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Abstract

The numerical wavefront backpropagation principle of digital hologra-
phy confers unique extended focus capabilities, without mechanical dis-
placements along z-axis. However, the determination of the correct focus-
ing distance is a non-trivial and time consuming issue. A deep learning
(DL) solution is proposed to cast the autofocusing as a regression prob-
lem and tested over both experimental and simulated holograms. Single
wavelength digital holograms were recorded by a Digital Holographic Mi-
croscope (DHM) with a 10x microscope objective from a patterned target
moving in 3D over an axial range of 92 µm. Tiny DL models are proposed
and compared such as a tiny Vision Transformer (TViT), tiny VGG16
(TVGG) and a tiny Swin-Transfomer (TSwinT). The proposed tiny net-
works are compared with their original versions (ViT/B16, VGG16 and
Swin-Transformer Tiny) and the main neural networks used in digital
holography such as LeNet and AlexNet. The experiments show that the
predicted focusing distance ZPred

R is accurately inferred with an accuracy
of 1.2 µm in average in comparison with the DHM depth of field of 15 µm.
Numerical simulations show that all tiny models give the ZPred

R with an
error below 0.3 µm. Such a prospect would significantly improve the cur-
rent capabilities of computer vision position sensing in applications such
as 3D microscopy for life sciences or micro-robotics. Moreover, all models
reach an inference time on CPU, inferior to 25 ms per inference. In terms
of occlusions, TViT based on its Transformer architecture is the most
robust.

∗Stéphane Cuenat and Louis Andréoli contributed equally to this work as first authors
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1 Introduction

One major drawback when 3D moving samples are studied in microscopy is the
balance between the focal range that limits out-of-plane measurements and the
requirement of a high axial resolution, i.e. a short depth of field (DoF) (see for
example [46, 16]). Several solutions have been proposed such as depth-from-
focus imaging [50] and confocal microscopy [25] to reconstruct a topography
of the scene. Scanning electron microscopy [28] can also be used to get large
in-focus depths. In any case, all these methods require a scanning of the scene
that slows down the image acquisition rate. Moreover, the working distances
of these devices are very short and this reduces considerably the interest of a
contactless measurement.

Coherent imaging approaches such as Digital Holography (DH) can be used
instead of conventional microscopy to address the focusing issues [13, 14]. DH
offers a means for recording the phase and amplitude of a propagating wave-
front on a solid-state image sensor [43]. Then, by numerically propagating the
recorded wavefront backward or forward at particular distances of interest, dif-
ferent characteristics can be extracted, typically three-dimensional surfaces, but
also polarization states and intensity distributions. Several recording and pro-
cessing schemes have been developed to assess diverse optical characteristics
that make DH a highly powerful coherent imaging method for metrological ap-
plications [8, 20]. Significant progress, potential impact and challenging issues
in the field of DH can be found in this recent roadmap article [22].

The targeted application aims to address the 3D position measurement needs
encountered in small-scale mechatronics [53, 3]. At the microscale, automation
involves centimeter-sized actuators necessary to perform diverse tasks with a
high accuracy, down to the nanometer range. Contactless sensors are thus de-
sired to control 3D motions with a high accuracy over large ranges [53]. Com-
bined with optical microscopy, computer vision constitutes an efficient means
to detect in-plane position and displacements. However, microscope objective
(MO) lenses provide short in-focus depths and inherently rely on mechanical
displacements along the optical axis. One way to extend computer vision capa-
bilities to 3D microscopy is to harness the wave character of light by means of
DH. DH is particularly suited to this aim because it requires a single hologram
to reconstruct a 3D scene and because digital back-propagation computations
allows image reconstruction in a extended in-focus depths [6]. A key-point in
DH is to note that, instead of an image of the object, it is the propagating wave-
front incident on the image sensor that is recorded. The distance of the object
does not impact the recording quality, it only changes the actually recorded
wavefront in accordance with scalar diffraction theory. Therefore, blur does
not exist at the recording stage of DH since it does not seek for any in-focus
image. The object distance stands for a computation parameter that is numeri-
cally tunable over an extended range, but limited to coherent length of the light
source used. This specificity makes the range of working distances allowed by
DH incomparably larger than that allowed by conventional incoherent imaging
methods. DH can be applied to micro-objects in microscopy with a Digital
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Holographic Microscope (DHM) setup. The reconstruction distance leading to
the best-focused image has to be determined among the z-range explored by the
object. There are various techniques for defining image-formation sharpness-
criteria that apply to DH [15, 26].

