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Abstract 

This work presents an approach to simultaneously identify reliable elasto-plastic properties 

of a 100 nm amorphous alumina film and plastic properties of its silicon substrate by the Finite 

Element Model Updating (FEMU) method, using exclusively nanoindentation 𝑃 − ℎ curves. A 

2D axisymmetric finite element model simulates the nanoindentation tests, and the Young’s 

modulus 𝐸, the initial yield stress 𝜎𝑦 and the hardening modulus 𝐻𝑝 of the thin film, as well as 

the yield stress of silicon 𝜎𝑦𝑠 are the parameters to identify. This work relies on a numerical 

design of experiments carried prior to the identification process. It uses the sensitivity of the 

nanoindentation force to a variation of the parameters to define an identifiability indicator (𝐼-

index) based on the conditioning of the inverse problem. It reflects the stability of the potential 

solution of the inverse problem. 𝐼-index minimisation below a certain value allows to ensure a 

reliable identification by designing the best combination of experiments in terms of relevant 

information. 𝐼-index analyses values demonstrate that combining Berkovich and cube corner 

nanoindentation tests at two different indentation depths brings sufficient information to well-

conditioned the inverse problem. Indeed, the increased penetration and the varied indenter tip 

shape induce differentiating factors which activates the substrate effect, or anvil effect, and 

allow the dissociation of the thin film plasticity from that of the substrate, and thus its 

identification. The identification procedure of the four parameters carried out with the designed 

dual nanoindentation test from several starting points reveals that the FEMU method converged 

to a unique solution. Lastly, the identified parameters are validated by confronting experimental 

and numerical (i) 𝑃 − ℎ curves of a Berkovich test on a bulk silicon sample and (ii) residual 

topographies using a 3D FEM of a Berkovich test on the composite system thin film – substrate. 

Keywords: Nanoindentation, Identifiability analysis, Inverse method, Parametric 

identification, Thin film, Anvil effect 
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1. Introduction 

Instrumented indentation, also named nanoindentation, is a popular technique for the study 

of materials mechanical properties at the submicrometric scale. As its name suggests, 

instrumented indentation allows monitoring the load and the penetration of a tip with known 

geometry, driven by a load depth step up to a maximum value 𝑃𝑚𝑎𝑥  (or ℎ𝑚𝑎𝑥), followed by the 

withdrawal of the indenter to zero. This technique is one of a few to allow testing the hardness 

of thin films, for which the range of thickness can go from around 50 nm to several microns, as 

it requires very small indentations. To that end, depth-sensing instruments are needed to provide 

the necessary resolution and reproducibility to record the penetration of the indenter into the 

material for hardness measurements. 

The material behaviour towards indentation may be fully elastic, elastic and plastic, or even 

fully plastic, and the combination of these responses is subtly reflected by the recorded 

nanoindentation curve. Therefore, a suitable model is required to understand and calculate the 

elastic and plastic contributions to the displacement. One of the most widespread method in this 

sense has been proposed by Oliver and Pharr (Oliver & Pharr, 1992, 2004). This model is based 

on analytical calculations carried out by Sneddon (Harding & Sneddon, 1945; Sneddon, 1948, 

1965), which states the common framework for axisymmetric indentation without friction.  

The accuracy of Oliver and Pharr analysis for the estimation of indentation hardness and 

modulus highly depends on the measurement of the projected contact area at maximum load 

𝐴𝑐. In practice, measuring accurately this area with depth-sensing instruments is challenging 

since plastic pile-up or elastic sink-in can occur and affect the size of the true contact area (Field 

& Swain, 1993; Le Bourhis, 2008). The eventuality of pile-up is hardly taken into account in 

this method. Thus, the projected contact area is likely to be underestimated leading to an 

overestimated indentation modulus or hardness. 

For purposes of extracting the intrinsic mechanical properties of thin films, dissociate the 

influence of the underlying substrate on the measured mechanical properties is needed. Indeed, 

the resulted indentation modulus and hardness from the Oliver and Pharr method in this case 

correspond to the combined/composite system substrate – coating, where the substrate effect 

on the estimated properties indentation is non-negligible, in particular with submicrometric 

films. 

Analytical models can be used to extract intrinsic elastic modulus of thin films. In 1992, Gao 

et al. proposed a model based on the analysis of the elastic contact between a flat punch and a 

film – substrate system to determine the shear modulus of the film (Gao et al., 1992). Each 

material compliance is function of the shear modulus of the film and the substrate and their 

Poisson coefficients through two weight functions, which depends on 𝑒/𝑎 ratio, where 𝑒 is the 

film thickness and 𝑎 the contact radius of the indenter tip. Another model is proposed by Bec 

et al. in 1996, based on the indentation of a rigid cylindrical flat punch of an homogeneous thin 

film deposited on a substrate (Bec et al., 1996, 2006). This composite system is modelized by 
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two springs connected in series, whose stiffness depends on the contact radius of the indenter 

tip 𝑎, the film thickness 𝑒 and the reduced modulus of each material. 

These methods use the Continuous Stiffness Measurements (CSM) technique, however several 

limitations exists in the application of such models for the extraction of elastic modulus of ultra-

thin film (from around 50 nm to 200 nm). At low depths, measurements uncertainties can be 

significant, and the effect of surface rugosity is non-negligible. What’s more, Pharr et al. have 

shown that displacement oscillations used in CSM nanoindentation can generate significant 

dispersions on the measured elastic modulus (Pharr et al., 2009). Plastic pile-up around the 

imprint is also hardly taken into account in these methods and, as the CSM technique uses the 

Oliver and Pharr model, it affects the measurement of the projected contact area, and thus elastic 

modulus calculations. Finally, these methods don’t allow to extract plastic properties, like a 

yield stress and a hardening modulus. Given these difficulties, estimating mechanical properties 

of the coating, strictly, from experimental measurements is challenging, and can be helped with 

finite element modelling simulations. 

Over the past twenty years, computation means have allowed the simulation of experiments 

involving more and more complex material behaviours. The numerical approach allows to 

achieve plenty of simulations of indentation tests in a short amount of time and brings an ease 

for tailoring experiments by integrating material subtleties like sample anisotropy or viscosity 

(L. Cheng et al., 2000; Y.-T. Cheng & Cheng, 2004; Daphalapurkar et al., 2009; Huang et al., 

2008; Peng et al., 2013), but also indenter tip blunting (Bei et al., 2005; Keryvin et al., 2017; 

Lu & Bogy, 1995; Shih et al., 1991; Torres-Torres et al., 2010; T. H. Wang et al., 2007; Youn 

& Kang, 2005). This approach also offers the integration of materials elasto-plastic behaviours 

for both substrate and coating, and thus allow the identification of the intrinsic elasto-plastic 

properties of thin films (Cai & Bangert, 1995; Lichinchi et al., 1998). 

This convenience motivates the predictive search for the most reliable experiment to identify 

elastic and plastic behaviour of thin films. In that sense, the use of the inverse analysis is suitable 

to reliably estimate elasto-plastic properties of thin films by modelling nanoindentation 

experiments (Zhao et al., 2006, 2007; Pac et al., 2014; Qasmi et al., 2006). 

The inverse analysis relies on the knowledge of the response of the modelized system to 

deduct parameters which describe the mechanical behaviour of this system. The inverse 

analysis of a nanoindentation numerical model covers several methods, like the Finite Element 

Model Updating (FEMU) method (Kavanagh, 1972; Kavanagh & Clough, 1971), the 

dimensionless functions method (Y.-T. Cheng & Cheng, 1998a, 1998b), or the neural network 

approach (Yagawa & Okuda, 1996). Whatever the method used, the main purpose is identical: 

identify the parameters of a material behaviour law. 

With that said, numerous works (Alkorta et al., 2005; Capehart & Cheng, 2003; Casals & 

Alcalá, 2005; Y.-T. Cheng & Cheng, 1999; Tho et al., 2004) have shown that multiple 

combinations of elasto-plastic parameters describing different materials mechanical behaviours 



 

 4/45 

may lead to the same indentation 𝑃 − ℎ curve. The solution of the inverse problem is thus non-

unique, hence the stress-strain relationship describing the material mechanical behaviour may 

not be uniquely determined by using a single nanoindentation test. It suggests that additional 

information is required. To that end, the combination of multiple nanoindentation tests 

performed with differentiating factors could enrich the inverse problem. It may be different 

indentation depths, different indenter tip geometries (Bucaille et al., 2003; Cao & Lu, 2004; 

Chollacoop et al., 2003; DiCarlo et al., 2003; Futakawa et al., 2001; Heinrich et al., 2009; Lan 

& Venkatesh, 2007; Le, 2008, 2009; Luo & Lin, 2007; Phadikar et al., 2013; Swaddiwudhipong 

et al., 2005; L. Wang et al., 2005; Yan et al., 2007, 2007), or by adding the topography of the 

residual imprint (Bocciarelli et al., 2005, 2008; Bocciarelli & Bolzon, 2009; Bolzon et al., 2004, 

2009, 2011; Ma et al., 2012; Renner, 2016; Renner et al., 2020). 

