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Modeling and Position Control of the HASEL
Actuator via port-Hamiltonian Approach

Yu Yeh, Nelson Cisneros, Yongxin Wu, Kanty Rabenorosoa, Yann Le Gorrec

Abstract—This paper deals with the modeling and control
problem of a Hydraulically Amplified Self-healing Electrostatic
(HASEL) actuator based on the port-Hamiltonian framework.
A nonlinear spring-damper system is used to approximate the
mechanical deformation of the actuator due to the motion of
the fluid while a nonlinear capacitance is used to approximate
the electric behavior of the system. The actuator position control
strategy is investigated based on the Interconnection Damping
Assignment-Passivity Based Control (IDA-PBC) method, with
further Integral Actions (IA) added to cope with load uncer-
tainties. The proposed model and control laws are validated on
an experimental benchmark. The experimental tests demonstrate
that the proposed model is accurate up to 94% of fitness. The
controllers allow assigning the actuator position with ramp and
sinusoidal references with the relative error less than 5%. At last,
the robustness of the proposed IDA-PBC controller with IA has
been shown with the experimental result for the unknown load
disturbance rejection.

Index Terms—Soft robot, soft actuator, HASEL actuator, port-
Hamiltonian approach, IDA-PBC method

I. INTRODUCTION

Robots based on soft actuators have drawn more and more
attention of the researchers during the last decade due to their
safety for humans and suitability to unknown environments.
Recent studies have shown that robots based on soft actuators
perform competitively with existing solid robots in terms of
force and strain [1]. Soft pneumatic actuators and dielectric
elastomer actuators are two popular kind of soft actuators.
In the recent years, the Hydraulically Amplified Self-Healing
Electrostatic (HASEL) actuator has provided a new road-map
for the design of soft actuators [2]. By combining the design
concept of dielectric elastomer actuators and pneumatic soft
actuators, more desirable features of HASEL actuators are in-
dicated [3] including self-sensing and self-healing capabilities
and great potential for many applications, such as: HASEL
artificial muscles made from elastomers, elastomeric donuts,
quadrant donuts and curling HASEL actuators [4], soft grip-
pers [2] and soft-actuated joints created based on the hydraulic
mechanism used in spider legs [5]. One of the advantages
of the HASEL actuator is that it is easy to manufacture,
low cost, and open to many potential design based on its
working principle [6]. The authors of [7] present an easy to
implement toolkit to design and fabricate multiple HASEL
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actuators incorporating electrostatic zipping mechanisms and
reducing operating voltages. Several attempts to model and
control the HASEL actuator have recently been proposed. In
[8], the geometrical analysis of HASEL is investigated. In [9],
an identification of a nonlinear HASEL actuator model has
been presented and the controller design using the self-sensing
strain is addressed with a basic control approach. In [10],
the planar HASEL actuator model is investigated to describe
the relationship between the output force and the applied
voltage. These works reveal that the modeling and control of
complex mechanical structure with fluid structure interaction
is very hard and challenging. Only few studies on control-
oriented modeling and control design has been proposed in
the literature [9].

To overcome these constraints, this paper proposes a physi-
cally based dynamic model and a control strategy for HASEL
actuators using the port-Hamiltonian (PH) approach. This
approach [11] has proven to be powerful for the modeling
and control of complex multi-physical systems [12], [13]. PH
modeling is based on the characterization of energy exchanges
between the different components of the system. This approach
is particularly adapted for the modular modeling of multi-
physical systems. On the other hand, the PH approach is
well suited passivity based control design with clear phys-
ical interpretation, such as energy shaping and control by
interconnection and damping assignment (IDA-PBC) [14].
The PH approach and IDA-PBC control method have been
investigated for the modeling and control of a flexible beam
using the Ionic Polymer Metal Composite (IPMC) actuators
in [15]. In this work, the flexible beam has been considered
under small deformation and modeled by a linear infinite
dimensional system and a very simple RC circuit model has
been considered for the IPMC actuator. The overall system is
then governed by a linear coupled Partial Differential Equation
(PDE) – Ordinary Differential Equation (ODE) model. The
control method has been proposed for the discretized model
without any investigation on the robustness of the controller.