Recently, many studies have proposed to study the capabilities of deep-
learning Convolutional Neural Network (CNN) to determine in DH various un-
known parameters such as focusing distance, or the phase recovery [40, 41, 49,
52, 37, 51]. These works have to be considered in the wider context of imaging
techniques where Deep Learning (DL) approaches are applied to solve complex
problems found in computer vision as well as in microscopy [29, 45, 23]. A re-
cent work [40] even demonstrated that Deep CNN gives better results in terms
of prediction of propagation distance in DH without knowing all the setup’s
physical parameters, than other learning-based algorithms such as Multi Layer
Perceptron (MLP) [18], support vector machine [7], and k-nearest neighbor [34].
The hardware implementation of artificial neural networks has constituted a real
challenge for many years [38, 27, 30], but the tasks that can be solved by such
systems are limited to standard tests of classification and prediction, and they
are still limited in terms of scalability for mega-pixel image processing.

This paper aims to illustrate a new high-profile application of machine learn-
ing by elevating DHM and autofocusing to a new level. Whereas many studies
focus on life science microscopy [41, 36, 51], this work explores extended visual
capabilities offered by combining DH and last generation of DL algorithms such
as Vision Transformer (ViT)[12] and Swin-Transformer (SwinT)[31] networks for
applications in micro-robotics [53, 3] or in real-time 3D microscopy [36]. This
work introduces for the first time the neural network Transformer architectures
applied to advanced coherent imaging field, such as digital holography. This is
significant because these new generations of algorithms have already revolution-
ized the Natural Language Processing (NLP) and recent versions ViT [12] and
SwinT[32] highly perform for image recognition thanks to their self-attention
feature[48]. More specifically, our work deals with these new generation of deep
learning approaches for autofocusing in digital holographic microscopy to ob-
tain in-focus depth prediction with high accuracy. We developed new tiny ViT
and tiny SwinT network architectures, and compared them with typical Con-
volutional Neural Network (CNN) ones used in optics and digital holography
such as AlexNet[37], VGG[44] and LeNet[21]. Swin-Transformers propose a hi-
erarchical Transformer whose representation is computed with Shifted windows.
The shifted windowing scheme brings greater efficiency by limiting self-attention
computation to non-overlapping local windows while also allowing cross-window
connection. This hierarchical architecture has the flexibility to model at various
scales and has linear computational complexity with respect to the size of im-
ages. Taking into account the demand for real time application and achievable
training with a reasonable amount of data, tiny networks are developed. These
first results pave the way to overcome in-focus depth limit[41] with a short DoF
in DHM without any MO lens mechanical displacements[36].
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2 New trends in deep learning for image pro-
cessing: ViT and SwinT
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Figure 1: Schematic illustration of the ViT [12] and SwinT [31] architectures. (a)
gives the general architecture of a ViT or a SwinT. The region of interest (ROI)
is divided into patches which are linearly projected on an embedded dimension
followed by a transformer layer, MLP and the linear regression. (b1) shows the
successive layers for a ViT respectively k Transformer Encoders. (b2) gives a
view of the SwinT Transfomer layer architecture which is formed by a series of
4 Stages. Each Stage encapsulates a Swin-Transformer Block which is repeated
ms times (with s representing the stage number) and patch merging layers (for
the stages 2 to 4). Through the stages, the multi-head attention is computed
taking different sizes of patch size and shifted windows. (c1) and (c2) represent
the internal steps inside a Transformer Encoder and the two successive Swin-
Transformer Block, where the Multi-Self Attention (MSA) is computed (MSA,
W-MSA and SW-MSA). SwinT first computes a window multi-head attention
(W-MSA) and then a shifted windows multi-head attention (SW-MSA).