This work investigates the possibility to reliably extract three elasto-plastic parameters of an 

alumina thin film as well as the yield stress of the silicon substrate using 𝑃 − ℎ curves from 

nanoindentation experiments on a thin film/subtrate system. The optimal design of experiments, 

(well-posedness of the inverse problem), is investigated with an identifiability analysis 

performed prior to the identification process. This approach is also known as a priori 

identifiability or structural identifiability, and depends only on the model and simulated data 

(Anstett-Collin et al., 2020; Walter & Pronzato, 1997). In this work, a priori identifiability is 

mainly carried out through an identifiability indicator (𝐼-index), which reflects the stability of 

the inverse problem solution and allows to quantify the information richness contained in the 

experiments (Pac et al., 2014; Richard et al., 2013). In other terms, this indicator acts as a guide 

for a good conditioning of the inverse problem. In particular, this work studies the impact of 

the maximum indentation depth and the indenter tip geometry on 𝐼-index calculations. The 

designed experiment is then realised experimentally and implemented into the identification 

process for an optimum estimation of material elasto-plastic parameters. Thereafter a practical 

identifiability, which differs from the a priori identifiability as it is based on real experimental 

measurements, is performed a posteriori of the identification process to judge the fit quality of 

the model to experimental data. Lastly, a validation of the set of identified parameters is realised 

by confronting: (i) the numerical and experimental 𝑃 − ℎ curves of a nanoindentation test on 

the bulk silicon substrate and (ii) the numerical and experimental topography of the imprint of 

a nanoindentation test on the composite alumina thin film - silicon substrate sample. 
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2. Materials and methods 

2.1. Experimental details 

2.1.1. Alumina thin film deposition 

Amorphous alumina (Al2O3) thin film has been deposited on an oriented (100) silicon 

substrate at 200°C by plasma enhanced atomic layer deposition with trimethylaluminium 

(TMA) precursor and O2 gas, with a targeted thickness of 100 nm. This thickness has been 

confirmed with an UVISEL Ellipsometer. The surface morphology characterisation of Al2O3 

film has been performed by Atomic Force Microscopy and shows excellent conformity and 

large-area uniformity with a root mean square rugosity of about 0.5 nm. 

2.1.2. Nanoindentation experiments 

Nanoindentation experiments have been performed at room temperature and humidity using 

an Anton Paar nanoindenter with Ultra Nano Hardness Tester (UNHT) head with either 

Berkovich or cube corner indenter tip. All nanoindentation experiments have been carried out 

in displacement-controlled mode with a triangular loading and unloading phase, with equal time 

for the 2 phases. 

2.2. Material constitutive law of thin film and substrate 

The mechanical behaviour of each material which constitutes composite system thin film - 

substrate can be modelled by a bilinear elasto-plastic law. The total strain tensor 𝜀𝑖𝑗 is 

decomposed between elastic and plastic contributions, respectively 𝜀𝑖𝑗
𝑒  and 𝜀

𝑖𝑗
𝑝

, as: 

 𝜀𝑖𝑗 = 𝜀𝑖𝑗
𝑒 + 𝜀𝑖𝑗

𝑝 . (2.1) 

The elastic contribution is driven by the Young’s modulus 𝐸 and the Poisson’s coefficient 

𝜈, the two intrinsic elastic parameters linking stress and strain by Hooke’s law, defined in the 

case of isotropic linear elastic materials by: 

 𝜎𝑖𝑗 =
𝐸

1+ 𝜈
(𝜀𝑖𝑗

𝑒 +
𝜈

1− 2𝜈
𝜀𝑘𝑘
𝑒 𝛿𝑖𝑗). (2.2) 

𝜎𝑖𝑗 is the Cauchy stress tensor, 𝜀𝑘𝑘
𝑒  is the trace of the strain tensor 𝜀𝑖𝑗

𝑒  and 𝛿𝑖𝑗 is the Kronecker 

delta. 

The plastic contribution is driven by the initial tensile yield stress 𝜎𝑦 of the material and its 

isotropic hardening modulus 𝐻𝑝. It is related to the von Mises yield stress criterion, which 

defines the stress threshold from which the material plastically deforms. 
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In the case of a uniaxial tensile test, these assumptions on the elastic and plastic behaviour 

can be written as: 

 𝜎 = 𝐸𝜀               for    𝜎 < 𝜎𝑦 (2.3) 

 𝜎 =
𝐸𝐻𝑝

𝐸 +𝐻𝑝
𝜀    for    𝜎 ≥ 𝜎𝑦. (2.4) 

where 𝜎 is the Cauchy tensile stress and 𝜀 is the logarithmic tensile strain. 

The alumina thin film is assumed elasto-plastic with linear isotropic plastic hardening and 

described by its elastic (𝐸, 𝜈) and plastic parameters (𝜎𝑦, 𝐻𝑝). The Poisson’s ratio of the thin 

film is assumed and fixed at 0.3 and 𝐸 ≡ 𝜃1, 𝜎𝑦 ≡ 𝜃2 and 𝐻𝑝 ≡ 𝜃3 are unknown and identified 

using the FEMU method described in section 2.4, based on the numerical design of experiment 

described in section 2.4. 

As for the silicon substrate, it is supposed isotropic elastic perfectly plastic. The Young’s 

modulus 𝐸 and Poisson’s ratio of silicon are isotropic equivalent values fixed at 173 GPa and 

0.21 respectively (Hall, 1967; Hill, 1952). Note that the Young’s modulus value of silicon was  

experimentally validated on a bulk sample from a Berkovich nanoindentation test using the 

Oliver&Pharr method (Oliver & Pharr, 1992) and is in accordance with the value derived from 

literature (Pac et al., 2014). The silicon yield stress 𝜎𝑦𝑠 is first fixed at 5 GPa, with a value 

derived from literature (L. Zhang & Mahdi, 1996). Thereafter, this parameter 𝜎𝑦𝑠 ≡ 𝜃4 is 

released and identified on top of the three elasto-plastic parameters 𝐸, 𝜎𝑦 and 𝐻𝑝 of the thin 

film. Table 1 summarises values of each known and unknown parameter used in the composite 

system thin film - substrate. 

2.3. Finite element models of the nanoindentation experiment 

The nanoindentation test is modelled using ANSYS Mechanical APDL software. In this 

work a 2D axisymmetric finite element model (FEM) is used for the identifiability analysis and 

the identification process for the sake of computing time reduction, and a 3D FEM is used 

afterward for the validation of the estimated parameters with the topography of the imprint. 

2.3.1. 2D axisymmetric FEM 

The 2D-axissymetric model geometry and mesh is presented in Figure 1. 
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Figure 1: Schematic illustration of the 2D axisymmetric model geometry and mesh used for 

nanoindentation simulations, with 𝑅 the indenter radius curvature, 𝛼 the indenter equivalent 

half angle, 𝑒𝑓  the thin film thickness and ℎ𝑚𝑎𝑥  the maximum indentation depth. 

The diamond tip is considered isotropic elastic, described by its elastic parameters (𝐸, 𝜈) 

fixed at 1141 GPa (Young’s modulus) and 0,07 (Poisson’s ratio) respectively and stem from 

the literature (Oliver & Pharr, 1992). The indenter is geometrically defined by an equivalent 

conical half angle and a tip curvature radius, and its size is set to be sixty times greater than the 

maximum nanoindentation depth (60ℎ𝑚𝑎𝑥). In this work a cube corner and a Berkovich tip 

have been used, corresponding respectively to a 42.3° and 70.3° equivalent half angle with a 

35 nm and 116 nm tip radius curvature respectively, reported in Table 1. The mesh of the 

indenter, including its tip, is composed of a 4-node rectangular element mesh zone with 2x2 

integration points. The mesh is refined close to the indenter tip and becomes gradually coarser 

as the distance from the tip increases. 

The material constitutive law of thin film and substrate is detailed in section 2.2, and their 

associated parameters are summarised in Table 1. The size of the specimen modelling the film 

and the substrate is chosen to be sixty times greater than the maximum nanoindentation depth 

ℎ𝑚𝑎𝑥 , to limit the effect of boundary conditions. To study the effect of its size on 𝑃 − ℎ 

observables, several factors 𝑑 (𝑑ℎ𝑚𝑎𝑥), from 40 to 70, have been tested on Berkovich and cube 

corner tests. The average absolute value of the relative error between the force 𝑃𝑑  (from 

simulations with factor 𝑑) and the reference force 𝑃𝑟𝑒𝑓 = 𝑃80  (from simulation with factor 𝑑 =

80) at any displacement point ℎ𝑘 , normalized by the maximum force of the reference 

simulation, written as: 
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 Δ𝑃𝑑 =
|𝑃𝑑 −𝑃80̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅|

max(𝑃80)
=

1

𝑁max(𝑃80)
∑|𝑃𝑑(ℎ𝑘) − 𝑃80(ℎ𝑘)|

𝑁

𝑘=1

, (2.5) 

have been calculated and shows no influence on the force values, with Δ𝑃𝑑  below 0.5% for each 

simulation. 

