The main advantages of the
wavelet transform are their good time/ frequency resolution, and
they recognize easier signal singularities than FFT. Two types of
Wavelet transform exist: the continuous wavelet transform, and
the discrete wavelet transform. In the discrete wavelet transform,
the signal is separated into the high frequency part coefficients
named approximations and the low frequency part coefficients
named details.

From the FFT and the wavelet transform, it is possible to
directly use the frequencies amplitude or wavelet coefficients or
to perform a deeper analysis as for example the total harmonic
distortion calculation. The total harmonic distortion is a measure
of the signal frequencies spread which can be interesting to detect
a fault.

5.1.3. Dimension’s reduction
Some dimension reduction methods can be used to extract

features. Indeed, the PCA (Principal Component Analysis), LDA
(Linear Discriminant Analysis) or FDA (Fisher Discriminant Anal-
ysis) consist of changing the observation space to reduce the
number of observation dimensions. In other words, we change
the axes orientation to be in a plane where we keep a maximum
of information (for example, in PCA, the maximal information
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orresponds to variance maximization). Reducing the number of
imensions reduces the number of variables to represent infor-
ation. Some studies use these methods after extracting features

statistics or frequencies for example). Other studies use the PCA
n extracted raw data (voltage or pressure for example). The
esulting PCA matrix has no physical meaning, it just represents
ata information in a different way. These methods can also be
ssociated with a kernel function. The use of kernel functions
nables to get further than linear transformation and to deal with
ore complex data patterns.

.2. Model based

One approach to diagnose whether a fuel cell is in faulty
ondition or not is to build a model of the fuel cell describing its
ormal operating condition. This model will be then compared to
measurement of the operating fuel cell. The difference between
he model and the measurement is called residual. If the residual
s high, that may mean that a fault is occurring.

Different types of models exist. Physical models, based on
he physical principles of the fuel cells are called ‘‘white box’’
odels. However, those models are rare in the fuel cell field as
any phenomena are not accurately understood and it is hard

o determine the parameters values of the analytic equations. For
uel cells, physical equations are usually adapted by using em-
irical coefficients. Those coefficients are mainly obtained from
xperimental data. This type of model is called ‘‘grey box’’ models.
ther models are not based on physical equations but are directly
alibrated thanks to experimental data. This type of model, that
an be seen as a mathematical model of the fuel cell, is called
‘black box model’’. A detailed review on the model-based meth-
ds used for fuel cell diagnosis can be found in Petrone et al.
2013). Recently, Wang et al. (2021) completed the recent litera-
ure regarding PEFMC diagnosis methods. The authors separated
he model-based methods into analytical model-based methods
nd black box model methods. In their paper, the analytical model
ethod groups parameter identification methods, observer-based
ethods and parity space methods while the black box model
ethods gather neural networks, fuzzy logic and machine learn-

ng methods. The review (Zhao et al., 2021) presents recent
EMFC models (physic based or not) used for real time control.

.2.1. Grey box models
A common output of a fuel cell model is the stack voltage.

nalytic voltage models can be based on the Butler–Volmer,
ernst or Fick’s laws. The pressure is also an important parameter
o model as pressure oscillations are representative of flooding for
xample. Some pressure models are presented in Section 5.3.
An interesting grey box model approach is the equivalent

ircuit models. The idea is to consider the fuel cell as an electric
ircuit composed of resistors, capacitors, and eventually induc-
ances, constant phase elements or other electrical components.
his type of model is easily understandable and the electrical
odel components represent physical fuel cell properties as the
embrane resistance. The most common fuel cell equivalent
odel is the Randle’s model. This circuit is composed of two

esistors, a capacitor, and a Warburg element. One resistance
epresents the membrane resistance. The capacitor represents the
harge accumulation phenomenon in the double layer area. The
ctivation and the concentration losses are modeled by the other
esistance and the Warburg element represents the mass transfer
henomenon.

.2.2. Black box models
Black box models consist in finding mathematical equations

epresenting the fuel cell by calibrating it using experimental
6696
data. Neural networks are very useful for this type of
application.

As presented in Petrone et al. (2013), adaptive neuro-fuzzy
inference systems (ANFIS) algorithm also uses neural networks.
The fuel cell is modeled with fuzzy logic, but the membership
function and the fuzzy rules are optimized thanks to a neural
network.

In addition to classification applications (see Section 6.2), Sup-
port Vector Machines (SVM) can be used to model a fuel cell.
Indeed, SVM can resolve regression problems. The principle of
SVM regression is not to minimize the error in the least square
error sense as classic linear regression methods do. In the SVM, a
flexibility is introduced to have a certain error acceptance in the
model.

5.3. Use of information extraction methods for fuel cell diagnosis

Statistical features have been used in Lin et al. (2019a). The
authors extracted 9 statistical features (minimum, maximum,
mean, median, the smaller and bigger quartile, standard devia-
tion, skewness and kurtosis) of sensors data. Dimension reduction
methods (principal component analysis, factor analysis and linear
discriminant analysis) were applied to select the best features.

Benouioua et al. (2014a) applied a multi fractal analysis based
on the wavelet transform modulus maxima to detect anodic
starvation, cathodic starvation and sub pressure faults on PEMFCs.