A common design of HASEL actuators consists in clus-
tering HASEL units as shown in the right figure of Fig 1,
and each unit consists of pouches filled with dielectric fluid
and covered with pairs of electrodes. The pouch is formed by
flexible but inextensible polymer films made bonding shell.
While the voltage is applied, the corresponding Maxwell force
zips the paired electrodes and displaces the dielectric liquid.
Because of the inextensible properties of the polymer films
and dielectric liquid, the displacement of liquid causes the
deformation of the pouches, leading to the motion of endpoints
of the actuator.
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Fig. 1: Experimental setup description

The main contributions of this paper are the proposition of
a PH model to describe the dynamics of the HASEL actuator
and the position control strategy based on the IDA-PBC
method. The geometry of the HASEL pouch is investigated
and based on this analysis, a PH dynamic model is established
using a non linear spring-damper system to approximate the
mechanical behavior of the flowing liquid in the pouches.
Different from to the work presented in [15], a precise model
is proposed considering both the electrical and mechanical
parts of the actuator, leading to a non linear finite dimensional
model in this paper. A control law based on IDA-PBC method
is employed to achieve the desired equilibrium position. An
integral action is added to the previous controller to cope
with the uncertainties in the load mass which has not been
considered in [15]. The proposed PH model is identified and
validated by an experimental setup and the proposed control
method is also validated by the same experimental setup which
is described in Fig. 1.

This paper is organized as follow: Section II presents the ge-
ometry analysis and the PH modeling of the HASEL actuator.
The IDA-PBC based position control and integral action are
proposed in Section III. In Section IV, the experimental setup
and the parameters identification are presented. The proposed
control laws is experimentally validated and the results are
discussed in Section V. Some final remarks and future works
are given in Section VI.

II. PORT HAMILTONIAN MODELING OF HASEL ACTUATOR

In the following sections, the geometric constraints of the
system are introduced. All the geometric variables can be
interpreted as function of the endpoint displacement q (the
geometry of HASEL actuator is shown in Fig 2b), the partial
derivative of these variables are naturally derived and which
is essential for the PH model.

A. Geometry description of HASEL actuator

We first introduce the HASEL unit, which is a simplified
geometric model to approximate the real actuator. Unlike an
ellipse geometric shape presented in [4], we use a diamond
shape to describe the unit pouch of the HASEL actuator as
shown in Fig. 2a.

The HASEL unit is composed of a pouches filled with
dielectric liquid, and equiped with a pair of electrodes covering
the two polymer films. The parameters of the actuator include:

(a) (b)

Fig. 2: (a) The geometry of HASEL unit; (b) Deformation
description of the actuator

• Lp the length of pouches;
• w the width of pouches and electrodes;
• Le the length of paired electrodes;
• Lv the initial length of actuator;
• A the cross-sectional area of pouches;
• t the thickness of dielectric film.

When we apply the voltage to the actuator, the Maxwell force
zips the pair of electrodes which leads to the deformation
of actuator. We define the geometric variables due to the
deformation as follows:
• le the length of the zipped electrodes;
• lh the height of the pouches;
• lv the length of the unzipped pouches;
• lc the distance between the endpoints of the paired

electrodes.
In this paper, we make two assumptions for the actuator during
its deformation: 1) the cross-section area A is constant because
the dielectric liquid is incompressible, and 2) the length of the
pouch Lp is constant because the membrane is inextensible.
The objective is to find how the displacement q relates to the
geometry of the HASEL unit. From the deformation of the
actuator, we can write the geometrical relationship to achieve
the different variables. The actuator endpoint displacement is
defined as:

q = Lv − (le + lv) = Ω(le) (1)

Since the cross-sectional area is assigned to a diamond shape,
the following geometry relationship holds:

A =
lvlh
2

(Lp − le)2 = l2v + l2h

(2)

By substituting the first equation of (2) to the second one, we
can present the height lh and the width lv as the function of
le as following:

lh =

√
(Lp − le)2

2
−
√

(Lp − le)4
4

− 4A2 (3)
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lv =

√
(Lp − le)2

2
+

√
(Lp − le)4

4
− 4A2 (4)

Then we can substitute the above equation to Eq. (1) and
the length of the zipped electrodes le can be presented as a
function of the actuator endpoint displacement q:

le(q) = Ω−1(q) (5)

Finally, the geometric constraints of the actuator can written
as a function of the displacement q.