The mesh of the sample is composed of a refined 4-node rectangular element mesh zone 

with 2x2 integration points close to the contact of the indenter, covering the thin film thickness 

𝑒𝑓 = 100 nm and a length of two times the film thickness over the substrate, surrounded by a 

gradually coarser 6-node triangular element mesh zone with 3 integration points as the distance 

from the indented area increases. The size of the element just below the indenter is ℎ𝑚𝑎𝑥/12, 

size for which the convergence of the finite element model is achieved whatever the tip used 

(Berkovich or cube corner). 

The mesh is composed of around 15000 elements. The mesh is blocked at the bottom and a 

displacement ℎ is imposed to the indenter head. The contact between the indenter and the 

sample is modelled with a Lagrange multiplier algorithm on contact normal and a penalty on 

tangent contact defined by a friction coefficient 𝜇 of 0.1. Its effect on the nanoindentation force 

has been shown to be negligible in the case of Berkovich tests by Bucaille et al. through 2D 

axisymmetric simulations on an aluminium allow described by an elasto-plastic power law 

(Bucaille et al., 2003). For a cube corner test, its effect on the nanoindentation force has been 

studied using the same analysis on which Equation (2.7) is based, with 𝜇 values from 0.1 to 0.5, 

and considering a reference force from simulation with 𝜇 = 0. This study shows that its 

influence is negligible, with an average absolute value of the relative error below 4% regardless 

of the value of 𝜇. 
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Table 1: Parameters used for the diamond indenter, the silicon substrate and the alumina thin 

film in the FEM of the nanoindentation test. 

2.3.2. 3D FEM 

In this 3D FEM, the modelled diamond indenter tip is a sixth of a Berkovich tip with an 

inner angle of 65.3°. The size of the 3D model is thus reduced to a sixth of its real volume, 

which allows a significant reduction of the number of elements and a decrease of the 

computation time. 

The size of the modelled sample is chosen to be sixty times greater than the maximum 

nanoindentation depth ℎ𝑚𝑎𝑥 , to limit the effect of boundary conditions. The mesh of the sample 

is composed of a refined 10-node tetrahedral element mesh zone with 4 integration points close 

to the contact of the indenter, covering a length ten times greater than the maximum 

nanoindentation depth ℎ𝑚𝑎𝑥 , which becomes gradually coarser as the distance from the 

indented area increases. The size of the element just below the Berkovich tip has been 

determined from a convergence study on two observables: (i) 𝑃 − ℎ curve and (ii) imprint 

topography for several element sizes, defined by ℎ𝑚𝑎𝑥/𝑚, with ℎ𝑚𝑎𝑥  the maximum indentation 

depth and 𝑚 a mesh factor, from 3.5 to 10. The same analysis on which Equation (2.5) is based, 

have been used for 𝑃 − ℎ observables, considering a reference force from simulation with 𝑚 =

12. For imprint topography observables, the average absolute value of the relative error 

between the topography value 𝑍𝑚  (from simulations with mesh factor 𝑚) and the reference 

topography 𝑍𝑟𝑒𝑓 = 𝑍12, is calculated at any point in the 𝑋𝑌𝑘 plane and normalized by the 

maximum topography value (i.e. maximum height) of the reference simulation, written as: 
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 Δ𝑍𝑚 =
|𝑍𝑚 − 𝑍12̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ |

max(𝑍12)
=

1

𝑁max(𝑍12)
∑|𝑍𝑚(𝑋𝑌𝑘) − 𝑍12(𝑋𝑌𝑘)|

𝑁

𝑘=1

. (2.6) 

The average absolute value of the relative error on the force and on the topography value 

stays respectively below 0.05% and 0.5% regardless of the value of 𝑚. For both observables, 

meshes for which 𝑚 > 4 implies substantial calculation times, close to 10 hours for 𝑚 = 6, 

jumping to 50 hours for 𝑚 = 8 . In that respect, a mesh factor of 4 has been chosen, which is a 

good compromise between calculation time, about 1h30, and mesh fineness. 

The mesh is composed of around 26000 elements and is clamped at the bottom. The contact 

between the indenter and the sample is modelled with a Lagrange multiplier algorithm on 

contact normal and a penalty on tangent contact defined by a friction coefficient of 0.1. 

2.4. Identification process based on the FEMU method 

The Finite Element Model Updating method (FEMU) allow the identification of the material 

constitutive law with its associated elasto-plastic parameters. From a starting point 𝜃0, this 

procedure allows, by the coupling of the FEM and an iterative optimisation algorithm, the 

estimation of one or more parameters �̂� by minimising the difference between the force 

resulting from FE simulation 𝑃 and the experimental data 𝑃𝑒𝑥𝑝. Here the inverse problem is a 

minimisation problem in a least square sense, for which the formulation of a cost function 𝜔, 

or objective function, allows to quantify the distance between the numerical results and the 

experimental data. Therefore, the inverse problem can be written as: 

 �̂� = argmin 𝜔[𝑃(ℎ; 𝜃), 𝑃𝑒𝑥𝑝(ℎ)], (2.7) 

where ℎ is the displacement and 𝜔 is the cost function to minimise (Qasmi et al., 2004) defined 

as: 

 𝜔(𝜃) =
1

2𝑇
∑(

𝑃𝑘(𝜃) − 𝑃𝑘
𝑒𝑥𝑝

𝑃𝑚𝑎𝑥
𝑒𝑥𝑝 )

2𝑇

𝑘=1

, (2.8) 

for one displacement controlled nanoindentation test. 𝑇 is the number of data points, thus the 

number of measured numerical 𝑃𝑘  and experimental 𝑃𝑘
𝑒𝑥𝑝

 force values. 𝑃𝑚𝑎𝑥
𝑒𝑥𝑝

 is the maximum 

experimental force. The number of data points 𝑇 is equal to 800 with the same number of data 

points for the loading and unloading part, thus equal to 400. The normalisation of the sum term 

by 𝑃𝑚𝑎𝑥
𝑒𝑥𝑝

 allows to consider dimensionless quantities and an absolute uncertainty on 𝑃𝑘 . A 

variant of the Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt, 1963),  is used to 

minimise 𝜔 with high convergence speed while constraining parameters to positive-only 

values. This optimization algorithm is implemented in MIC2M (http://mic2m.univ-fcomte.fr/) 

software (Richard, 1999, 2017). 

http://mic2m.univ-fcomte.fr/
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In an inverse analysis, it must be ensured that the inverse problem is well -posed. The 

formulation of a well-posed inverse problem must verify that (i) a quasi-solution exist, which 

ensures an acceptable gap between the numerical results and the experimental data, (ii) this 

solution is unique, and (iii) this solution is stable i.e. that a small perturbation of the 𝑃 − ℎ 

observables does not induce a high variation of the parameters (Hadamard, 1902, 1932). 

If the existence of a solution can easily be verified a posteriori of the updating process by 

judging the fit quality of the experimental and simulated 𝑃 − ℎ curves with the cost function 

value 𝜔, the verification of the unicity and stability however is a major difficulty. Indeed, this 

implies lots of FEMU procedures with the test of numerous starting points (unicity) and 

perturbations of 𝑃 − ℎ observables including different hypothesis on the experimental errors 

(stability), causing a multiplication of simulations very time-consuming. 

With that said, the stability of the potential solutions can be verified prior to the updating 

process by performing an identifiability analysis. This approach is also known as a priori 

identifiability or structural identifiability, and depends only on the model and simulated data 

(Anstett-Collin et al., 2020; Walter & Pronzato, 1997). In this work the a priori identifiability 

is mainly carried out through an identifiability indicator called 𝐼-index (Pac et al., 2014; Richard 

et al., 2013) which thus reflects the local stability of the solution and helps design the 

experiments for a good conditioning of the inverse problem. This identifiability indicator is 

presented in the following section. 

However it is worth noting that, although the non-unicity of the solution has been shown to 

be a consequence of its instability (Phadikar et al., 2013), the verification of its stability through 

an a priori identifiability is still not sufficient to assess the unicity of the solution. To that end, 

it is still appropriate to widely explore the space of parameters definition domain a posteriori 

of the updating process by selecting several sets of parameters far from each other to ensure 

that each of these starting points converge to the same result. 