Pahon et al. (2016) used the detail coefficients of a discrete
wavelet transform to diagnose the high air stoichiometry fault on
a PEMFC. Stack and cells voltages and the air pressure drop were
used as input signals.

A PEMFC water content model has been performed by us-
ing the energy intensity of reconstructed vibrating voltage (EIV)
based on wavelet transformation in Ma et al. (2020). The authors
used the Sym20 wavelet basis function, and their model was
applied to detect anodic flooding.

Mao et al. (2018) performed a Kernel principal component
analysis to reduce the dimension number of sensor data to four.
Then, a wavelet packet transform was applied to extract the
features. Finally, the two most relevant features were selected
using a Singular Value Decomposition technique.

Principal Component Analysis (PCA) was used by Zheng et al.
(2021) to extract the most relevant features for air leakage and
fuel starvation detection on an SOFC. PCA was applied on 74
variables and 10 have been selected as the correlation between
the variable and the faults were high.

Mohammadi et al. (2015) applied an FFT to the voltage signal
in order to detect fuel cell drying and flooding. The authors
identified the 7 first harmonics as being the relevant features for
drying and flooding detection.

Model based methods have also widely been used for fuel cell
diagnosis purposes.

Gu et al. (2021) developed a PEMFC model to detect flood-
ing using a Long Short Term Memory (LSTM) neural network.
They implemented their flooding diagnosis tool to a microcon-
troller and tested it on an automotive fuel cell system. The al-
gorithm was developed offline using Matlab and implemented
online using Simulink.

Lu et al. (2019) modified a Randle model to better fit to the
fuel cell. The Warburg was replaced by parallel resistance and
capacitor and replaced the double layer capacitor by a Constant
Phase Element (CPE). They used EIS generated with a current
pulse injection and treated with a Morlet wavelet transform.
The authors used a nonlinear least square method to identify
the model components. Three model parameters are selected as
features: the ohmic resistance, the polarization resistance and the
resistance associated to mass transfer.
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Laribi et al. (2016) also used the Randle model with a CPE to
odel the fuel cell under different hydration conditions. A feed

orward neural network with one hidden layer has been used to
dentify the parameters of the Randel model in real time. The bias
nd weights are adapted using the gradient descent algorithm.
he objective is to determine the hydration level in real time to
dapt the control by adjusting the operating parameters.
Another equivalent circuit model has been presented in

ouaicha et al. (2017a) and Bouaicha et al. (2017b). An anode,
embrane and cathode models are put in series to model a
exa PEMFC. The elements of the fuel cell model are resistors,
apacitors, and a voltage source. An additional model composed
f a resistor and an inductance represents the impedance of the
lectric wires and other additional components.
A model based diagnosis method was employed in Ref. Steiner

2010). In their studies, the authors modeled a healthy PEMFC
sing an Elman Neural Network. The Elman Neural Network is
recurrent neural network with one hidden layer. The mod-

led variables were the cathodic pressure for flooding detec-
ion (Steiner, 2010) together with the stack voltage to detect both
looding and drying (Yousfi Steiner et al., 2011).

In their study, Lee et al. (2019) used five different residuals
o detect faults in the stack, the air supply system, the water
anagement system, the thermal management system and the

uel supply system. Those residuals have been extracted thanks to
ive models. The faulty thresholds have been defined as 3 times
he standard deviation of the residuals obtained with nominal
perating data.
Petrone et al. (2019) used a Fouquet model to extract inter-

al PEMFC properties. To accelerate the impedance parameters
dentification, the authors bounded the parameters values by the
ntervals. Those intervals were found using a branch and bound
ethod.
Arama et al. (2020) modeled the internal resistance at high

requency and the biasing resistance at low frequency to estimate
he fuel cell state, flooded or dried. The authors used a neural
etwork with 3 neurons input layer, two hidden layers composed
f 20 and 10 neurons and two neurons in the output layer. The
ynamic gradient descent algorithm was used to estimate the
eights of the neural network.
With a similar approach, Laribi et al. (2019) used a feed for-

ard neural network with two hidden layers of 20 and 10 neu-
ons. This neural network enables to estimate the Randles model
arameters, namely the membrane resistance, the double layer
apacitance, the polarization resistance, the diffusion resistance,
nd the diffusion time constant. The values of those parameters
ndicated the health sate of the fuel cell and enabled to detect
rying or flooding.
Pohjoranta (2015) modeled the voltage of a multi stack SOFC

sing six recurrent neural networks with 5 hidden neurons and
0 past inputs. They used the Apros and Matlab tools to extract
nline residuals and detect fuel cell degradation.
In Zheng et al. (2017), a reservoir computing method is used

n frequential signals to diagnose PEMFCs faults. The studied
aults were carbon monoxide poisoning, cathodic starvation, de-
ective cooling and natural degradation.

Shao et al. (2014) developed a fuel cell model based on the
afel equation and a heat transfer equation. This model was
oupled to an ensemble ANN to diagnose faults in the PEFMC
ystem.
A back propagation neural network is used in Wu and Zhou

2016) to model a healthy fuel cell. Voltage and cathodic pressure
esiduals are compared to a threshold to detect if the fuel cell is
n faulty conditions or not. The inputs model are the hydrogen
nd air inlet pressure, the injected water flowrate in the humid-

fier, and the coolant flowrate. The authors proposed a control
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reconfiguration to adjust the operating parameters when a fault
is detected.