The more precise geometric analysis of the actuator has
been made based on the ellipse shape in [8], [16]. In this
paper we have chosen the the diamond shape for the dynamic
modeling, because it is a good compromise between the
accuracy of the model and its simplicity of the geometric
analysis. All the geometric variables can be expressed in the
function of q with the diamond shape assumption. However,
in the ellipse shape case, it is not easy to present or compute
all the geometric variables in the function of q.

B. PH Formulation of HASEL

In this part, we derive a dynamic model of the HASEL
actuator by using the PH framework. The main idea is the
use of spring damper systems to describe the mechanical
properties of the dielectric liquid in pouch. The motivation
is from the observation of the physical properties during the
actuator deformation: 1) the displacement of the liquid and
the constraints on the structure cause the resistance to the
deformation, and 2) the actuator returns to its initial state
(position) when the voltage is switched off. These properties
imply that the mechanical properties of the flowing dielectric
liquid can be described by a spring-damper system. In this
paper, we propose two spring-damper systems places in the
vertical and horizontal directions of the actuator, as shown in
Fig. 3.

(a) (b)

Spring and damper

Spring and damper

Fig. 3: (a) Initial state when load is placed at the end; (b) The
deformed state with zipped part of electrodes.

To model the dynamics of the actuator, we first introduce
its Hamiltonian function (energy function) which is composed
by the mechanical energy and the electric energy. The total
mechanical energy is the sum of the kinetic and the potential
energy. The potential energy of the spring system is written
as

Hs(q) =
1

2
kv(q)∆ξv(q)

2 +
1

2
kh(q)∆ξh(q)2 (6)

where ∆ξv(q), ∆ξh(q) are the deformation of the springs in
the vertical and horizontal directions, and kv(q), kh(q) are the
coefficients of the nonlinear springs. The deformation of the
springs are defined as

∆ξv(q) = lv(q)− ξv(m)

∆ξh(q) = lh(q)− ξh(m)
(7)

where ξv , ξh are the original length of the springs. In this
work, the original length of the springs are designed as
nonlinear functions depending on the load mass m. Because
the geometry constrains limit initial states of the actuator,
no matter how heavy the load is applied to the actuator, the
initial states should remain the same. From a physical point of
view, it can be explained by the fact that the uncompressible
dielectric liquid generates an equivalent inner pressure to resist
to the external force from the load and maintains the actuator
in the initial geometry.

The electric energy of the capacitance between the paired
electrodes is

Hc(q,Q) =
1

2

Q2

C(q)
(8)

where Q is the charge of the capacitor and C is the capacitance
value. While C depends on q, its computation can be split
into two parts: the zipped region and unzipped region. The
capacitance in the zipped region can be described by

Cz(q) =
εrε0w

2t
le(q) (9)

For the unzipped region, it is approximated by the capacitance
between two unparalleled plates

Cuz(q) =

∫ (Le−le) cos(α)

0

εrε0w tan(α)

2t+ 2x tan(α)
dx (10)

As a result, the total capacitance is

C(q) = Cz(q) + Cuz(q) (11)

Then including the kinetic energy of the load and the potential
energy related to the gravity, the Hamiltonian function, i.e. the
total energy of the system can be described as:

H(q, p,Q) = Hs(q) +Hc(q,Q) +
1

2

p2

m
+mgq (12)

where the p is the momentum of the load and g is the
gravity constant. By choosing the energy variables as the state
variables x = [q, p,Q]T . The co-energy variables e are:

e =


∂H
∂q
∂H
∂p
∂H
∂Q

 =

∂Hc

∂q + ∂Hs

∂q +mg
p
m
Q
C(q)

 (13)
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where ∂H
∂q stands for the total force working on the load in

the q direction, resulting from the sum of the spring force
working on the load ∂Hs

∂q , the force from capacitance ∂Hs

∂q
and the gravity force mg.