2.5. Numerical design of experiment based on identifiability index 

The identifiability index proposed by Richard et al. (Richard et al., 2013) is based on the 

conditioning of the inverse problem, which is the sensitivity of the inverse problem solution, 

i.e. the set of parameters 𝜃,to a perturbation of the nanoindentation force 𝑃. Calculated a priori 

of the updating process from simulated experiments with hypothetical material parameters, this 

index reflects the local stability of the solution. In particular 𝐼-index not only integrates and 

quantifies a lack of sensitivities of the indentation force to parameters, but also the information 

about an eventual multicollinearity between these sensitivity vectors, which may generate an 

instable solution of the inverse problem, its non-uniqueness and therefore multiple solutions 

using the FEMU method. 
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In that respect, 𝐼-index ensures that experiments used in the updating process contains 

sufficient information to reliably estimate elasto-plastic parameters of the thin film. 𝐼-index can 

be defined with logarithmic notation (Pac et al., 2014) as: 

 𝐼 = log10 (
𝜆𝑚𝑎𝑥
𝜆𝑚𝑖𝑛

) . (2.9) 

where 𝜆𝑚𝑎𝑥  and 𝜆𝑚𝑖𝑛  are the extremal eigenvalue of the quasi-hessian matrix 𝐻 close to the 

cost function minimum, defined as: 

 𝐻𝑖𝑗 =∑
𝜕𝑃𝑘

𝜕�̅�𝑖

𝜕𝑃𝑘

𝜕�̅�𝑗

𝑇

𝑘=1

, (2.10) 

where 
𝜕�̅�𝑘

𝜕�̅�𝑖
 is the dimensionless sensitivity of the observed force 𝑃 to the parameter 𝜃𝑖  for the 

acquisition point 𝑘: 

 
𝜕𝑃𝑘

𝜕�̅�𝑖
=
𝑃𝑘(𝜃𝑖 + 𝜖𝜃𝑖 , ℎ) − 𝑃𝑘(𝜃𝑖 , ℎ)

𝑃𝑚𝑎𝑥𝜖√𝑇
. (2.11) 

𝑃(ℎ) is the force response at depth ℎ and 𝜖 = 0.5% is the disturbance value for the numerical 

derivation. Note that 𝑃 and 𝜃𝑖  are rendered dimensionless by respectively dividing them by the 

maximum numerical indentation load 𝑃𝑚𝑎𝑥  and 𝜖 which is designate by the overline notation. 

Hence it is possible with this formulation to consider responses of different nature 

(nanoindentation 𝑃 − ℎ curves or topographies). Nevertheless, the dimensionless matrix 𝐻 as 

written here is only valid for one nanoindentation loading-unloading curve. The normalisation 

by √𝑇 provides a consistent definition of the sensitivity variation with the cost function defined 

in equation (2.8) and ensures the independence of the 𝐼-index from the number of acquisition 

points. 

The norm of the dimensionless sensitivity variation is used in this work to evaluate the 

degree of sensitivity of the force 𝑃 to each parameter 𝜃𝑖 , defined as: 

 ‖
𝜕𝑃

𝜕�̅�𝑖
‖
2

=  √∑(
𝜕𝑃𝑘

𝜕�̅�𝑖
)

2𝑇

𝑘=1

 (2.12) 

In this work the data point 𝑘 is normalised by the total data points 𝑇. Thus, this fraction 

describes the evolution of the nanoindentation test from 0 to 1, where 0 is the beginning of the 

loading phase, 0.5 is the beginning of the unloading phase and 1 is the end of the experiment. 

This 𝐼-index can be interpreted as an indicator of the cost function convexity. This function 

can be graphically represented, in the case of two parameters 𝜃1 and 𝜃2 , in a two-dimensional 
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space of dimensionless parametric uncertainties (Δ�̅�1, Δ�̅�2). In the principal base of the matrix 

𝐻, this function is an ellipsis of equation: 

 𝜆1𝑥1
2 + 𝜆2𝑥2

2 = 𝜔, (2.13) 

whose semi-major axis 𝑎 and semi-minor axis length 𝑏 directly depend on the eigenvalues 𝜆1 =

𝜆𝑚𝑖𝑛  and 𝜆2 = 𝜆𝑚𝑎𝑥  of the matrix 𝐻 in equation (2.10): 

 

{
 
 

 
 
𝑎 = √

𝜔

𝜆1

𝑏 = √
𝜔

𝜆2

 (2.14) 

This ellipsis, represented in Figure 2 for different value of 𝐼-index, graphically delimitates 

the region of parameter possibilities. 

 

Figure 2: Schematic shapes of the cost function ω in a 2D space of parametric uncertainties 

for different values of 𝐼-index. 

Note that for the sake of comprehension Figure 2 is a graphical representation in the case of 

two parameters, however 𝐼-index can also be calculated for more than two parameters. From 

equation (2.9) and (2.14) the 𝐼-index can be rewritten as: 

 𝐼 = 2 log10 (
𝑎

𝑏
) (2.15) 

Hence the value of 𝐼 is related to the ratio of the two ellipsis axes. Therefore, the more 𝑎 and 

𝑏 are different, the larger the value of 𝐼 is, and the more the cost function used in the FEMU 

method will be stretched in one direction, sign of a solution valley with high uncertainties when 

𝐼 > 3. A local numerical optimisation algorithm, such as the Levenberg-Marquardt algorithm, 
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will not ensure the non-existence of local minimas of the cost function, and that each 

optimization path may reach the same result. 

Richard et al. (Richard et al., 2013) defined a good conditioning of the inverse problem for 

𝐼 < 2. That being said, it is important to precise that this criterion is only indicative. The 𝐼-

index is first and foremost a conditioning number intended to quantitatively compare the 

richness of information contained in various observation fields with a guiding principle of the 

lower its value, the better the inverse problem will be conditioned. It works with all methods 

which require gradient evaluation of a cost function (e.g. Gauss-Newton, Levenberg-

Marquardt) and based on quasi-hessian matrix 𝐻 (Equation (2.10)). 
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3. Results and discussion 

The interests of the a priori identifiability analysis to guide the design of experiments to 

reliably identify material elasto-plastic parameters have been highlighted in the previous 

section. Indeed, instability problems induced by the lack of sensitivity of the force response and 

the eventual sensitivity vectors multicollinearity of the parameters have been raised, and these 

aspects are reflected by the 𝐼-index. 

In the following sections, the influence of the maximal indentation depth and the indenter 

tip geometry on the identifiability of the elasto-plastic parameters of the thin film 𝐸, 𝜎𝑦 and 𝐻𝑝 

is determined to design the experiments to consider for the subsequent identification process. 

Then, from an a posteriori 𝐼-index calculation, the inclusion of the substrate yield stress in the 

identification process on top of the three elasto-plastic parameters of the film is considered and 

supported by a further a priori identifiability analysis. Lastly, a validation of the set of identified 

parameters is achieved by confronting (i) the numerical and experimental 𝑃 − ℎ curves of a 

nanoindentation test on the silicon substrate and (ii) the numerical topography obtained with 

the 3D FEM and the experimental topography of the imprint of a nanoindentation test on the 

alumina thin film – silicon sample. 

3.1. Numerical design of experiments based on a priori identifiability 

This section concerns the numerical design of experiments for the identification of the three 

thin film elasto-plastic parameters 𝜃1 ≡ 𝐸 ,  𝜃2 ≡ 𝜎𝑦 and 𝜃3 ≡ 𝐻𝑝, with 𝜃4 ≡ 𝜎𝑦𝑠 fixed at 5 

GPa (L. Zhang & Mahdi, 1996). Sensitivity and 𝐼-index calculations are initiated from a starting 

point 𝜃01(𝐸 = 200 GPa, 𝜎𝑦 = 1 GPa,𝐻𝑝 = 5 GPa), which defines a postulated potential 

solution of the inverse problem. 

3.1.1. Influence of the maximal indentation depth 

The identifiability analysis is first applied to finite element simulations of a single 

nanoindentation test for 25, 50, and 100 nm maximum depths, using Berkovich tip. 

Figure 3 shows the evolution of the force sensitivity with respect to 𝑘/𝑇 ratio (0 to 0.5 is the 

loading phase and 0.5 to 1 is the unloading phase) and sensitivity norm for the perturbation 𝜖 

of each initial value of 𝐸, 𝜎𝑦 and 𝐻𝑝 in 𝜃01, as well as the collinearity between sensitivity 

vectors of 𝜎𝑦 and 𝐻𝑝 for the three indentation depths. 

The effect of numerical perturbations on the 𝑃 − ℎ curve and on 𝐼-index values has been 

studied through polynomial interpolation. A sixth-degree polynomial interpolation induces an 

error inferior to 1% on the 𝑃 − ℎ curve and an insignificant impact on 𝐼-index values 

considering the roundness to the nearest tenth. 
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The norm of the sensitivity for 𝐸, 𝜎𝑦 and 𝐻𝑝 in Figure 3c reveals that the nanoindentation 

force is sensitive to all variables, and gradually becomes less sensitive to 𝐸 and 𝜎𝑦 with the 

indentation depth, while the influence of 𝐻𝑝 remains constant. The yield stress of the thin film 

𝜎𝑦 has the strongest influence on the force response for the 25 and 50 nm experiments and has 

a similar influence with 𝐻𝑝 for ℎ𝑚𝑎𝑥 = 100 nm. Figure 3a reveals that the sensitivity vectors 

of the three variables during the loading phase are collinear, suggesting a strong correlation of 

their influence on the force response. However, the influence on the force of 𝐸 becomes 

opposite once the unloading phase starts. It suggests that the unloading segment is more relevant 

to dissociate the effects of each parameter on the force response, and thus to reliably identify 

them. However, regardless of the maximum indentation depth, the similar influence of 𝜎𝑦 and 

𝐻𝑝 on the force response, highlighting by the collinearity between their sensitivity vectors in 

Figure 3b during the two phases, makes their identification impossible, using only a single 

nanoindentation curve. 