Lebreton et al. (2015) also modeled voltage and cathodic pres-
sure using a 3-layer feed forward neural network to detect flood-
ing. The authors proposed a self-tuning PID to correct the fault in
real time.

Barzegari et al. (2019) modeled the fuel cell voltage operating
in a dead-end mode using ANN. Dead end mode cause water ac-
cumulation and flooding. In a first study, the authors used an ANN
with one hidden layer. The oscillations due to the accumulation
of water were not correctly modeled. Thus, the authors added
one hidden layer and tested multiple architectures and activation
functions. The best results were obtained with 14 neurons at each
hidden layer.

It is worth noticing that the previous authors used differ-
ent ANN structures (different number of hidden layers, different
number of neurons per layer. . . ). Defining the ANN structure is
one of the trickiest part in artificial neural network model devel-
opment. In fuel cell modeling application, the structure should be
adapted to the stack type, the modeled fault type, the available
computational capacity. . .

Vural et al. (2009) used an Adaptive Neuro-Fuzzy Inference
System (ANFIS) to model a PEMFC voltage. The inputs on the
model were the current density, fuel cell temperature, anode
and cathode dew points and anodic and cathodic pressures. The
authors implemented their model using Matlab.

As mentioned in Section 5.2.2, Support Vector Machines (SVM)
can be used for classification or modeling purposes. In that sense,
Zhong et al. (2006) modeled a Ballard PEMFC using SVM. The
authors used a Radial Base Gaussian Function as a kernel function
of the SVM. The inputs of the models were only current density
and stack temperature.

One limit to model based methods to diagnose fuel cell faults
is the evolution of the fuel cell response over ageing. To overcome
those problems, some authors modeled fuel cell considering their
degradation for prognosis purposes.

Jouin et al. (2013a) proposed a state of the art of the existing
ageing PEMFC models. The authors clearly presented prognosis
and health management process. Morando et al. (2016) modeled
the fuel cell voltage by using an Echo State Network, which is
a reservoir computing method. This prognosis method enables
to predict the voltage. The voltage signal was filtered by the
Symlet 5 wavelet, and the Hurst exponent was evaluated. Another
prognosis approach is particle filters. This approach has been used
to predict the remaining useful lifetime of fuel cells in Jouin et al.
(2013b) and of hybrid electric vehicle prognosis applications in
Yue et al. (2021).

Fuel cell diagnosis might become obsolete with time because
fuel cell response changes with ageing/ degradation. Combining
diagnosis and prognosis enables to diagnose faults not only at
the beginning of fuel cell life, but also when degradation already
occurred.

5.4. Partial synthesis

Useful information extraction is either done by analyzing and
processing data (non-model-based methods) or to compare real
time measurements to a fuel cell model. Sections 5.1 and 5.2
present the theory of common useful information extraction
methods of non-model-based approaches and model-based ap-
proaches respectively. Section 5.3 is dedicated to the presentation
of practical studies for useful information extraction in fuel cells.
All those studies are summarized in Table 2. It is interesting to
notice that a lot of methods have been applied offline but only
few studies have been implemented to be used in embedded
applications.
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Table 2
Useful information extraction methods references.
Useful information extraction method Offline useful information extraction method Embedded useful information

extraction method

Signal statistics Lin et al. (2019a)

FFT Mohammadi et al. (2015) and Zheng et al. (2017)

Wavelet transform Benouioua et al. (2014a), Pahon et al. (2016), Ma et al. (2020) and Lu et al.
(2019)

Debenjak et al. (2015)

Dimension reduction Mao et al. (2018), Zheng et al. (2021) and Lin et al. (2019a)

Equivalent circuit model Lu et al. (2019), Laribi et al. (2016), Bouaicha et al. (2017a,b) and Petrone
et al. (2019)

Physical laws model Lee et al. (2019) and Shao et al. (2014)

Neural networks Steiner (2010), Arama et al. (2020), Laribi et al. (2019), Shao et al. (2014), Wu
and Zhou (2016), Lebreton et al. (2015) and Barzegari et al. (2019)

Gu et al. (2021) and
Pohjoranta (2015)

Adaptive Neuro-Fuzzy Inference Systems Vural et al. (2009)

Support Vector Machine Zhong et al. (2006)
6. Classification algorithms

Once the relevant information has been extracted, the classi-
ier allows to determine whether the real time extracted samples
orrespond to a fuel cell faulty or healthy state.
A very simple way to classify is to determine thresholds that

eparate healthy from faulty data. This type of classification is
lso called linear classification. References using this method are
vailable in Section 6.3. However, most of the time, this threshold
eparation is not sufficient to accurately determine the samples
lass because the separation can be more complex than a simple
ine. In this sense, machine learning tools are used. These tools
nable to recognize complex patterns, in numerous dimensions,
nd accurately classify the new samples.
Several classifiers are based on distance calculation as knn,

means algorithms. Others depend on statistics such as the
ayesian classifiers. It is also possible to model the pattern of
ata for different class, as support vector machines and neural
etworks do. Some classifiers rely on the principle of decisions
rees such as random forest and decision tree algorithms. Finally,
he Density Based clustering algorithm (DB scan algorithm) com-
ines distance calculation and the density function of the points
o group the points having similar properties. Numerous other
lassification algorithms exist. However, the ones enunciated
bove are the most common ones used for diagnosis methods.
The classification algorithms are grouped into 3 groups in

his article: the supervised classification algorithms, the non-
upervised classification algorithms and a third group that con-
ains either non machine learning tools, or ensemble methods
hat can use supervised and non-supervised classifiers.

