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Abstract

The electronic boards in drilling and measurement (D&M) tools pro-
vide multiple functions, such as data acquisition, signal processing, op-
eration control, and data storage. However, due to the harsh downhole
operating conditions; i.e., high temperature, dynamic vibration, and ex-
tensive shocks, the boards are likely to suffer from complex failure modes
and result in failed jobs. Estimating the risk level of the boards can
tolerate and provide support for maintenance decision making and job
planning, this paper presents a statistical method for risk assessment of
the electronic boards. The method first selects relevant channels from
D&M tool measurement data and extracts histogram features based on
those selected channels. The histogram features are then enhanced based
on a linear interpolation method and aggregated using weighted sum. Fi-
nally, hidden Markov models (HMMs) with different parameter settings
are trained using the processed features. The best HMM is chosen accord-
ing to the Akaike information criterion and Bayesian information criterion.
The proposed HMM-based method is tested on a real-world data set of
failed control processing unit boards that were assembled for a specific
D&M tool. The experimental results show that this method is effective
in estimating the risks as a sequence of events, which in turn, helps to
achieve consistent risk estimation. The work presented in this paper is
also part of a long-term project with the aim to construct a risk-based
decision advisor for D&M tools used in the oil and gas industry.

Keywords— risk-level estimation, hidden Markov model, environmental expo-
sure, electronic board, drilling and measurement tool
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1 Introduction

The bottomhole assembly (BHA) is an important device in an oil and gas industry
drilling system. The BHA must provide power for the bit to rotate and crush the
rock, survive a harsh operating environment, and provide accurate directional control
of the well [1]. Frequently, a BHA consists of several drilling and measurement (D&M)
tools; e.g., measurement-while-drilling, logging-while-drilling, and rotary steering sys-
tem tools. A large number of electronic boards are built into D&M tools to facilitate
multiple functions of a BHA. The reliability of the electronic boards is essential to the
success of a drilling job [2] and one way to improve the reliability is tool maintenance
prior to a failure [3].

Currently, tool maintenance is mainly time-based, which could result in either pas-
sive maintenance activities due to tool failures or unnecessary maintenance activities
such as replacing a component too early. To date, limited research on advanced main-
tenance strategies such as condition-based maintenance, predictive maintenance, and
risk-based maintenance have taken place to D&M tools. To fill some of the gaps, the
authors of this paper initiated a project to develop risk-based maintenance decision
approaches for D&M tools. Risk-based maintenance consists of three phases; i.e., risk
estimate, risk evaluation, and decision making [4]. This paper presents only the first
phase; i.e., a risk-estimate method for D&M tool electronic boards. In the context of
maintenance, risk is usually defined as the probability of failure times the consequence
of the failure [4]. In this paper, the authors assume the consequence of the failure is
the same; i.e., the risk presented in this paper is equivalent to probability of failure
unless otherwise specified.

Although a considerable number of studies on performance of electronics, summa-
rized in [5] [6], have been conducted, most are focused on the electronic components
performance, such as a capacitor. There are a few research efforts about electronic
boards composed of multiple electronic components. The evaluation of electronic
board failure in D&M tools is much more challenging because D&M tools are com-
plex electronic-rich systems, which operate in dynamic and extreme environments.
Moreover, environmental parameters such as temperature and vibration are usually
collected for the entire tool, not collected for each board or electronic component
separately.