The values of the 𝐼-index is shown in Figure 4, for the three ℎ𝑚𝑎𝑥  tested. The values of 

𝐼(𝐸, 𝜎𝑦, 𝐻𝑝) after the loading and unloading phases converge to 3.0, 2.7 and 2.6 respectively 

for the 25, 50 and 100 nm experiments. It reveals that the identification of 𝐸, 𝜎𝑦 and 𝐻𝑝 using 

a single nanoindentation test, regardless of the indentation depth, is impossible. Although the 

best value of 𝐼-index obtained ℎ𝑚𝑎𝑥 = 100 nm is not sufficiently low to lead to a well-posed 

problem, its evolution suggests that the problem well-posedness has been improved, by 

increasing the maximum indentation depth. What’s more, Figure 4 reveals that the two phases 

are complementary and bring stability to the 𝐼-index as it decreases from the sole loading or 

unloading phase. 

What’s more, the calculation of 𝐼(𝜎𝑦, 𝐻𝑝), equal to 2.5, 2.1 and 2 for the 25, 50 and 100 nm 

experiments respectively, reveals that the deeper the indentation is, the more the problem well-

posedness is improved to the point where it should be possible to identify the two plastic 

parameters, knowing the two elastic parameters (𝐸,𝜈) of the film and the mechanical behaviour 

of the substrate. 
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Figure 3: Dimensionless sensitivity of the nanoindentation force to a perturbation of 𝐸, 𝜎𝑦 and 

𝐻𝑝 for a 25, 50 and 100 nm maximum indentation depth. (a) Evolution of the sensitivity 

vectors of the nanoindentation force with respect to 𝑘/𝑇 to a perturbation of 𝐸, 𝜎𝑦 and 𝐻𝑝 and 

(b) collinearity between sensitivity vectors of 𝜎𝑦 and 𝐻𝑝. (c) Norm of the dimensionless 

sensitivity variation of the nanoindentation force to 𝐸, 𝜎𝑦 and 𝐻𝑝. A low-pass filter has been 

applied on the sensitivity vectors for the sake of lisibility to remove the numerical noise.  
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Figure 4: Evolution of the 𝐼-index for a 25, 50 and 100 nm maximum indentation depth. 

3.1.2. Influence of the indenter tip shape 

The identifiability analysis is applied to finite element simulations of a single 

nanoindentation test using Berkovich and cube corner tips for ℎ𝑚𝑎𝑥 = 100 nm. 

Figure 5 shows the evolution of the force sensitivity with respect to 𝑘/𝑇 and the sensitivity 

norm for a perturbation 𝜖 of each initial value of 𝐸, 𝜎𝑦 and 𝐻𝑝 in 𝜃01, as well as the collinearity 

between sensitivity vectors of 𝜎𝑦 and 𝐻𝑝 for the two indenters. 
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Figure 5: Dimensionless sensitivity of the nanoindentation force to a perturbation of 𝐸, 𝜎𝑦 and 

𝐻𝑝 for a 100 nm nanoindentation depth using Berkovich and cube corner tips. (a) Evolution of 

the sensitivity vectors of the nanoindentation force with respect to 𝑘/𝑇 ratio to a perturbation 

of  𝐸, 𝜎𝑦 and 𝐻𝑝. and (b) collinearity between sensitivity vectors of 𝜎𝑦 and 𝐻𝑝. (c) Norm of 

the dimensionless sensitivity variation of the nanoindentation force to 𝐸, 𝜎𝑦 and 𝐻𝑝. A low-

pass filter has been applied on the sensitivity vectors for the sake of lisibility to remove the 

numerical noise. 
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Here, the norm of the sensitivity for 𝐸, 𝜎𝑦 and 𝐻𝑝 in Figure 5c reveals that using a cube 

corner tip, the plastic parameters 𝜎𝑦 and 𝐻𝑝 are at least twice as much influent on the 

nanoindentation force than with a Berkovich tip, although these vectors are collinear, up to a 

multiplicative factor, all along the nanoindentation test, as shown in Figure 5a and Figure 5b. 

That being said, the much stronger influence of the two plastic parameters over the whole time 

domain suggest that the cube corner nanoindentation test may have a significant impact on the 

𝐼-index if the effect of these two variables on the nanoindentation force can be decorrelate, for 

instance by combining two different tests. 

The evolution of 𝐼(𝐸, 𝜎𝑦, 𝐻𝑝) is shown in Figure 6, for the two indenters tested. The values 

of 𝐼(𝐸, 𝜎𝑦, 𝐻𝑝) converge to 2.6 and 2.7 and 𝐼(𝜎𝑦,𝐻𝑝) is equal to 2 and 2.2 respectively for the 

Berkovich and cube corner experiments, revealing that the problem well-posedness is slightly 

better with a Berkovich tip. However, all 𝐼(𝐸, 𝜎𝑦, 𝐻𝑝) calculations indicates that, as long as a 

single nanoindentation test is designed, regardless of the nanoindentation depth and the indenter 

tip, the identification problem of this work, i.e. the identification of three parameters 𝐸, 𝜎𝑦 and 

𝐻𝑝, using the FEMU method is ill-posed and cannot lead to a unique solution. 

At this depth (100 nm), the substrate presence is prominent on the mechanical behaviour of 

the film. Therefore, it is appropriate to exploit its effect by combining two nanoindentation 

tests, which could variously solicit the substrate with two different indentation depth and two 

different indenter shape and bring key information to the inverse problem. The next section 

justifies the choice of experiments to combine, based on the sensitivity analysis achieved in this 

section and section 3.1.1. 

 

Figure 6: Evolution of the 𝐼-index for ℎ𝑚𝑎𝑥 = 100 nm using Berkovich and cube corner tips. 
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3.1.3. Combination of nanoindentation tests 

The previous work investigates the influence of the indentation depth and the type of 

indenter on the identifiability value. The goal here is to investigate the influence of the 

combination of two different nanoindentation tests, as previous results reveal that one single 

test is not sufficient to reliably estimate the elastic modulus 𝐸 and the two plastic parameters 

(𝜎𝑦,𝐻𝑝) of the film. The main challenge is to dissociate the effect of 𝜎𝑦 and 𝐻𝑝 on the 

nanoindentation force, as the effect of 𝐸 is already dissociated by the unloading phase of an 

individual nanoindentation experiment. It is therefore appropriate to combine two experiments 

with two different indentation depths and two different indenter tips, to bring more information 

to the inverse problem. A Berkovich experiment at ℎ𝑚𝑎𝑥 = 50 nm is a good choice as it gives 

the strongest influence to 𝐻𝑝 and the second highest influence to 𝜎𝑦 compared to the 25 and 

100 nm experiments, as shown in Figure 3c. Then, a cube corner experiment at ℎ𝑚𝑎𝑥 = 100 nm 

is likely to help stabilise and decrease the 𝐼-index as it brings a high sensitivity of the 

nanoindentation force to 𝜎𝑦 and 𝐻𝑝, as shown in Figure 5c. This test should allow to activate 

the substrate effect, also named the anvil effect, and bring key information to identify intrinsic 

properties of the thin film. 

Figure 7 shows the evolution of the force sensitivity with respect to 𝑘/𝑇 ratio for a 

perturbation 𝜖 of each initial value of 𝐸, 𝜎𝑦 and 𝐻𝑝 in 𝜃01, as well as the collinearity between 

sensitivity vectors of 𝜎𝑦 and 𝐻𝑝 for a 50 nm Berkovich and a 100 nm cube corner experiments. 

Figure 7b shows that the slope of the sensitivity vector of 𝐻𝑝 as a function of the sensitivity 

vector of 𝜎𝑦 for the 50 nm Berkovich test is lower to that of the 100 nm cube corner test. This 

difference may break the collinearity between the vectors of 𝜎𝑦 and 𝐻𝑝 and improve the value 

of 𝐼-index with a combination of these two tests. 
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Figure 7: Dimensionless sensitivity of the nanoindentation force to a perturbation of 𝐸, 𝜎𝑦 and 

𝐻𝑝  for a 50 nm Berkovich (Berko) and a 100 nm cube corner (CC) experiments. (a) 

Evolution of the sensitivity vectors of the nanoindentation force with respect to 𝑘/𝑇 ratio to a 

perturbation of  𝐸, 𝜎𝑦 and 𝐻𝑝 and (b) collinearity between sensitivity vectors of 𝜎𝑦 and 𝐻𝑝. A 

low-pass filter has been applied on the sensitivity vectors for the sake of lisibility to remove 

the numerical noise. 