Supervised classification algorithms tools compare a new sam-
le to an existent database with known labels. On the contrary,
nsupervised classifiers group the existent database with the new
ample without prior information of the classes. Note that for
omprehension purposes, the algorithms are presented as binary
lassifiers in the next sections: there are only two classes. It is
owever possible to apply those methods to multiple classes.
In this section, the firsts two subsections explain the differ-

nt supervised and unsupervised classifiers. The third subsection
resent classification methods using thresholds and ensemble
ethods. References of the use of classifiers for fuel cell diagnosis
re given in the fourth subsection.

.1. Supervised classification algorithms

Supervised classification algorithms gather the
-nearest-neighbor (KNN), the Support Vector Machine (SVM),

he decision tree, the random forest, the naïve bayes, neural
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networks classifiers, etc. The term supervised means that the
labels of the training dataset are known. In other words, when a
new sample is classified by a supervised classifier, it is compared
to a bench of other samples, which labels have been identified
beforehand.

As presented on Fig. 6a, the k-nearest-neighbor (KNN) algo-
rithm consists in:

• calculating the distance of a new incoming point with all the
database points (of which labels are known).

• The attributed class to the new incoming point is the ma-
jority class of the k nearest points.

The two variables of the KNN algorithm are the choice of k
and the type of distance (Euclidian, Manhattan, cosine. . . ). More
details on the KNN algorithm operation and application can be
found in Li et al. (2014). The main advantage of the KNN al-
gorithm is that it is easy to understand its principle and use.
However, the distances between the new sample and all the
database points must be computed at each iteration, which makes
it time consuming.

Three mains naïve bayes classifiers exist: the gaussian naïve
bayes classifier, the multinomial naïve bayes classifier and the
Bernoulli naïve bayes classifier. Their names stand for the utiliza-
tion of the Bayes theorem and the term naïve refers to the naïve
assumption that the variables are independent. The classifiers
determine the likelihood of being in a class or in another. The
class that is the most probable is chosen. The Gaussian Naïve
Bayes algorithm (presented in Fig. 6e) employs a normal dis-
tribution function. This gaussian distribution function enables
to estimate a probability density function that is a statistical
estimation of the similitude between the new sample and each
class. The advantages of the gaussian naïve bayes classifier is
that the probability of having predicted the good class is given.
Moreover, only the mean and the standard deviation for each
class and each feature must be stored. That drastically reduces
the required storage space since for the other algorithms each
data point feature must be stored. However, this algorithm is
strongly dependent on the data and features quality since it has
no additional parameters and is only based on statistics.

Support Vector Machine (SVM) is another powerful classifi-
cation tool. A SVM classifier separates the data by creating a
hyperplane. SVM uses the best separating hyperplane by maxi-
mizing the distance between the separating line and the extreme
samples (this consists of maximizing the margin on Fig. 6b). These
extreme samples are named the support vectors.

Another approach is the decision tree one. The principle is to
build a tree composed of decision nodes and leaf nodes. Fig. 6c
presents a very simple decision tree applied to fuel cell faults.
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Fig. 5. Schematic summary of the different classification algorithms.
he main advantage of this method is that its representation
s straightforward, and the results are easily interpretable. The
lgorithm principle is as follows:

• First, the best feature is determined. It can be made by the
measure of entropy or the GINI coefficient calculation (see
Section 2.2.3). The best feature is the one that is the most
representative of the fault.

• Then, the decision rule splits the data into smaller subsets.
• The second-best feature is selected, and the classification is

made once again. This is repeated for all the features.

variant of the decision tree classifier is the random forest
lgorithm. As presented on Fig. 6d, the idea is to build a forest
f multiple decision trees. The selected class is the mode of the
rediction of all the decision trees in the forest. Random forest
elongs to ensemble method which combines multiple classifiers.
sing multiple decision trees usually improves the classification
ccuracy.
Neural networks can also be used for classification purposes

see Fig. 6f). The training of the neural network for classification
roblems consists in adjusting the weights and bias values to
ccurately predict the correct class for a dataset (whose labels are
nown). Once the weights and bias have been optimized (this is
ade offline), a new sample can be classified.

.2. Clustering algorithms

Unsupervised classification algorithms, also named clustering
lgorithms consist of grouping a data set into a fixed number
f groups. The biggest difference between supervised and non-
upervised classifiers is that the labels are not known in advance
or unsupervised classifiers. In other words, non-supervised clas-
ifiers consist in grouping the most similar samples of a dataset
ogether. This type of classification is very interesting as prelim-
nary labeling is not necessary. However, the biggest constraint
f this type of classification is to select the right number of
roups, or the threshold to consider a region as dense. Unsu-
ervised classification algorithms gather the K-means algorithm,
he hierarchical classifications, the DBscan (density-based spa-
ial clustering of applications with noise) algorithm and fuzzy
lassifiers.
The K-means algorithm, presented on Fig. 7a, resembles to the

NN algorithm, but the KNN is supervised while the K-means is
ot.