With the above variables, the dynamics of the actuator can
be presented by the following PH formulation: q̇ṗ

Q̇

 =

 0 1 0
−1 −b(q) 0
0 0 −1/r


︸ ︷︷ ︸

(J−R)


∂H
∂q
∂H
∂p
∂H
∂Q

+

 0
0

1/r


︸ ︷︷ ︸

g

V (14)

where the interconnection matrix J = −JT represents the
energy exchanges in the system, while the damping matrix
R = RT = diag

[
0 b(q) 1/r

]
≥ 0 describes the internal

dissipation of the system with b(q) the nonlinear damping
coefficient depending on the vertical and horizontal damper
and r the resistance of the actuator. Let choose the current,
the power conjugate variable of the input, as the output
y = gT ∂H∂x = i, the system is passive, since the Hamiltonian is
such that H > 0 and H(0) = 0, moreover its time derivative
satisfies:

Ḣ = −∂H
∂x

T

R
∂H

∂x
+ yTu ≤ yTu. (15)

III. POSITION CONTROL DESIGN

In this work, the objective is to control the end position
of the HASEL in closed loop. Based on the PH model
proposed in the previous section, the IDA-PBC method will
be investigated to control the position of the actuator. The
IDA-PBC method provides several degrees of freedom to
assign the closed-loop equilibrium position and performance
with clear physical interpretation from energy point of view
[14]. Furthermore, a structure preserving integral action will
be added to improve the robustness of the control law while
guaranteeing the closed-loop stability.

A. Basics of IDA-PBC Design

For the design procedure of the IDA-PBC method, let
consider the open loop system (14):

ẋ = (J −R)
∂H

∂x
+ g(x)u. (16)

Define an asymptotically stable PH target system

ẋ = (Jd −Rd)
∂Hd

∂x
(17)

where the matrices Jd(x) = −Jd(x)T , Rd(x) = RTd (x) ≥
0 and the function Hd that satisfy the following matching
equation:

g⊥(Jd −Rd)
∂Hd

∂x
= g⊥(Jd −Rd)

∂H

∂x
(18)

with g⊥ a full rank left annihilator of g, i.e g⊥g = 0. Hd(x)
is the desired Hamiltonian (closed-loop energy) function such
that x∗ = argmin Hd(x), with x∗ the equilibrium to be
stabilized. The closed-loop system (17) with the feedback law
u = β(x), where

β(x) = (gT g)−1gT ((Jd −Rd)
∂Hd

∂x
− (J −R)

∂H

∂x
) (19)

behaves as the target system with the equilibrium x∗ asymp-
totically stable.

B. Application to HASEL actuator position control

To apply the IDA-PBC design procedure on the HASEL
actuator position control, we firstly consider the open loop
system (16) and define the desired closed-loop Hamiltonian
function

Hd(p, q,Q) =
kp
2

(q − q∗)2 +
1

2

p2

m
+
kQ
2

(Q−Q∗)2 (20)

where q∗ and Q∗ are the desired equilibrium position and
charge of capacitance, and the asymptotically stable PH target
system corresponds to (17) with

Jd =

 0 J12 α1

−J12 0 α2

−α1 −α2 0

 , Rd =

0 0 0
0 r1 0
0 0 1

r


where α1, α2 are the frees variable to be designed. By defining

the full rank left annihilator g⊥ =

[
−1 0 0
0 1 0

]
, the matching

equation (18) leads to

J12(q, p,Q) = 1− α1
m

p
kQ(Q−Q∗)

r1(q, p,Q) = b+
m

p
(
∂H

∂q
− J12kp(q − q∗)−

−α2kQ(Q−Q∗))