Thus, to investigate the influence of the combination of the two nanoindentation tests 

mentioned above on the 𝐼-index value, the quasi-hessian matrix becomes: 

 𝐻𝑖𝑗 =∑∑
𝜕𝑃𝑘

(𝑒)

𝜕�̅�𝑖
 
𝜕𝑃𝑘

(𝑒)

𝜕�̅�𝑗

𝑇

𝑘=1

𝑛

𝑒=1

, (3.1) 

with 𝑛 the number of nanoindentation tests. 

The 𝐼-index value obtained when combining the two tests is shown in Figure 8. The value 

of 𝐼-index converges to 1.9, confirming that the combination of these two tests improves 

sufficiently the 𝐼-index value to assess the problem well-posedness in the case of this dual 

nanoindentation experiment. 𝐼-index values of loading and unloading phases for each 

experiment and for the combination of the two also reveals that the two unloading segments of 

the 𝑃 − ℎ curves are very complementary and bring key information to the inverse problem, as 

𝐼(𝐸, 𝜎𝑦, 𝐻𝑝) decreases from 3.6 to 2.0. 

What’s more, the calculation of 𝐼(𝜎𝑦, 𝐻𝑝) using 𝜃01, reveals that its value decreases from 

2.1 and 2.2 for the Berkovich 50 nm and the cube corner 100 nm test respectively, to 1.5 for the 
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combination of the two tests. It shows the complementarity of these two tests to dissociate the 

influence of the two thin film plastic parameters 𝜎𝑦 and 𝐻𝑝 on the force. 

 

Figure 8: 𝐼-index for a combined 50 nm Berkovich and a 100 nm cube corner experiment, 

compared to the corresponding individual experiments. 

3.2. Identification of intrinsic elasto-plastic properties of thin film 

This section concerns the identification by the FEMU method of the three thin film elasto-

plastic parameters 𝜃1 ≡ 𝐸 ,  𝜃2 ≡ 𝜎𝑦 and 𝜃3 ≡ 𝐻𝑝, with 𝜃4 ≡ 𝜎𝑦𝑠 fixed at 5 GPa (L. Zhang & 

Mahdi, 1996). 

3.2.1. Local identification 

The a priori identifiability analysis showed that combining a 50 nm Berkovich and a 100 

nm cube corner indentation test results in an improvement of the value of 𝐼-index, sufficiently 

low to lead to a well-posed problem. Therefore, the identification procedure is applied to 

experimental 𝑃 − ℎ curves obtained from this dual nanoindentation test, from the 𝜃01 starting 

point, which initialise the minimisation process, whose objective function becomes for multiple 

nanoindentation tests: 

 𝜔(𝜃) =
1

2𝑛𝑇
∑∑(

𝑃𝑘
(𝑒)(𝜃) − 𝑃𝑘

𝑒𝑥𝑝(𝑒)

𝑃𝑚𝑎𝑥
𝑒𝑥𝑝 (𝑒)

)

2𝑇

𝑘=1

𝑛

𝑒=1

, (3.2) 

where 𝑛 is the number of nanoindentation tests, taken as 2 here. The number of acquisition 

points 𝑇 is 400, equal for the two tests. 
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Figure 9 shows the resulting force-displacement curves obtained with the identified 

parameters �̂�1(𝐸 = 198 GPa, 𝜎𝑦 = 3.6 GPa, 𝐻𝑝 = 21 GPa) in comparison with the 𝑃 − ℎ 

curves for the starting point 𝜃01 and the experimental 𝑃 − ℎ curves from which the optimisation 

procedure has been applied. It reveals that the optimisation procedure leads to a near match of 

the experimental and the numerical results, for an objective function which decreases from 

7.6 × 10−2 to 9.3 × 10−4.  

 

Figure 9: Experimental (Exp) and simulated nanoindentation curves for the 𝜃01 starting point 

and the estimated solution 𝜃1̂. 

3.2.2. Starting point effect 

The identification procedure applied to the designed dual nanoindentation test at the starting 

point 𝜃01, converge to a unique solution �̂�1. However, this sole result, and furthermore the 

optimisation procedure as implemented in this work does not allow to conclude that the solution 

of the inverse problem is unique. Indeed, there is no restriction of the parameter definition 

domain assessing the non-existence of local minima. 

Therefore, to ensure the robustness of the Levenberg-Marquardt optimisation method in this 

present work, a set of initial parameters, i.e. different starting points, far from each other, has 

been selected to restrict the presumed order of magnitude of the parameters to identify. This 

approach ensures that every optimisation paths lead to a unique solution. 

Five starting points in the space of the three elasto-plastic parameters 𝐸, 𝜎𝑦 and 𝐻𝑝 has been 

selected for the minimisation process so that it ensures a large exploration of the studied space 

of parameters possibilities. The results of the identification procedure shown in Table 2 and 
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with the corresponding 𝑃 − ℎ curves in Figure 11 reveals that the five solutions belong to a 

very restricted domain and regardless of the starting point, the method converge to a minimum 

�̂�(𝐸 = 198 GPa, 𝜎𝑦 = 3.6 GPa, 𝐻𝑝 = 21 GPa). Therefore, the number of optimisation 

iterations shown in Figure 10 is the only parameter dependent on the starting point. 

Table 2 also indicates a priori 𝐼-index for each starting points tested for the identification 

process and reveals that the inverse problem designed with the dual nanoindentation test is a 

priori well-posed for each starting point, except 𝜃03. This difference is discussed in the next 

section. The 𝐼-index computed after the identification process is 1.5. This confirms the quality 

of the solution. 

 

Table 2: Estimated parameters set �̂� from the identification procedure using five starting 

points. 

 

Figure 10: Evolution of the parameters 𝐸, 𝜎𝑦 and 𝐻𝑝 during the identification procedure using 

five starting points. 
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Figure 11: Experimental and simulated nanoindentation curves for the five starting points and 

the estimated solution �̂�. 

3.2.3. On the activation of the substrate effect 

The dual experiment designed in this work rely upon the activation of the substrate effect, 

or anvil effect (Y. Zhang et al., 2015). 

Multiple nanoindentation tests on a bulk material with the same indenter geometry at 

different indentation depths (in the same order of the indentation depths studied in this work) 

are homothetic. This leads notably to a constant ℎ𝑐/ℎ𝑚𝑎𝑥 ratio between the tests, ℎ𝑐  being the 

indentation depth after which the indenter is no longer in contact with the sample. In the case 

of a coated material, ℎ𝑐/ℎ𝑚𝑎𝑥 is going to evolve with the indentation depth as the properties of 

the composite material substrate-coating vary with the indentation depth. This is called the anvil 

effect. In the case of a composite material substrate-coating, it is thus appropriate to exploit this 

phenomenon by varying the indenter depth and amplify it by changing the indenter tip shape. 

𝐼-index allows the measurement of the information richness brought by experiments to 

quantify the ill or well-posedness of the inverse problem. To understand where significant 

information is located during the test, Figure 12 represents the evolution of a priori 𝐼-index 

during the dual nanoindentation test for the five starting points. 
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Figure 12: Evolution of I-index for the five starting points with respect to 𝑘/𝑇 ratio where 

𝑘/𝑇 = 1 and 𝑘/𝑇 = 2 are respectively the ends of the 50 nm Berkovich and 100 nm cube 

corner experiments. 

The highest decrease of 𝐼-index, which is correlated with a gain of information, occurs 

during the loading phase of the cube corner test for each starting point. To illustrate physically 

this gain of information, Figure 13 shows the equivalent plastic strain fields at maximum depth 

for the 50 nm Berkovich and 100 nm cube corner experiments using 𝜃01. It reveals that plastic 

deformation occurs in the substrate during the cube corner loading phase, and not during the 

Berkovich test, which coincides with the 𝐼-index decrease observed from 𝑒𝑘/𝑇 = 1.2 to 1.5. 

Therefore, this difference of plastic deformation exhibited by the combination of these two 

tests allows to sufficiently decrease 𝐼-index value to lead to a well-posed problem. It reflects 

the complementarity of these two tests and that the effect of each parameter on the force has 

been dissociated, in particular the effect of 𝜎𝑦 and 𝐻𝑝. Indeed, the dissociation of the effect of 

𝐸 is already brought by the unloading phase, as shown in Figure 7a. Therefore, the exacerbation 

of the anvil effect by switching to a cube corner tip mostly benefit to the dissociation of the 

influence of 𝜎𝑦 and 𝐻𝑝 on the force. 
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Figure 13: Equivalent plastic strain fields at maximum depth for the 50 nm Berkovich and 

100 nm cube corner experiments using the 𝜃01 starting point. 

In the particular case of 𝜃03, the same decrease of 𝐼-index occurs during the cube corner 

loading phase, but still not reaching a sufficiently low 𝐼-index value to interpret this as a well-

posed problem. Indeed, the low 𝐻𝑝 value (𝐻𝑝 = 2 GPa) induces a low sensitivity of the 

nanoindentation force to this parameter. This leads to a bad 𝐼-index, although 𝜃03 allow the 

activation of the anvil effect, as shown in Figure 14, allowing its convergence to the same 

solution �̂�(𝐸 = 198 GPa, 𝜎𝑦 = 3.6 GPa,𝐻𝑝 = 21 GPa). 