• At the first iteration, K centers are randomly set. These are
the centroids of each group.

• Then, the distance between the centers and each data point
is computed.

• The closest data from each center are grouped in the same
cluster.

• The barycenter from each cluster is computed and set as the
new centers.
6699
• Step 2, 3 and for are repeated until the stopping criterion is
reached.

The K-means algorithm is fast and can easily be implemented
on a large amount of data. In this algorithm, there are several
parameters to set. The first one is K which corresponds to the
number of clusters. The second one is the stopping criterion. It
can be a fixed number of iterations or the barycenter stability
(they do not move between two iterations). The third one is
the chosen distance. As for the KNN algorithm, the Euclidian
distance is the most common, but the Manhattan distance, the
cosine distance. . . can also be used. The initialization can also be
improved (as done in the K-means++ algorithm) to speed up the
convergence and avoid local optimum. In that case, the initial
centers are not randomly set but chosen to be coherent with data
distribution.

Another approach consists in introducing fuzzy logic in K-
means algorithm. This algorithm is named the C-means algorithm
(see Fig. 7d). To introduce fuzzy logic, the distance between
the point and the barycenter is considered. Thus, a membership
degree to the cluster can be introduced. The smallest the distance
between the point and the center is, the highest the membership
degree is.

Hierarchical clustering is also a powerful technique to group
similar data together. Its representation (see Fig. 7b) uses a den-
drogram. The principle for the ascendant hierarchical classifica-
tion is:

• Start with setting one cluster per data point.
• Group the 2 datapoints that are the most similar.
• Continue until obtaining only 1 cluster (all the data is

grouped together)

Once this dendrogram has been computed, it is possible to choose
the number of desired clusters. The biggest advantage of this
clustering type is that once the dendrogram has been build, it is
very easy and fast to compare the number of chosen clusters.

DBscan (Fig. 7c) means density-based spatial clustering of
applications with noise. The main difference between this method
and the other clustering methods is than the number of clusters
does not have to be set in advance. The fixed number of clus-
ters is replaced by a similitude criterion. The principle of this
algorithm is that clusters are defined by high density regions
separated by low density regions. In other words, when samples
are similar, they are grouped in the same area and the density
is high. The two parameters of this algorithm are the distance
type (Euclidian, cosine. . . ) and the minimum number of points
to consider a region as dense. This parameter should be defined
with care because this has a big impact on the classification
results.

6.3. Other classifiers

A very simple way of classifying that is widely used is to fix a
threshold value. This method is particularly used in
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Fig. 6. Illustration of supervised classification algorithms working principle.
odel-based methods (see Section 5.2). In model-based methods,
he generated residuals increase when a fault occurs. The linear
lassification consists in comparing the residual to the threshold
alue: if the residual is above the threshold, it is classified into the
aulty class. The main disadvantage of this method is the choice
f the threshold value. It is often determined by trial-and-error
ethods.
Ensemble method is simply a combination of multiple classi-

ication methods. The idea is instead of choosing the best classi-
ication algorithm (which is often tricky), multiple classification
lgorithms are used, and the attributed class considers the results
f multiple methods. This improves the classification robustness a
ot. A common ensemble method is the random forest algorithm
hich uses multiple decision trees. The classification methods
resented in the previous sections can also be combined. This is
lso an ensemble method.
6700
6.4. Use of classifiers for fuel cell diagnosis

KNN algorithm has been widely used to perform fuel cell
diagnosis. Onanena et al. (2012) tested a KNN algorithm and
a multiclass LDA classifier to detect flooding and drying on a
PEMFC. EIS experimental data have been treated and two set
of features have been selected and compared. The first set rep-
resented the real or imaginary parts of the EIS spectrum at 4
different frequencies. The second set was composed of extracted
physical parameters of the EIS measurements, namely the inter-
nal resistance, the polarization resistance, and the value of the
maximal phase. On the two tested data set in this article and after
a k fold cross validation, the KNN classifier revealed to have better
performances than the multiclass LDA classifier.

Li et al. (2014) also used the KNN algorithm to detect flooding
and drying faults on a 20 cell PEMFC. The considered signals were
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Fig. 7. Illustration of unsupervised classification algorithms working principle.
ell voltages and four set of features have been automatically
xtracted by using FDA, KFDA, PCA and KPCA. In their study,
hey also performed classification using a gaussian mixture model
GMM) and a Support Vector Machine (SVM) classifier. It resulted
hat with the dataset analyzed, all the classifiers had a good
lassification rate above 90% on their testing dataset.
Benouioua et al. (2014b) used a KNN and a SVM classifier to

etect anodic starvation, cathodic starvation, and sub pressure
aults. The features have been extracted with wavelet transform
odulus maxima algorithm and selected with a Minimum Re-
undancy Maximum Relevance method. On the dataset tested by
he authors, the KNN classifier appeared to have equal or better
lassification rate than the SVM classifier.
Lee et al. (2019) proposed a hierarchical fault diagnosis at the

omponent level. They detected faults in the stack, the air supply
ystem, the water management system, the thermal management
6701
system, and the fuel supply system. They used a model-based
approach. They first detected the faulty state when residuals
where greater than thresholds values. Those residuals were then
classified with 5 different classifiers: a KNN, a SVM, an Artificial
Neural Network, a Naïve Bayes classifier, and a Discriminant
Analysis (DA) method. Faults were generated on a fuel cell test
bench and all the classifiers were able to detect those faults.