Because D&M tools are designed for drilling and measurements in the oil and gas
wells, research on the performance of D&M tool electronics are mostly conducted by
the leading oil and gas service companies. For example, Mosallam et al. proposed
a fault detection method for neutron generator subsystem in multifunction logging-
while-drilling service based on empirical mode decomposition algorithm [7]. Bhatnagar
et al. introduced a data-driven fault detection method for electronic boards in intel-
ligent remote dual-valve system [8]. Kale et al. presented a probabilistic approach
for risk estimates of D&M tool electronics based on reliability functions; e.g., Weibull,
lognormal, and exponential distributions) with stress levels [9]. Zhan et al. proposed
a cumulative damage model with Weibull distribution [3] [10]. The model is similar to
that of Kale’s work, but the stress levels are slightly different. Both methods assume a
definite form of a reliability function based on prior knowledge. Furthermore, estimat-
ing the parameters of the reliability function usually requires a considerable amount
of failure data. Based on the similarities between the cumulative stress paths between
tools, Garvey et al. introduced a pattern recognition-based remaining useful life es-
timation for D&M tools [11]. This method is based on a strong assumption that the
stress path is linear, which is difficult to hold. Moreover, the method cannot provide
the uncertainty of the prognostic result. This paper will present a new method for
risk estimates of electronic boards in D&M tools based on the Hidden Markov Model
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(HMM). This method can output the uncertainty (probability) of risk estimates and
does not use a definite form of a reliability function. Meanwhile, this method models
the risks associated with an electronic board at different times as a function of evolving
events, which closely approximates the real world.

This paper is organized into three sections. The first section presents the proposed
method in detail. The following section presents a case study using actual data to
confirm the method. The final section is a summary and proposes some research
directions for the future.

2 Methodology

This section presents a brief introduction of the HMM fundamentals. Then, an
overview of the underlying assumptions for the proposed method, together with a
detailed description of the risk level estimate framework, will be presented.

2.1 Brief Introduction of the HMM Theory

An HMM consists of two parts, including an unobservable/hidden state sequence and
a state-dependent observation sequence, as shown in Fig. 1. The unobservable state
sequence St : t = 1, 2, . . . satisfies the Markov property; i.e., that the conditional prob-
ability of the state at time t (i.e., St) on previous states is equivalent to the conditional
probability of St only on the most recent state St−1. Mathematically, this condition
is expressed as Pr(St|St−1, St−2, . . . , S1) = Pr(St|St−1), t = 2, 3, . . .The observation
sequence {Ot : t = 1, 2, . . . } is state-dependent. In other words, the distribution of
Ot depends only on the current state St and not on historical states or observations.
This can be expressed as Pr(Ot|S1, S2, . . . , St, O1, O2, . . . , Ot−1) = Pr(Ot|St) [12].

S1 S2 S3 St

O1 O2 O3 Otobservation sequence

hidden state sequence

Figure 1: Schematic of HMM.

The HMM parameters can be characterized by a 3-tuple, Ω = (M,Φ,π), where M
is the state transition probability matrix, Φ is the observation probability distribution,
and π is the state initial distribution.

Two problems can be formulated for HMM when applying the method to risk level
estimating in this paper.

2.1.1 The Learning Problem

Given T consecutive observations O = {O1 = o1, O2 = o2, . . . , OT = oT }, the learning
problem of HMM aims to find the model parameter Ω that maximize the likelihood L
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shown in Eq. (1).

L = Pr (O) = Pr (O1 = o1, O2 = o2, . . . , OT = oT )

=

m∑
s1,s2...,sT=1

Pr(O1 = o1, O2 = o2, . . . , OT = oT ,

S1 = s1, S2 = s2, . . . , sT = ST )

= πMΦ(o1)MΦ(o2) · · ·MΦ(oT )1
′

(1)

The Baum-Welch algorithm is commonly used to solve this problem [13].

2.1.2 The Decoding Problem

Given the HMM model parameter Ω and T consecutive observations, O = {O1 =
o1, O2 = o2, . . . , OT = oT }, as well the decoding problem of HMM is to determine the
hidden state sequence S = {S1 = s1, S2 = s2, . . . , ST = sT } that are most likely to
generate the observation sequence, which is mathematically expressed as follows:

max Pr(S1 = s1, S2 = s2, . . . , ST = sT |
O1 = o1, O2 = o2, . . . , OT = oT )

(2)

This problem can be solved by the Viterbi algorithm [14].

2.2 Risk Level Estimate Based on the HMM

As mentioned in Section I, the electronic boards are exposed to high temperatures,
dynamic vibrations, and extensive shocks when the tool is drilling or measuring for-
mation properties. These environmental conditions are the critical factors that cause
the degradation or even the failure of the electronic boards. Thus, sensors are installed
on the D&M tool to collect environmental data such as temperature, vibration, and
shock during downhole operations. One could estimate the risk level of the electronic
board through analyzing these environmental data.