Since the inception of DL neural networks, CNN occupies the field with
architectures like VGG-16 [44], Densenet [19] or EfficientNet [47]. At the core
of a CNN, there is a series of mixed convolution and pooling layers which extract

4



a set of features from an input image. One of the main advantages of a CNN
compared to MLP Network (first network proposed), is that they are translation
invariant and less demanding in resource when it comes to large inputs. Later
the ViT architecture was introduced. This architecture is based on the concept
of attention [48]. The attention mechanism was born to help memorize long
source sentences in NLP. Rather than building a single context vector out of the
encoder’s last hidden state, the attention creates shortcuts between the context
vector and the entire source input. The weights of these shortcut connections
are customizable for each output element. ViT brings this concept to computer
vision [12]. ViT is a pure Transformer architecture built from Transformer
encoder layers to approach a classification or regression problem. ViT splits an
input image in a series of patches which would be treated as word tokens by
a Transformer Network. SwinT even surpasses the performance of a pure ViT
network as shown in [32]. SwinT extends a ViT network by varying the patch
dimension and computes the attention only for a given window (shifted-window
over the space of the input image). Such a network is able to better assess the
local and global information inside the input image.

Figure 1 shows the architecture of a ViT [12] and SwinT [31] network.
Panel in Fig. 1(a) gives the global architecture of a ViT or SwinT network
and in particular how the Region Of Interest (ROI) is processed. This input
image is split into different patches and projected on an embedded dimension
through the linear projection of the flatten patches (tokens). An additional po-
sition embedding and class token are added. The class token is the only token
used to apply a regression. Each embedded patch is processed by the trans-
former layer which outputs the associated class token after the MLP block.
The regression layer projects the class token to a scalar, the reconstruction dis-
tance Z in our case. Panels in Fig. 1 (b1) and (b2) describe in more details the
Transformer Layer (in gray) for ViT and SwinT models, respectively. For ViT,
there is a total of k Transfomer Encoder layers. In the SwinT architecture, the
Transformer Layer is composed of a series of s stage layers with typically s = 4.
The first stage layer contains a two Swin-Transformer block. The s − 1 other
stages encapsulate a patch merging and ms Swin-Transformer Blocks, where
ms can change through the stages s (typically ms ∈ [1, 4]). The window size
is set to a fix value (default: 7x7 patches). Moreover, the patch size of each
stage is increased by a factor 2 through the patch merging layers [31]. This
creates a hierarchy in comparison to a ViT which always considers the same
patch size and a global window [12]. The Transformer Encoder (in green) of
the ViT and the Swin Transformer block (in yellow) are explained in more de-
tails in panels of Fig. 1(c1) and (c2), respectively. The input of the transformer
encoder is first normalized. The Multi-head Self-Attention (MSA) is first com-
puted and then followed by a normalization and a MLP block. In the case of
a SwinT, the architecture is similar but with two successive Swin-Transformer
blocks where the MSA is first a Window Multi-head Self-Attention (W-MSA),
then a Shifted Window Multi-head Self-Attention (SW-MSA). While the MSA
(ViT case) is computed on the complete set of patches, the W-MSA (SW-MSA)
uses a dedicated (shifted) window (SwinT case). SW-MSA allows inter-window
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interactions.

2.1 Multi-head self-attention

As schematically illustrated in Fig. 2, the MSA function is approached from a
general perspective where the vector xin is its input and xout its output. For
each i ∈ [1, N ], the head hi is implemented as a scaled dot-product attention.
The N heads h is called Multi-head Self-Attention. In case of ViT, N is fixed
for all the Transformer Encoder layers. SwinT defines a N for each Stage. A
key ki, value vi and query qi dimensional vectors are computed for each head
hi by projecting the input xin using three learnable matrices (WK

i , WV
i , W

Q
i ):

ki = WK
i xin, (1)

vi = WV
i xin, (2)

qi = WQ
i xin. (3)

For each head hi, the attention is computed by taking the key, value and query
vectors.

hi = Attention(ki,vi,qi). (4)

The attention is calculated by first applying a Softmax [33] used to normalize the
dot product between a vector of keys ki and a vector of queries qi. Subsequently,
this output acts as weights for the value vector vi, hence