Mao et al. (2018) used a K-means classifier to detect flooding.
They used a wavelet packet transform to extract the features.
They reduced the dimensions with both a KPCA (Kernel Principal
Component Analysis) and a SVD (Singular Value Decomposition)
algorithms to classify the relevant information only.

Lin et al. (2019a) developed a diagnosis algorithm to detect
fuel cell faults. After testing seven classifiers: decision tree, ran-
dom forest, Adaboost, KNN, ANN, and two SVM, the authors
selected the random forest algorithm as it was the one that had

the better results to detect faulty conditions on their data set.
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Escobet (2014) used a Fuzzy Inductive Reasoning methodology
o detect and identify faults in a fuel cell system. First, the
etection process consists of comparing measured data which are
uzzified and defuzzified to thresholds. The fault identification
tep is made possible by modeling the different faults. The Fuzzy
nductive Reasoning uses a variant of the KNN rule.

Lim et al. (2021) diagnosed five component failures of the fuel
ell cooling system. The detected failures were the pump perfor-
ance degradation, the radiator fouling, the tube clogging, the fan
isabled and the pump disabled states. They used 5 temperature
nd 5 pressure sensors to identify component failures with a SVM
lassifier.
Wu and Ye (2016) developed a least square support vector

achine classifier to detect anode poisoning and cathode hu-
idification on a solid oxide fuel cell. They added two hidden
emi-Mark models to compute the remaining useful lifetime of
he fuel cell.

Refs. Li et al. (2018) and Zheng et al. (2021) used a SVM
lassifier combined with a PCA to diagnose a solid oxide fuel
ell. In Li et al. (2018), the authors used a multi label SVM with
Radial Basis Function kernel classifier to detect fuel and air

eakage at different locations in the fuel cell system. The main
dvantage of a multi label classifier is that it requires much less
ata than a single label classifier because it detects the combi-
ation of multiple faults with single faults data. The authors used
emperature, pressure, and gas flow rate data in different location
n the system. Then, a PCA is applied to reduce the dimensions
hile keeping the relevant information. The data comes from
solid oxide fuel cell system model developed by the authors.
heng et al. (2021) detected air leakage and fuel starvation in a
OFC. They also used a Radial Basis Function as a kernel for the
VM classifier on experimental data from a 1 kW SOFC. Before
pplying PCA, the sensor data that had the highest variance has
een selected. The authors obtained better results with the SVM
lassifier than with the random forest algorithm and the artificial
eural network used as a classifier.
In Ref. Costamagna et al. (2019b), the authors used a SOFC

ystem model to train their classifiers. This solution avoids time
onsuming experiments to calibrate the machine learning algo-
ithms. Fours faults were detected: stack degradation, air leakage,
uel leakage and reformer degradation. The authors dealt with the
ncapacity of supervised machine learning classifier to accurately
etect unknown faults patterns. To overcome the problem, they
irst generated the training database using a SOFC system model.
hen, they used a domain adaptation technique, with signals
ontaining random errors of maximum 2% to update the dataset
nd be able to detect off design operating conditions.
Li et al. (2019) presented a spherical shaped multi-class sup-

ort vector machine with a diagnosis rule to detect faults of
EMFCs. The authors used high precise cell voltage sensors as
nput data and a fisher discriminant analysis to extract relevant
eatures of cell voltage data. An incrementation of the database
o increase the robustness of fault classification with fuel cell
geing is also proposed. The approach has been implemented in
microcontroller for online applications.
Lu et al. (2019) used a binary tree SVM to detect drying,

looding and air starvation. They used equivalent circuit param-
ters as features. The authors developed and implemented a fast
IS measurement method. The diagnosis system has been tested
nline by sending the measured data through USB to a computer.
he host computer uses C++ and Matlab to estimate EIS and
erform diagnosis.
In Ref. Zhou and Dhupia (2020), the authors used a relevance

ector machine to classify features obtained by an Orthogonal
inear Discriminant Analysis. The authors presented an adapta-

ion of the database to be robust to fuel cell ageing. The features
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were single cell voltages projected in a 5-dimensional feature
space. The authors incremented the database when the posterior
probability of fault detection was above a threshold.

Park et al. (2021) used seven multi-layer perceptron neural
networks having each a single output to diagnose thermal faults
in a PEMFC. Each neutral network is associated with one fault
or the normal state and classifies weather the fuel cell is in this
faulty condition or not. The studied failure modes in this article
are the stack performance degradation, sudden pump shut down,
sudden radiator fan shut down, pump performance degradation,
tube clogging and radiator fouling.

Li et al. (2015) used a Directed Acyclic Graph Support Vector
Machine to detect short circuit, a cooling water circulation prob-
lem, high and low air stoichiometry, and CO poisoning. Directed
Acyclic Graph Support Vector Machine consists of solving multi-
ple binary SVM which enables to distinguish two classes. Fisher
discriminant analysis is performed on voltage signals to extract
features.