 

Figure 14 : Equivalent plastic strain fields at maximum depth for the 50 nm Berkovich and 

100 nm cube corner experiments using the 𝜃03 starting point. 

The equivalent plastic strain field of the 100 nm cube corner experiment reveals that the 

substrate plastically deforms. Therefore, by soliciting sufficiently the substrate to engage its 

plastic deformation, it should allow the dissociation of the substrate plasticity, driven by its 
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yield stress 𝜎𝑦𝑠, from the thin film elastoplastic behaviour. This is even truer given the fact that 

𝐼-index evolution is similar for each starting point, with a significative decrease during the cube 

corner phase. This results in a non-zero sensitivity of the nanoindentation force to 𝜎𝑦𝑠 and a 

decoupling of the influence of this parameter on the force from the thin film elastoplastic 

parameters. 

Therefore, it is worth considering the identification of 𝜎𝑦𝑠, previously assumed in the finite 

element model, on top of the thin film elasto-plastic parameters. All the more so that, as stated 

in section 3.2.2, 𝐼-index computed after the identification process, is 1.5 < 2, indicating a margin 

of information brought by the dual nanoindentation test. It is thus appropriate to define a new 

starting point 𝜃0 from the previous identified value of 𝐸 = 198 GPa (�̂�1), 𝜎𝑦 = 3.6 GPa (�̂�2) 

and 𝐻𝑝 = 21 GPa (�̂�3), including the substrate yield stress 𝜎𝑦𝑠 = 5 GPa (𝜃4), to exploit the 

margin of information at this starting point to study the influence of the inclusion of 𝜎𝑦𝑠 in the 

minimisation process. 

3.3. Inclusion of the substrate yield stress in the identification process 

In this section, the hypothesis 𝜎𝑦𝑠 = 5 GPa is released and this parameter is included in the 

identification process. 

3.3.1. A priori identifiability analysis 

The sensitivity norms of 𝐸, 𝜎𝑦, 𝐻𝑝 and 𝜎𝑦𝑠, is first computed using 𝜃0(𝐸 = 198 GPa, 𝜎𝑦 =

3.6 GPa,𝐻𝑝 = 21 GPa, 𝜎𝑦𝑠 = 5 GPa) to investigate how sensitive is the force from the dual 

nanoindentation test to each parameter, mainly to the substrate yield stress 𝜎𝑦𝑠, as it needs to 

be enough influent to be identified by the updating process. 

Figure 15 validates this necessity, with 𝜎𝑦𝑠 having the strongest influence on the force 

response for both the 50 nm Berkovich and 100 nm cube corner experiments. 
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Figure 15: Norm of the sensitivity variation of the nanoindentation force to a perturbation of 

𝐸, 𝜎𝑦, 𝐻𝑝 and 𝜎𝑦𝑠  for a 50 nm Berkovich (Berko) and 100 nm cube corner (CC) experiment. 

The value of 𝐼(𝐸, 𝜎𝑦, 𝐻𝑝, 𝜎𝑦𝑠) obtained for this dual nanoindentation experiment, in the case 

of the perturbation of the four parameters 𝐸, 𝜎𝑦, 𝐻𝑝 and 𝜎𝑦𝑠 shown in Figure 16 is 2.1, higher 

than 𝐼(𝐸, 𝜎𝑦, 𝐻𝑝) = 1.5 with a perturbation of only the three parameters of the thin film, 

however still sufficiently low to ensure a reliable identification of the four parameters of the 

inverse problem. Indeed, the inclusion of a highly influent parameters 𝜎𝑦𝑠 has limited the 

increase of the 𝐼-index, which otherwise would have been occurred with the inclusion of a 

fourth unknown parameter. Moreover, Figure 16 reveals that the two experiments are very 

complementary as their combination help stabilise 𝐼(𝐸, 𝜎𝑦, 𝐻𝑝, 𝜎𝑦𝑠) from about 3.8-3.9, 

describing a large space of parameter possibilities with high uncertainties, to 2.1, reflecting a 

well-posed problem where each optimisation paths are susceptible to converge to a unique 

solution. 

𝐼-index values of loading and unloading phases for each experiment and for the combination 

of the two reveal that the exploitation of the whole 𝑃 − ℎ curves is mandatory to expect to 

identify the four parameters, as 𝐼(𝐸, 𝜎𝑦,𝐻𝑝 , 𝜎𝑦𝑠) only sufficiently decreases when the two 

loading and unloading segments are taken into account. What’s more, 𝐼𝑙𝑜𝑎𝑑𝑠(𝐸, 𝜎𝑦, 𝐻𝑝) = 2.3 

whereas 𝐼𝑢𝑛𝑙𝑜𝑎𝑑𝑠(𝐸, 𝜎𝑦, 𝐻𝑝) = 1.4 meaning that it is possible to identify 𝐸, 𝜎𝑦 and 𝐻𝑝 of the 

film knowing 𝜎𝑦𝑠 with the two unloading phases, as also shown in Figure 8. Thus, the margin 

of information, which should allow to identify the substrate yield stress 𝜎𝑦𝑠 on top of the 3 thin 

film parameters, is arguably brought by the loading phase of each experiment. 
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Figure 16: 𝐼-index for four unknown parameters 𝐸, 𝜎𝑦, 𝐻𝑝 and 𝜎𝑦𝑠 for a combined 50 nm 

Berkovich and a 100 nm cube corner experiment, compared to the 𝐼-index of the 

corresponding individual experiments. 

3.3.2. Simultaneous identification of the four parameters 

The identification procedure using FEMU method is applied to the experimental 𝑃 − ℎ 

curves obtained from the dual nanoindentation test using the starting point 𝜃0(𝐸 =

198 GPa, 𝜎𝑦 = 3.6 GPa,𝐻𝑝 = 21 GPa, 𝜎𝑦𝑠 = 5 GPa), thus defined by the previous set of 

identified parameters of the thin film and the substrate yield stress assumed previously in the 

finite element model. 

Figure 17 shows the resulting force-displacement curves obtained with the identified 

parameters �̂�𝑓(𝐸 = 211 GPa, 𝜎𝑦 = 2 GPa, 𝐻𝑝 = 22 GPa, 𝜎𝑦𝑠 = 6.4 GPa) in comparison with 

the 𝑃 − ℎ curves for the starting point 𝜃0 and the experimental 𝑃 − ℎ curves from which the 

optimisation procedure has been applied. It reveals that the optimisation procedure leads to an 

even better match of the experimental and numerical results, for an objective function which 

improves from 4.7 × 10−4 to 3.7 × 10−4. 
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Figure 17: Experimental and simulated nanoindentation curves for the starting point 𝜃0and 

the estimated solution �̂�𝑓 . 

A posteriori 𝐼-index calculated at the final solution �̂�𝑓  is 2.1, proving the local stability of 

the final solution. However, just as for the first identification conducted in section 3.2.1, this 

sole identification result does not prove that the founded solution �̂�𝑓  is unique. 

Therefore, to ensure the robustness of the Levenberg-Marquardt algorithm (section 3.2.2), 

an identification procedure has been conducted using the five initial starting points 𝜃01 to 𝜃05 

reported in Table 1 while releasing the substrate yield stress with an initial value of 5 GPa in 

each starting points. The evolution of each parameters 𝐸, 𝜎𝑦, 𝐻𝑝 and 𝜎𝑦𝑠 during the 

minimisation process from each starting points shown in Figure 18 reveals that each 

optimisation paths converge to the same solution �̂�𝑓(𝐸 = 211 GPa, 𝜎𝑦 = 2 GPa,𝐻𝑝 =

22 GPa, 𝜎𝑦𝑠 = 6.4 GPa), indicating that the starting point does not influence the result. In that 

respect, it can be concluded that the final solution is unique. 
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Figure 18: Evolution of the parameters 𝐸, 𝜎𝑦, 𝐻𝑝 and 𝜎𝑦𝑠 during the identification procedure 

using five starting points. 

Figure 19 represents the stress-strain curves of the identified elasto-plastic behaviour of the 

thin film before (�̂�(𝐸 = 198 GPa, 𝜎𝑦 = 3.6 GPa,𝐻𝑝 = 21 GPa)) and after (�̂�𝑓(𝐸 =

211 GPa, 𝜎𝑦 = 2 GPa,𝐻𝑝 = 22 GPa)) the inclusion of the substrate yield stress in the 

identification process. The relative error on the three elastoplastic parameters of the film, 

without its inclusion, is – 6.2%, 80% and – 4.5% respectively for 𝐸, 𝜎𝑦 and 𝐻𝑝. It shows that 

the substrate effect has a significant influence on the plastic behaviour of the film and on the 

accuracy of the film yield stress estimation. 
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Figure 19: Stress-strain curves describing the identified elasto-plastic behaviour of the thin 

film before (�̂�) and after (�̂�𝑓) the inclusion of the substrate yield stress in the identification 

process. 