Attention(ki,vi,qi) = Softmax(
qik

T
i√
D

)vi, (5)

where D is the dimension of the key and query vectors (ki and qi). All the
heads hi are concatenated as

hconcat = Concat(h1,h2, ...,hN ). (6)

The output vector xout is obtained by the vector product of hconcat and a learn-
able matrix W0 as

xout = W0 hconcat. (7)

Multi-head attention is used since it allows the network to attend to different
learned representations at different regions of input ROI as described by Fig. 2
and expressed as

xout = MSA(xin). (8)

2.2 Tiny networks: TViT, TSwinT & TVGG

In this paper, tiny versions of the original ViT (TViT), Swin-Transformer
(TSwinT) and VGG16 (TVGG) are proposed. Tiny networks allow to reduce
the number of parameters without impacting much the accuracy of the mod-
els. Moreover, tiny models need less computation power and approach real-time
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Figure 2: Multi-Headed Self-Attention implemented as a scaled dot-product
attention. MSA, W-MSA and SW-MSA blocks on Fig. 1.

processing. Figure 1 gives an overview of a ViT and SwinT architectures. TViT
modifies a ViT as follows: is built with a total of 12 Transformer Encoder, 8
heads and a patch size of 16x16. The hidden-size of the Transformer encoder
has been reduced from 768 (for a ViT/B16) to 128 (TViT) hidden neurons.
The MLP dimension (Transformer Encoder) has been reduced to 1024 instead
of 3072 hidden neurons (for a ViT/B16). TSwinT is a revisit of the SwinT
architecture where several changes have been applied: the size of the embed-
ding vector is set to 32, the number of Swin-Transformer blocks has been set as
follows for each Stage: m1 = 2, m2 = 2, m3 = 4, m4 = 2. The number of heads
for each Stage has also been modified: N1 = 2, N2 = 4, N3 = 8, N4 = 8. The
window size has been fixed to 4 with an initial patch size of 4x4. TViT and
TSwinT contrasts with canonical ViT architectures as these models are usually
able to learn high-quality intermediate representations with large amounts of
data as described in [51, 39]. TVGG is introduced to reduce the number of
parameters of the original VGG16 [44] architecture for comparison purposes.
All filters of each 2D convolution layer have been divided by 2 inside a TVGG
architecture. These changes limit the width of the layers of the tiny networks
by keeping their capacity to learn. The number of parameters for each model
has drastically diminished as shown in table 1, by a factor between 5 and 20.
Moreover, all models are trained from scratch only using experimental or simu-
lated digital holograms of different patterns (pseudo-periodic pattern and USAF
pattern) without any transfer learning from a pre-trained model on a dataset
like ImageNet [10]. The tiny models take as input ROI of 128x128 of a single
wavelength digital hologram.
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Tiny model Original model (pre-trained)
Model # parameters Model # parameters Ref
TVGG 3 · 106 VGG16 14 · 106 [44]
TViT 4 · 106 ViT-B16 85 · 106 [12]

TSwinT 2.7 · 106 SwinT Tiny 28 · 106 [31]

Table 1: Number of parameters for each tiny neural network compared to the
original version.

3 Applications to digital holographic microscopy

3.1 Experimental setup and targeted pose measurement
application

Our final goal is to achieve 3D position and displacement measurements by
means of DH combined with computer vision and thus to perform simultaneous
high accuracy in-plane and out-of-plane measurements. For that purpose, a
periodically micro-structured pattern is used in order to allow unambiguous
in-plane position detection through absolute phase computations [3]. Using
conventional computer vision, a 108 range-to-resolution ratio was demonstrated
through robust phase-based decoding [3, 2]. However, this 2D measurement
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Figure 3: (a1), (b1) and (c1), experimental holograms (1024x1024 pixels) of the
same area of a pseudo-periodic pattern corresponding to a propagating distance
ZH of 65 µm, 115 µm and 157 µm, respectively. (a2), (b2) and (c2), amplitude
image reconstruction at a distance ZH = ZR, respectively. The insets are zooms
of the same sub-area of 128x128 pixels.
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method also works with DH [42, 4]. In order to apply that kind of micro-
structured pattern to out-of-plane motion, a DHM is used. This paper explores
if DL, and more particularly tiny networks, are able to determine the correct
focusing distance with high accuracy and robustness to speed-up the pattern
intensity and phase reconstructions and to provide a more accurate Z-position
estimation along an extended longitudinal direction close to 100 µm.