Fan et al. (2013) detected PEMFC faults using a naive bayes
classifier. The classifier inputs were residuals computed with an
analytical model and experimental data.

Kim et al. (2012) developed a Hamming Neural Network as a
pattern recognition tool to detect faulty cells in a PEMFC fuel cell.
The authors used the voltage measurement to detect anomalies
in the fuel cell.

Polverino et al. (2015) presented a diagnosis method for SOFCs
systems. The authors used healthy and faulty models to gen-
erate residuals. The fault detection and identification has been
performed using thresholds values to classify the residuals.

In Ref. Steiner (2010), a healthy PEMFC using an Elman Neural
Network has been modeled. In their studies, the authors classified
the residuals into flooding or non-flooding class by defining a
threshold (Steiner, 2010). In another paper the same approach
was presented to also detect drying (Yousfi Steiner et al., 2011).
The thresholds have been obtained after several error-trials.

Wu and Zhou (2016) also classified residuals by defining volt-
age and cathodic pressure residuals thresholds. The authors pro-
posed a control adjustment when faults were detected.

An ensemble ANN method was used in Shao et al. (2014) to
detect cooling circuit failure, the increase of fuel crossover and
faults in the air or hydrogen supply system. Four back propaga-
tion ANN were composing the ensemble ANN. The classification
accuracy of each of the sub-ANN was between 75 and 85% while
the ensemble ANN appears to have a good classification rate of
92%.

The fault location is identified in Mohammadi et al. (2015) by
classifying frequential voltage features thanks to a feed forward
two layer ANN.

6.5. Partial synthesis

Classification takes the useful information extracted as an
input and give the class (in our case faulty, healthy and type of
faults) as an output. Classification algorithm is probably the most
highlighted section in the literature. In this article, classification
methods are grouped into supervised classification, unsupervised
classification and other methods that gather thresholds classifi-
cation and a combination of several classifiers (called ensemble
methods). A scheme with the different classification approaches
is presented on Fig. 5.

The first 3 subsections explain the principle of each classi-
fication algorithm. Section 6.4 presents the use of classification
algorithms for fuel cell diagnosis in the literature. Table 3 sum-
marizes the different papers found in the literature and group it
by method. As for useful information extraction methods, it is
interesting to notice that only few papers deal with the imple-
mentation of classification algorithms for embedded applications.
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Table 3
Offline and online classification methods references.
Classification method Offline classification references Online classification references

KNN Onanena et al. (2012), Li et al. (2014), Lee et al. (2019) and Lin et al. (2019a)

SVM Li et al. (2014), Lee et al. (2019), Lin et al. (2019a), Lim et al. (2021), Li et al.
(2018), Zheng et al. (2021), Costamagna et al. (2019a,b) and Li et al. (2015)

Li et al. (2016, 2019) and Lu
et al. (2019)

Decision tree Lin et al. (2019a)
Random forest Lin et al. (2019a), Zheng et al. (2021) and Costamagna et al. (2019b)
Bayes classifier Lee et al. (2019)

Neural networks Lee et al. (2019), Lin et al. (2019a), Zheng et al. (2021), Park et al. (2021),
Shao et al. (2014) and Mohammadi et al. (2015)

Kmeans Mao et al. (2018)

Thresholds Steiner (2010), Yousfi Steiner et al. (2011), Polverino et al. (2015) and Wu and
Zhou (2016)

Lebreton et al. (2015)

Ensemble method Lin et al. (2019a), Zheng et al. (2021) and Costamagna et al. (2019b)
Fig. 8. From offline to embedded diagnostics.
. From offline to embedded diagnostics

From the last sections, it appears that the offline diagnostics
as largely been covered in the literature, yet few studies extend
he diagnostic tool to a product that can be used in a vehicle. The
ffline step is mandatory to design the diagnosis algorithm, how-
ver, some additional work is needed to implement the diagnostic
ool in a vehicle.

Fig. 8 enunciates the main steps to implement an offline
iagnosis algorithm in a vehicle.
First, a rapid prototype is created. The objective is to test the

lgorithm in a microcontroller which has more flexibility than
n automotive Electronic Control Unit (the automotive micro-
ontroller). Rapid prototyping systems are flexible systems that
elp algorithm developers worldwide bring ideas to life in a real
nvironment, with real sensors and actuators, and in real time.
ith rapid prototyping, the algorithm can be tested in real-time

nd rapidly corrected, because there are less constraints than on
n automotive Electronic Control Unit.
Secondly, the algorithm is validated using the same database

han the one used offline. The offline algorithm results should
e very similar to the real time algorithm results (results may
lightly differ, due to variable data precision). With this non-
egression test, mistakes in the algorithm implementation can be

etected.
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Thirdly, the rapid prototype is connected to a test bench. Faults
are deliberately generated on this test station, to test if the rapid
prototype correctly detects the faults.

Once the rapid prototype has been validated, the algorithm
can be implemented in the targeted automotive Electronic Con-
trol Unit (ECU). Note that the diagnosis algorithm can be imple-
mented to an additional ECU specifically dedicated to diagnosis,
or on the existing ECU (dedicated to control). The rapid prototype
hardware must be selected according to the type of ECU, as
the programming languages should be compatible. As mentioned
in Section 2.4, the type of ECU should be chosen with care,
with specifications that are adapted to the vehicle constraints.
It should also apply with automotive safety regulations, to the
diagnosis algorithm complexity and storage requirements, whilst
remaining at low cost and volume.