2.2.1 Assumptions

To implement the HMM for risk level estimate of the electronic boards using the
condition monitoring information, this paper makes the following assumptions:

• The observations; i.e., the final features used for training HMM, are Gaussian
distributed. In addition, the features are mutually independent.

• The risk to the electronic boards is unobservable, but it is assumed that the risk
has four levels, namely Level 1, Level 2, Level 3, and Level 4. Level 1 signifies
the lowest risk while Level 4 is the highest risk. Moreover, the electronic boards
are functional at the beginning. In other words, the initial state distribution of
the HMM is π = [1, 0, 0, 0].

• The risk level of the electronic boards of the next time can either transit to the
next risk level or stay in the same risk level as the current time. This means the
HMM is left-to-right [15].
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2.2.2 Proposed Risk Level Estimate Framework

Based on the previously stated assumptions, the framework of the proposed method
is shown in Fig. 2. The framework includes four parts, namely, data collection, data
preprocessing, learning, and decoding.

Specifically, in the data collection part, the tool measurement data are collected
and stored in the memory chip during each downhole operation; i.e., each run. After
each run, the tool is pulled up to the surface from the well, and the data stored in the
memory chip are dumped and uploaded to cloud storage, from where one can retrieve
the historical tool measurement data.

The data preprocessing portion consists of five steps; i.e., channel selection, his-
togram feature extraction, construction of cumulative exposure data sequence, data
enrichment, and feature aggregation. These five steps are described as follows.

Channel Selection The channel selection is to choose the relevant signal channels
for the risk-level estimate. Because the D&M tool acquires an enormous number of
channels of information during running, many channels do not contain information
concerning degradation of the electronic boards. Removing these channels does not
only reduce the computation complexity in the following analysis, but also improves
the estimation performance. Therefore, only the most important channels are selected
for the risk-level estimate. In general, channels containing temperature, vibration, and
shock data are selected because they are believed to have significant impacts on the
electronic board lifetime [5].

Feature Extraction The histogram feature extraction computes exposure time
under different environmental levels (occasionally referred to as stress levels) using
the data from the selected channels of each run. Environmental levels are equivalent
to histogram bins, and exposure time of these levels corresponds to the histogram
frequencies multiplied by the data recording rate. The histogram feature of board
b under environmental level i of channel j of run k is mathematically expressed as
follows:

H
(b)
ijk = Frequency

(b)
ijk ∗RecordingRate (3)

Construction of Cumulative Environmental Exposure Electronic board
failures are usually caused by accumulative effects of environmental exposure during
the numerous subsurface runs. Thus, environmental exposure data from a single run is
not sufficient for determining electronic board risk. To use cumulative environmental
exposure data, multiple subsurface runs are required. This step aims to construct
cumulative environmental exposure data over runs based on the extracted histogram
features. Specifically, the cumulative environment exposure data of board b under
environmental level i of channel j after run K is denoted as follows:

C
(b)
ijK =

K∑
k=1

H
(b)
ijk (4)

Data Enrichment Training the HMM commonly needs considerable data (or
many observations). However, for each electronics board, only one observation can
be obtained for each run after the collecting the cumulative exposure data. More-
over, it is difficult to obtain full life-cycle data from the electronic boards in a D&M
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Figure 2: Framework of the proposed method.
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tool. The reason is because the tool measurement data retrieved from the cloud stor-
age have missing values for many runs due to numerous reasons, including tool lost in
hole, failure of memory chips, and field technician failing to dump the data. Therefore,
to augment the data volume for training the HMM, a linear interpolation method is
adopted to generate synthetic data. The linear interpolation method is simple. Specif-
ically, given two cumulative exposure data points from board b under environmental
level i of channel j at time t0 (end time of run K− 1) and t1 (end time of run K), the
interpolated cumulative exposure data point at time t between t0 and t1 is given by:

C
(b)
ijt = C

(b)
ij,K−1 + (t− t0)

C
(b)
ijK − C

(b)
ij,K−1

t1 − t0
(5)

In this paper, an equally spaced time sequence from time zero to the life end time
of the board is first generated, and then new cumulative exposure data points are
interpolated using Eq. (5).