(21)

which are the variable depending on the state variables q, p,Q.
The desired equilibrium of the system is x∗ =

[
q∗, 0, Q∗

]
. To

make sure the closed loop system is asymptotically stable, the
parameter r1 ≥ 0 which implies

Q∗ ≥ α2kQQ− κ
α2kQ

(22)

where κ = b+ m
p (∂H∂q −J12kd(q−q

∗)) According to equation
(19), the control law of closed-loop system is

β(x) = −α1rkp(q−q∗)−kQ(Q−Q∗)+
Q

C(q)
−α2r

p

m
(23)

C. Integral Action (IA) for robustness

The main drawback of the controller proposed in the previ-
ous section is the lack of robustness to overcome the steady
state error due to the external disturbance or the unmatched
mass of load. To improve the robustness, the integral action
control [17] based on the IDA-PBC method is applied in this
subsection.

The uncertainties of the load can be interpreted as external
force applied on the system. Hence, the closed-loop system in
the previous section can be expressed asQ̇ṗ

q̇

 =
[
Jd(x)−Rd(x)

] 
∂H
∂Q
∂H
∂p
∂H
∂q

+

0
d
0

 (24)

where the matrices Jd(x) and Rd(x) are defined as

Jd(x) :=

[
Jaa(x) Jau(x)
−JTau(x) Juu(x)

]
=

 0 −α1 −α2

α1 0 −J12
α2 J12 0
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Rd(x) :=

[
Raa(x) Rau(x)
−RTau(x) Ruu(x)

]
=

 1
r 0 0
0 0 0
0 0 r1


and d is a unknown constant external force (disturbance) to
the system that depends on the unknown load. According to
[17], if we choose the new closed-loop Hamiltonian function
Hcl

Hcl = Hd +
Ki

2
‖Q− xc‖2, (25)

we can derive the new closed-loop Hamiltonian system ẋa
ẋu
ẋc

 =
[
Jcl(x)−Rcl(x)

] 
∂Hcl

∂xa
∂Hcl

∂xu
∂Hcl

∂xc

+


0
d
0
0

 . (26)

Thus the control law of the integral action is

ui =
[
−Jaa +Raa + Jc1 −Rc1 −Rc2

] ∂Hd

∂xa
(27)

+
[
Jc1 −Rc1

]
Ki(xa − xc) + 2Rau

∂Hd

∂xu

ẋc = −Rc2
∂Hd

∂xa
+ (Jau +Rau)

∂Hd

∂xu
(28)

where xc is the state of integral action. In this paper, we choose
the following design of matrices:

Jc1 = 0, Rc1 =
1

r
, Rc2 = 0 (29)

and the interconnection and damping matrices given by

Jcl :=

 0 Jau(x) +Rau(x) 0
−(JTau(x) +RTau(x)) Juu(x) 0

0 0 0


Rcl :=

 1/r 0 1/r
0 Ruu(x) 0

1/r 0 1/r

 .
(30)

Then the following integral control law and the controller state
can be derived:

ui =
1

r
Ki(Q− xc) (31)

ẋc = −α1kp(q − q∗)− α2
p

m
(32)

where Ki is the gain of the integral action need to be designed.
Combining the IDA-PBC (23) and Integral action (31), we can
implement the controller as the block diagram in Fig. 4.

HASEL

actuator

Integral action
Eq. (32) and (33)

q,p,Q
q*

IDA-PBC β(x)
Eq. (24)

+

+

Fig. 4: Block diagram of closed-loop control with integral
action

Fig. 5: Experimental setup

IV. EXPERIMENT DESCRIPTION AND IDENTIFICATION

A. Experiment Setup

The experimental setup description is presented as shown
in Fig. 1 in Introduction . The real-life experimental setup is
shown in Fig. 5 and composed of the following elements:
• The actuator used in this study is composed of 5

C-5015 HASEL actuators that were manufactured by
Artimus Robotic®. A 3-D printed load container is
attached to the bottom of the actuator to simplify the
load change during the manipulation.