Then, the algorithm is tested using the same database than
the one used offline and for the non-regression test of the rapid
prototype. Once again, the results of the ECU should be very
similar to the rapid prototype ones and to the offline algorithm
ones.

Finally, the ECU containing the diagnosis algorithm can be
tested on the vehicle. Faults can be generated in the vehicle by
imposing associated operating conditions. To that aim, one must
have access to the control unit of the fuel cell. The embedded
algorithm can then be validated in the vehicle.
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Fig. 9. Summary of the parameters impacting diagnosis.
. Conclusion

Fuel cells are prone to faults during operation. Fault occur-
ence can be limited by a good fuel cell control but not avoided.
aults cause fuel cell degradation and decrease the remaining
seful lifetime of the fuel cell system.
Fuel cell diagnosis enables real-time fuel cell state of health

stimation. Fault tolerant control actions can be taken to correct
aults and limit degradation. In other words, fuel cell diagnosis
nd fault tolerant control improve the fuel cell lifetime while
sing the best operating range.
In this article, the main methods to diagnose a fuel cell stack

n a vehicle during operation have been presented. The objective
f this paper is to give to the reader an overview of the existing
ethods to diagnose fuel cells and their constraints in vehicles.
As mentioned in Section 2, the database, the filter type, the

seful information extraction method, and the classifier method
ust be determined considering the embedded constraints. The
ethods selection is a compromise between the diagnosis ac-
uracy and reliability on one side and the cost, volume, and
mpact on the driving experience on the other side. Note that the
omputational time and the memory can be included in the cost
onstraint as it is possible to use more efficient microcontrollers,
ut the associated cost increases. The safety regulations are of
ourse very important, however, the algorithms themselves are
ot questioned but the way of their implementation is. Therefore,
t is not necessary to take the safety regulations into considera-
ion for the algorithms’ choice. Finally, the used sensors must also
e noninvasive sensors because they must be implemented in a
ehicle.
Regarding the measurements and characterization methods,

wo main approaches exist for vehicle applications: the one with
assive sensors (voltage, pressure. . . ) and the one with EIS char-
cterization. The main advantage of using passive sensors is that
here is no additional cost as those sensors are required for the
ystem control. EIS measurements give more information than
assive sensors on the fuel cell internal state. However, it is not
asy to generate sinusoidal current signal in a vehicle and the fuel
ell must be in a stabilized operating state during the measure-
ent. In other words, EIS measurements give more information

han passive sensors measurements, but their implementation is
arder, and the associated cost is higher than the one for passive
ensors.
Model-based and non-model-based methods can be used to

xtract useful information for diagnosis purposes. The chosen
ethod depends on the available computation capacity in the
ehicle microcontroller, on the storage capacity, and on the avail-
ble experimental data available. The useful information extrac-
ion is the most important step of the diagnosis process. The
eatures or model quality, and accordingly the database quality,
rastically influence the classification results.
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Classification methods are various. Obtaining a standardized
optimal classifier is not possible, as its relevance strongly depends
on the application. The main restrictive parameter in embedded
application is the computational complexity of the algorithm
because the Electronic Control Unit (ECU) must be capable of per-
forming the calculations in a matter of seconds. Some algorithms
as the gaussian naïve bayes classifier can also reduce the required
storage space attributed to classification as only the mean and the
standard deviation must be stored. Once again, it is important to
highlight that the classification accuracy is mainly linked to the
quality of its inputs: the useful information extraction method
chosen and the database quality.

In addition to measurement or characterization method, useful
information extraction method and classification method, a bench
of other parameters influence diagnosis results, as presented on
Fig. 9.

The signal source corresponds to the chosen measurement or
characterization method presented in Section 4. Typically, this
corresponds to cell or stack voltage measurements, parameters
from EIS or polarization curve characterizations, temperature or
pressure sensors. . . The sampling frequency of the measurement
also impacts diagnosis results. When decreasing the sampling
frequency, the data resolution decreases. As a result, some faults
may become undetectable. When increasing the sampling fre-
quency, the required storage capacity increases. Furthermore,
with a higher data resolution, more perturbation signals (noise)
visually appear in the data (see Shannon theorem).

Data acquisition windows also has an influence on diagno-
sis results. The number of samples per window as well as the
tapering function type act as a filter. Varying those parameters
(number of samples per window and tapering function type) is a
good practice to check the robustness of diagnosis results.

Multiple normalization or standardization techniques exist.
Normalization is required when the inputs for features extraction
or classification do not have the same order of magnitude (for
example temperature and voltage). It is common to normalize the
data between 0 and 1 or standardize the data between −1 and 1.

Finally, useful information extraction methods have been ex-
plained in further details in Section 5 and classification methods
in Section 6. The parameters enunciated on Fig. 9 are not specific
to automotive application, and even not specific for fuel cell
applications. The same workflow can be used for other diagnosis
applications. However, in addition to the parameters represented
on Fig. 9, one should also optimize the computational time, and
the storage capacity for embedded applications. The final objec-
tive is to obtain the most accurate and universal diagnosis tool
(valid for the highest number of situations in a vehicle).
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