Feature Aggregation The D&M tool is less likely to be exposed to high-temperature,
high-vibration, and high-shock peak environments, which makes cumulative environ-
mental exposure data at those levels not change significantly with time. Analyzing
HMM parameters would fail if directly using these data. The reason is it would be
impossible to estimate the state-dependent Gaussian distribution parameters when the
observations are the same. In addition, it is difficult to determine which histogram fea-
tures should be used. Nevertheless, the model complexity would substantially increase
if all of the histogram features are used for HMM learning. Therefore, to simplify the
model and achieve successful HMM parameter learning, the authors of this paper use
weight sum to aggregate features from the same channel. The aggregated feature of
board b of channel j at time t is formulized as follows:

AggF
(b)
jt =

nj∑
i=1

wijC
(b)
ijt (6)

where nj represents the number of levels of channel j, and wij denotes the feature
weight of level i of channel j.

After data preprocessing, the aggregated features can be used to build an observa-
tion of board b at time t as shown in Eq. (7). Then, it becomes possible to construct
the observation sequence for each board. The boards are further divided into training
boards and test boards. The observation sequences of the training boards are used to
learn the HMM model parameter Ω. Because the Baum-Welch algorithm is a type
of expectation maximization (EM) algorithm, the solution of EM is not unique. It
is possible to train the HMM model many times and select the best model according
to the Akaike information criterion and Bayesian information criterion as shown in
Eq. (8). The less are the AIC and BIC, the better the model. With the trained HMM
model and observation sequence of the test boards, the sequences of risk level and
probabilities of those boards can be estimated. It should be noted that one can also
estimate the same information for training boards.

O
(b)
t = [AggF

(b)
1t , AggF

(b)
2t , . . . , AggF

(b)
Nt ]

T (7)

where N means the number of channels.

AIC = −2log(L) + 2p

BIC = −2log(L) + plog(T )
(8)

where L is the log likelihood of the HMM shown in Eq. (1), p is the number of model
parameters, and T denotes the number of observations.
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3 Case Study

In this section, historical tool measurement data from D&M tools will be used to
validate the effectiveness of the proposed method. The data were collected during
actual downhole oilfield operations. Fig. 3 shows the D&M tool studied in this paper.
The tool uses a rotary steerable system that controls the direction in which a well is
drilled while rotating the drillstring. Various types of electronic boards are installed
in this tool to support its various functions. In this paper, the control process unit
(CPU) board is selected. For this type of board only, the historical tool measurement
data were collected from 21 boards whose failures were related to heat and vibration.
As mentioned previously in the Data Enrichment section, it is difficult to collect full
life-cycle environmental exposure data from failed boards. Thus, in this case study,
some of the boards have missing data. The detailed data description of the 21 boards
is shown in TABLE 1.

Figure 3: Rotary steerable system.

Additionally, four channels of tool measurement data, specifically, temperature,
lateral vibration, axial vibration, and lateral shock peak were selected for this case
study. The number of levels for the four channels and the corresponding weights for
feature aggregation are summarized in TABLE 2. The time allowed for generating the
time sequence for the Data Enrichment step is set to 10 hours.

The tool measurement data from the 21 boards were processed following the steps
described in the Data Preprocessing section previously described. Then, the first 11
boards listed in TABLE 1 were selected as training boards, and the remaining 10
boards as test boards.

The software used for the HMM learning and decoding in this paper is the dep-
mixS4 [16] R package. The HMM model was trained 100 times using the training
boards data. The best HMM model has an AIC of 52887.48 and a BIC of 53124.96.
The learned state transition probability matrix of the HMM is as follows:

M =


0.95 0.05 0 0
0 0.963 0.037 0
0 0 0.967 0.033
0 0 0 1

 (9)

The learned observation probability distribution (Gaussian distribution) parame-
ters are shown in TABLE III, where µ and σ denote the mean and standard deviation
of the Gaussian distribution, respectively.