• A Trek®610E high voltage amplifier is used to linearly
amplify 0−10V input signal to 0−10KV output voltage
with guaranteeing the current up to 2mA which provides
sufficient driven power for the actuator motion. This
amplifier can also return the current measurement in real-
time during the manipulation.

• A Kenyence®LK-G152 laser sensor is used to measure
the actuator displacement. The sensor is tuned to have
10kHz of bandwidth and ±4cm measurement range
which are large enough to track the dynamics of the
actuator and to validate the proposed control law.

• A computer with Matlab Simulink®is used to generate
the reference signals, to implement the proposed con-
troller and to get the measurement data.

• A dSPACE board (dS1104) serves the signals convert-
ers interface such as DAC (digital analogic converter)
between the computer and the actuator and the ADC
(analogic digital converter) between experimental sensor
measurement (displacement and current) and the com-
puter.

The HASEL actuator has the self-sensing property for its
strain measurement [2] which can be used for the controller
implementation. The aim of this paper is to propose an
accurate and reliable dynamic model and passivity based
position control law for the HASEL actuator. In this case,
we use a high precision laser displacement sensor instead of
self-sensing measurement to avoid the error which can occur
in the self-sensing.

B. Model Identification and Validation

For the model identification and the experimental validation,
we conduct experiments with different loads (m = 150g, 200g,
250g) and different applied voltages (V = 4kV, 5kV, 6kV )
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to obtain the experimental data of the displacement q and the
electrical charge Q. The objective of identification is to find
the proper coefficients of the spring-damper systems which
approximate the dynamics of dielectric liquid of the HASEL
actuator. From the system (14), we can obtain the mechanical
force of the HASEL actuator as Fm = ∂Hs

∂q + Fd = ṗ −
∂Hc

∂q −mg with Fd = b(q) pm . Thus the identification problem
becomes to find the optimal solution for the original length,
the stiffness of the springs and the damper coefficients such
that the difference between the mechanical force Fm and the
measured force Fe is minimum.

TABLE I: HASEL actuator’s parameters

Parameter Value Units
Lp 0.012 m
Le 0.06 m
w 0.05 m
t 18 × 10−6 m
ε0 8.85 × 10−12 F/m
εr 2.2 F/m
r 8000 Ω

The coefficients are nonlinear and defined as the first order
polynomial form:

ξi(m) = φj1m+ φj0

ki(q) = θj1q + θj0

bi(q) = λj1li(q) + λj0

(33)

where j = v, h stands for the vertical and horizontal directions.
The length of the springs is the function of the load m with
coefficients φjn, the stiffness and the damper are the function
of deformation with coefficients θjn and λjn. The identification
problem is solved by the nonlinear model identification (‘nl-
greyest’) and the trust-region-reflective algorithm (‘fmincon’)
which are implemented in Matlab Identification Toolbox®.

The experimental data of the mechanical force used for the
parameters identification are shown by the blue curve in Fig. 6.
Using the identification toolbox as mentioned before, one can
get the identified parameters. Then the model simulation result
with the identified parameters is compared to the experimental
data in Fig. 6. The curve fitting has a very high percentage
(fit = 94%) where fit =

[
100

(
1− ‖yexp−ysim‖

‖yexp−mean(yexp)‖

)]
%

with the experimental data yexp and the model simulation
result ysim.

In order to verify the previous identified parameters, the
actuator position response in the simulation is also compared
to the experimental position data as shown in Fig. 7 with
high fitness (88%). Meanwhile, the model with the identified
parameters provides high fitness both in position and force
response in the case of the different loads and the different
applied voltages. These results suggest that the proposed
model is able to describe the dynamics of the HASEL actuator.