3.4. Validation of the estimated parameters 

In this section, the validation of the set of identified parameters is done by confronting: (i) 

the numerical and experimental 𝑃 − ℎ curves of a nanoindentation test on the bulk silicon 

substrate and (ii) the numerical and experimental topography of the imprint of a 

nanoindentation test on the composite alumina thin film - silicon substrate sample. 

3.4.1. Validation using a silicon nanoindentation curve 

The identified value of 𝜎𝑦𝑠 is validated here with a direct simulation of a force-controlled 

Berkovich nanoindentation test at 𝑃𝑚𝑎𝑥 = 5 mN on the silicon substrate using the same 2D-

axissymetric model geometry and mesh presented in section 2.3, but without the thin film mesh. 

Figure 20 shows the simulated 𝑃 − ℎ curve obtained with the identified value of 𝜎𝑦𝑠 =

6.4 GPa, compared to the 𝑃 − ℎ curve for the previously assumed value of 𝜎𝑦𝑠 = 5 GPa. It 

reveals a better match between the numerical and the experimental results and confirms the 

completeness of the method exposed in this work, from the design of experiments to the 

following simultaneous identification of the elasto-plastic parameters of the alumina thin film 

and the silicon yield stress. Note that the noticeable slope discontinuity at the end of the 

unloading part of the experimental curve is due to the phase transition of silicon (S. Wang et 

al., 2017) which is not considered in the finite element model of the nanoindentation test. 
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Figure 20 : Experimental and simulated 𝑃 − ℎ curves for 𝜎𝑦𝑠 = 6.4 GPa and 𝜎𝑦𝑠 = 5 GPa of a 

nanoindentation test on silicon. 

3.4.2. Validation using residual topographies and 3D FEM 

The identified parameter values in �̂�𝑓(𝐸 = 211 GPa, 𝜎𝑦 = 2 GPa, 𝐻𝑝 = 22 GPa, 𝜎𝑦𝑠 =

6.4 GPa) are validated using the imprint of a force controlled Berkovich nanoindentation test 

at 𝑃𝑚𝑎𝑥 = 5 mN on the composite alumina thin film-substrate sample. A 3D FEM of the 

nanoindentation test is built in this instance to accurately simulate the pile-up area around the 

imprint. This model is detailed in section 2.3.2. 

The nanoindentation 𝑃 − ℎ curve obtained using the 3D FEM is compared to the 

experimental 𝑃 − ℎ curve and the one from the 2D axisymmetric FEM, as shown in Figure 21. 

It reveals that the 3D model of the nanoindentation test is in accordance with the 2D 

axisymmetric model, meaning that the use of the 2D axisymmetric model in this study is 

convenient to reliably simulate trends of experimental observations from a nanoindentation test. 
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Figure 21: Experimental and simulated 𝑃 − ℎ curves using the 2D axisymmetric and the 3D 

finite element model of a Berkovich nanoindentation test on the composite system thin film – 

substrate. 

Experimental Atomic Force Microscopy (AFM) topography and simulated residual 

topography of the Berkovich nanoindentation test are shown in Figure 22. The simulated 

residual imprint is very similar to the experimental imprint in terms of shape and size. The pile-

up distribution around the imprint is comparable, and furthermore the pile-up ratio 𝑍/ℎ𝑚𝑎𝑥  is 

of the same order of magnitude, although a slight difference in pile-up ratio is discernible 

between the two topographies. This is due to the overestimation of the numerical residual depth 

ℎ𝑟 , leading to higher pile-ups for the numerical topography, as the phase transition of silicon, 

related to the slope discontinuity visible on the experimental 𝑃 − ℎ curve in Figure 21, is not 

modelled in the 3D FEM. 

Thus, this comparison consolidates the preceding validation made with a silicon 

nanoindentation curve concerning the estimated values of �̂�𝑓(𝐸 = 211 GPa, 𝜎𝑦 = 2 GPa, 𝐻𝑝 =

22 GPa, 𝜎𝑦𝑠 = 6.4 GPa) and the completeness of the method exposed in this work. 
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Figure 22: Experimental AFM topography and simulated residual topography using the 3D 

FEM of a nanoindentation test on the composite system thin film (𝑒𝑓 = 100 nm) – substrate 

at ℎ𝑚𝑎𝑥 = 146 nm. The topography values 𝑍 are normalised by the maximum indentation 

depth ℎ𝑚𝑎𝑥 . Pile-ups are highlighted by adapting the color code to only consider the matter 

above zero. 

In addition, estimated values of 𝐸 and 𝜎𝑦 for the alumina thin film have been compared with 

values in literature. Tripp et al. have extracted the intrinsic elastic modulus of a 100 nm alumina 

thin film deposited by ALD from membrane bulge testing, obtaining a value of around 180 ± 

20 GPa (Tripp et al., 2006), which is in accordance with the identified value of 211 GPa. Using 

experimental and numerical simulations of nanoindentation tests, Pelletier et al. have estimated 

a yield stress for amorphous alumina deposited on silicon substrate comprised between 1.5 to 

3 GPa, depending on the film thickness (from 250 nm to 1000 nm) and assuming a substrate 

yield stress of 4 GPa (Pelletier et al., 2006). They have used the same bilinear elasto-plastic law 

assumption (section 2.2). However, it is worth noting that some elements of the Pelletier et al. 

study differ from this present work: (i) alumina deposition has been processed by evaporation, 

and (ii) assuming a low hardening for nanoindentation simulations, on the order of 𝐸𝐻𝑝/(𝐸 +

𝐻𝑝) = 𝐸/1000. Also, the method used to estimate this parameter is different, as it fits only the 

loading phase of experimental and numerical nanoindentation test with a polynomial function 

for different 𝜎𝑦/𝜎𝑦𝑠 ratios, with fixed 𝐸/𝐸𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 = 0.7. Nevertheless, this comparison gives 

an order of magnitude in accordance with the estimated value of 2 GPa of this present work. 
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4. Conclusion 

The goal of this work was to evaluate the possibility to estimate the elasto-plastic parameters 

of an alumina thin film (Young modulus 𝐸, yield stress 𝜎𝑦 and hardening modulus 𝐻𝑝) and the 

silicon substrate plasticity (yield stress 𝜎𝑦𝑠) using outputs provided by nanoindentation 𝑃 − ℎ 

curves. The method implemented here attempts to target a priori the experiments to realized 

experimentally to ensure a reliable identification of the parameters using the FEMU method. 

The use of an identifiability indicator (I-index) allowed to quantify the information brought by 

experiments by reflecting the stability of the inverse problem potential solution, i.e., its 

sensitivity to a perturbation on the nanoindentation force. The key conclusions of this work are 

as follows: 

- 𝐼-index calculations helped design a judicious combination of experiments, involving 

two indenter tip shapes with wisely selected maximum indentation depths. 

- The identification procedure using the FEMU method applied to the designed dual 

nanoindentation experiment led to a unique solution, i.e. not sensitive to the starting 

point of the optimisation method, leading to a good fit between numerical and 

experimental 𝑃 − ℎ curves. Moreover, the calculation of a posteriori 𝐼-index assessed 

the stability of the found solution and thus, with the uniqueness and stability verified, 

the quality of the solution. This confirms the proper working and the interest of an a 

priori numerical design of experiments based on identifiability in the case of a 

composite system thin film-substrate. 

- The anvil effect exhibited by this dual tip experiment allowed to identify the substrate 

yield stress on top of the three thin film elasto-plastic parameters, i.e. its Young’s 

modulus, yield stress and hardening modulus. 

- The three true intrinsic elastoplastic parameters of the thin film can only be obtained by 

including the substrate yield stress in the FEMU method. Indeed, the relative error on 

the three elastoplastic parameters of the film, without its inclusion, is – 6.2%, 80% and 

– 4.5% respectively for 𝐸, 𝜎𝑦 and 𝐻𝑝. It demonstrates the significant influence of the 

substrate on the plastic behaviour of the film and on the accuracy of the estimation of the 

film properties, especially the yield stress 𝜎𝑦. Therefore, the thin film – substrate 

configuration is very profitable for the reliable estimation of the three elastoplastic 

parameters of the film and the substrate yield stress (𝐸 = 211 GPa, 𝜎𝑦 = 2 GPa, 𝐻𝑝 =

22 GPa, 𝜎𝑦𝑠 = 6.4 GPa)  with the FEMU method, with judiciously designed 

nanoindentation experiments. 

Besides this approach uses nanoindentation experiments exclusively, i.e. only 𝑃 − ℎ curves 

without the imprint topography or profile. Thus, it allows a simple experimental 

implementation without the need of AFM which permits limited handling and carefulness steps 
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prior to the test. Lastly, the development of a robust identification method, as established in this 

work, provide the opportunity to assess the evolution of intrinsic parameters: 𝐸, 𝜎𝑦 and 𝐻𝑝 in 

function of annealing conditions of the alumina thin film. 
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