Using the trained HMM model, the risk level and its probability can be estimated
on the condition of observing the sequence of each run. It should be noted that the
risk estimation for the runs with missing data is not included. The sequences of risk
level estimates and probabilities of training boards are shown in TABLE 4.

The sequences of risk level estimates and probabilities of test boards are shown in
TABLE 5.

From these results, almost all of the boards (10/11 of training boards, 8/10 of test
boards) are predicted to be at risk of Level 4 in their last run, which is consistent
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Table 1: Data Description of The 21 Boards

Board
ID

Runs
Missing
Runsa

Data Coverageb
Total Pumping

Time (h)c

x1005 18 4 92% 1104.5
x4028 20 2 87% 862.6
x1014 11 0 100% 714.4
x6054 19 1 93% 742.2
x9031 18 2 89% 1355.9
x9046 33 9 83% 1328.1
x0048 15 2 95% 1037.2
x5005 19 3 92% 1186.2
x5050 18 1 97% 1110.1
x5010 22 3 87% 1403.7
x0405 17 1 95% 1210.2
x1012 3 0 100% 125.7
x9045 43 8 80% 2067.2
x3007 11 1 94% 963.2
x9035 28 10 72% 1176.5
x7043 25 8 73% 1371.3
x7079 23 7 71% 1608.2
x9003 29 5 84% 1691.2
x9049 22 4 84% 1239.3
x6004 11 0 100% 450.3
x1260 20 2 90% 1324.2

a number of runs that have missing data.
b total pumping time of runs with data/total pumping time of all runs.

c total pumping times of all runs.

Table 2: Description of Channel Levels and Weights

Channel
Name

Number
of

Levels

Level 1
Weight

Level 2
Weight

Level 3
Weight

Level 4
Weight

Temperature 4 0.5 1.5 2 10
Lateral
vibration

3 0.5 1.5 10 –

Axial
vibration

3 0.5 1.5 10 –

Lateral
shock peak

3 0.5 1.5 10 –
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Table 3: Learned Observation Probability Distribution Parameters

State Aggregated Aggregated Aggregated Aggregated
(Risk Temperature Lateral Axial Lateral
Level) Vibration Vibration Shock Peak

– µ σ µ σ µ σ µ σ
Level 1 67.4 42.6 57.2 33.4 58.8 35.4 52.6 30.0
Level 2 288.5 127.9 182.7 46.7 184.0 46.4 68.0 41.1
Level 3 557.7 235.8 30.9 56.1 330.1 53.2 308.8 46.8
Level 4 803.2 299.6 546.6 116.0 533.1 102.5 491.1 81.1

Table 4: Sequences of Risk Level Estimates and Probabilities of Training Boards

Board
ID

Risk Level Sequence Probability Sequence

x1005 1-2-2-2-2-3-3-4-4-4-4-4-4-4
1-1-1-1-0.999-1-0.999-0.06-1-1-1-

1-1-1

x4028 1-1-2-2-2-2-2-3-3-3-3-3-3-3-4-4
1-1-1-1-1-1-1-0.597-1-1-1-1-1-

0.993-0.793-1
x1014 1-1-1-2-2-2-2-2-2-3-3 1-1-1-0.838-1-1-1-1-0.998-1-1

x6054 1-1-1-2-2-2-2-2-2-2-2-3-3-4-4-4-4
1-1-1-0.825-1-1-1-1-0.999-0.999-
0.996-0.991-0.999-0.169-1-1-1