V. CONTROL IMPLEMENTATION

In this section, we implement the proposed IDA-PBC
controller (23) and the Integrate action (31) to the actuator
with identified parameters to get the desired positions. Fig.

m = 250g

m = 200g

m = 150g

Fig. 6: Mechanical force identification
(Fitness: 94%)

m = 250g

m = 200g

m = 150g

Fig. 7: Position identification
(Fitness: 88%)

8 shows the closed loop responses with IDA-PBC controller
with kp = 4, kQ = 2 and α2 = 0.1 (blue dashed line)
and IDA-PBC + IA controller with Ki = 1 (red solid line)
which follow the desired position defined as the successive
ramp reference between [0.5mm, 3, 5mm] (black dotted line).
From Fig. 8, the closed loop responses with and without
IA controller both follow the reference in a satisfactory way
and the the difference is not easy to see. The relative error
(er = absolute error

reference ) of the closed-loop responses are 3% to 5%
with and without IA controller. In this paper, the controller
parameters tuning rules are not investigated. The investigation
on PID-PBC controller parameters tuning for a class of lin-
ear (linearized) port Hamiltonian mechanical systems can be
found [18]. The IDA-PBC controller parameters tuning rules
of proposed controllers in this paper shall be investigated in
the future.

In Fig 9, we use a sinusoidal reference signal to define the
desired position. The signal frequency is 0.2Hz and the signal
range is [0.5mm, 2mm] (black dotted line). In this case, we
only use the IDA-PBC + IA controller to control the actuator.
The experimental result shows the closed loop response (red
solid line) follows well the reference (upper figure). The
maximal error of the signal tracking is around 0.1mm and
with 4% relative error.

In Figure 10, we show the effectiveness of the proposed
IDA-PBC+IA controller to the frequency position assignment.
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Fig. 8: Position control with the successive ramp reference sig-
nal (Upper figure); Control voltage (Middle figure); Relative
error er (Bottom figure)

Fig. 9: Position control with the sinusoidal signal (Upper
figure); Control voltage (Middle figure); Relative error er
(Bottom figure)

The desired position is defined by the sinusoidal reference with
1 Hz, 3 Hz, 5 Hz, 7 Hz. We can see the proposed controller can
guarantee the position assignment with different frequencies.

From Fig. 8, one can observe that the IA does not signifi-
cantly improve the closed loop performance. But as mentioned
before, the purpose of using IA is to improve the robustness of
the controller to the unknown load disturbance. In Fig. 11, we
show the robustness improvement with the IA (red solid line)
compared to the IDA-PBC controller without IA (blue dotted
line). We assign the desired position to 2mm and 0.5mm.
A 100g load mass is added in the load container when the
actuator position at 2mm and removed when the position at
0.5mm. we can see that the closed loop position is disturbed
when we add or remove the load mass for both controllers.
The IDA-PBC can not reject this external disturbance while
the closed loop response with IDA-PBC+IA controller goes
back to the desired position as expected.

1Hz 3Hz 5Hz 7Hz

Fig. 10: Position responses of the sinusoidal signal with 1 Hz,
3 Hz, 5 Hz, 7 Hz, respectively. )

Add 100g Remove 100g

Fig. 11: Disturbance rejection with Integral Action on the IDA-
PBC controller

VI. CONCLUSION

In this work, we propose a dynamic model of an HASEL
actuator via the port-Hamiltonian approach. The mechanical
behavior of the actuator is approximated by two perpendic-
ular nonlinear spring-damper systems. The proposed model
reproduces the main dynamic behavior of the actuator. The ex-
perimental results show that the proposed model is sufficiently
accurate to cope with the main system dynamics (up to 94%
fitness). Based on the proposed model, the IDA-PBC method
is investigated for the positioning control of the actuator.
Further integral action is added to cope with load uncertainties.
The experimental closed loop responses validate the proposed
control laws to different desired position references with the
relative error less than 5%. This work is the first attempt
to the control-oriented modeling and control design of the
HASEL actuator taking the advantage of the PH approach.
In the future, the dynamic modeling and control design for
more complex structures based on the HASEL actuator will
be investigated. The high speed position control design and
the controller parameters tuning problem will be considered
in the future.
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