x9031 1-2-2-3-3-3-3-3-3-3-4-4-4-4-4-4
1-1-1-0.044-0.125-0.579-0.974-1-

1-1-0.626-1-1-1-1-1

x9046
1-1-2-2-2-2-3-3-3-3-3-3-4-4-4-4-4-

4-4-4-4-4-4

1-0.991-0.741-1-1-0.998-0.955-1-
1-1-1-0.979-0.993-1-1-1-1-1-1-1-

1-1-1
x0048 1-1-1-2-2-2-2-3-3-3-4-4 1-1-1-1-1-1-1-0.956-1-1-1-1

x5005 1-1-1-2-2-3-3-3-3-3-3-3-4-4-4-4
1-1-1-1-1-0.062-1-1-1-1-1-0.992-

1-1-1-1

x5050 1-1-2-2-3-3-3-3-3-3-4-4-4-4-4-4-4
1-0.999-1-1-0.114-1-1-1-0.999-

0.997-1-1-1-1-1-1-1

x5010
1-1-1-1-2-2-2-2-2-3-3-3-3-3-4-4-4-

4-4
1-1-1-0.987-1-1-1-1-1-1-1-1-1-

0.996-1-1-1-1-1

x0405 1-1-2-2-2-2-3-3-3-3-4-4-4-4-4-4
1-1-0.915-1-1-1-1-1-1-0.991-1-1-

1-1-1-1
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Table 5: Sequences of Risk Level Estimates and Probabilities of Test Boards

Board
ID

Risk Level Sequence Probability Sequence

x1012 1-1-1 1-1-1

x9045
1-1-1-1-2-2-2-3-3-3-3-4-4-4-4-4-4-

4-4-4-4-4-4-4-4-4-4-4-4-4-4
1-1-1-1-1-1-1-1-1-1-0.99-1-1-1-1-
1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1

x3007 1-2-2-2-2-2-3-3-3-4 1-1-1-1-1-1-1-1-1-0.21

x9035
1-1-1-1-2-2-2-3-3-3-3-4-4-4-4-4-4-

4
1-1-1-1-1-1-0.98-1-1-1-1-0.05-1-1-

1-1-1-1

x7043 1-2-2-2-2-2-3-3-3-4-4-4-4-4-4-4
0.97-1-1-1-1-1-1-1-0.99-1-1-1-1-1-

1-1

x7079 1-1-2-2-2-3-3-3-4-4-4-4-4-4-4
1-0.99-1-1-1-1-1-1-0.08-1-1-1-1-1-

1

x9003
1-1-1-1-2-2-2-3-4-4-4-4-4-4-4-4-4-

4-4-4-4-4-4
1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-

1-1-1-1-1-1

x9049
1-1-2-2-3-3-3-3-3-4-4-4-4-4-4-4-4-

4
1-1-0.98-1-0.04-1-1-1-1-1-1-1-1-1-

1-1-1-1
x6004 1-1-1-1-1-1-2-2-2-2 1-1-1-1-1-0.95-1-1-1-1

x1260 1-1-2-2-2-2-3-3-3-3-3-4-4-4-4-4
1-1-0.06-1-1-0.99-1-1-1-1-1-0.2-1-

1-1-1

with the actual situation because all of the boards failed. The three boards whose risk
level in the last run is not estimated as Level 4 have much less pumping time (714.5
hr, 125.7 hr, and 450.3 hr) than the other boards according to the pumping time in
TABLE 1. This result implies that the proposed method might not be suitable for
boards with minor failures.

Considering that most boards do not have full-life cycle coverage, the proposed
method is still capable of achieving acceptable results. Thus, the proposed method is
effective for estimating the risk level of electronic boards.

4 Conclusion and Future works

A risk-level estimate method based on the HMM for electronic boards used in oil and
gas industry D&M tools has been presented in this paper. The proposed method has
a major advantage of unsupervised learning, that is, it can be trained using unlabeled
data. This merit is of significance for D&M tools because it is costly or sometimes
even impossible to label the true risk level of electronic boards. Overall, the results
obtained from the failure data collect in the field show that the proposed method is
effective for risk estimation.

Some shortcomings or challenges exist for our method that will be presented in
the future. One major challenge is that the proposed method needs full-life cycle data
because currently, many runs are missing data. The future work on this challenge
might well be how to handle the missing values. Moreover, the weights for feature
aggregation are defined based on experiences, which lacks theoretical support. The
weights can be further optimized based on accelerated factors learned from highly
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accelerated life tests. Finally, the proposed method is not tolerant of early failure of
boards because early-failure boards will add noise to the model. How to set a life-time
threshold for determining early failure of the electronic boards is also worth studying.
In this way, removing the early failure boards from our training boards will improve
the model performance.
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