In practice, experiments were carried out on an antivibration table with a
DHM (by Lyncee Tec, Switzerland) equipped with a camera with a 5.86µm pixel
size (Basler acA1920-155um), a hexapode (Newport HXP50-meca) capable of
precise motions along the six degrees of freedom and a micro-encoded pattern
made in our clean room facility (2 × 2 cm2, period 9 µm, 12 bits encoding
[3]) covered with a uniform 100 nm thick aluminium layer to obtain a phase
object. This pseudo periodic pattern was observed with a MO (Leica, mag
10x, NA=0.32) at wavelength λ = 674.99 nm. The light source consists of a
superluminescent diode equipped with an interference filter whose width is of
5 nm at half maximum, leading to a coherence of about 100 µm. The sample
was shifted along the Z direction by steps of ∼1 µm and on a total height of
∼ 92 µm. At each Z step, a series of 400 holograms (1024×1024 px, 8 bits) was
recorded with random displacements along the lateral X and Y directions and
random planar angles between ±8 degrees. In total the experimental dataset
contains 40,040 holograms.

3.2 Autofocusing in digital holographic microscopy

The advantage of DH is to provide at different reconstruction distances ZR the
complex field diffracted over a distance ZH from the hologram plane. The holo-
gram propagation ZH can be tuned over an extended range of up to 92 µm in
our DHM setup (limited by the light source coherence length). Figures 3(a1),
(b1) and (c1) show an experimental hologram of 1024x1024 pixels propagated at
three different distances, 65 µm, 115 µm and 157 µm, respectively. The insets
are a zoom of the same sub-area of 128x128 pixels. Over this large propaga-
tion range, the holograms recorded are entirely different. Among the different
reconstructed planes, the reconstruction distance ZR = ZH corresponds to the
image in focus. Panels in Fig. (a2), (b2) and (c2) are respectively the amplitude
image reconstruction of the holograms panels in Fig. (a1), (b1) and (c1) with a
back propagation distance ZR = ZH . The reconstruction is based on a plane
waves angular spectrum method [17]. Except for illumination variation along
the recording distance range of 92 µm, the three reconstructed images are highly
similar.

To find the axial position of an object, the challenge is therefore to find
this distance ZR. Autofocusing techniques in DH are applied considering the
modulus of the reconstructed complex field or the modulus of spatial spectrum
of the propagated field [15]. The sharpness of the image can be determined
from multiple focusing criteria such as the sum of the modulus of the complex
field amplitude, the use of a logarithmically weighted Fourier spectral function,
the variance of gray value distribution, focus measure based on autocorrelation,

9



90 100 110 120 130

Reconstruction distance (µm)

0.2

0.4

0.6

0.8

1

N
o
rm

a
liz

e
d
 f

o
cu

s 
m

e
tr

ic

ZR(a)

(d)

(b)

30 µm

100 µm Distance 
ZR(b)

=115 µm

Reconstructed
image

(a)

30 µm

100 µm Distance 
ZR(a)

=105 µm

Reconstructed
image

(c)

30 µm

100 µm Distance 
ZR(c)

=125 µm

Reconstructed
image

ZR(b)

ZR(c)

Figure 4: (a), (b) and (c), amplitude image reconstruction of the hologram of
Fig. 3 (b1) at distances ZR of 105 µm, 115 µm and 125 µm, respectively. (d),
focus estimation function calculated from the intensity image Laplacian (LAP)
as described in [15]. The red crosses correspond to the distance reconstruction
ZR(a)

, ZR(b)
and ZR(c)

of the panel (a), (b) and (c), respectively.

absolute gradient operator, Laplace filtering, Tamura coefficient estimation, or
wavelet-based approaches [15]. A comparison of many focusing criteria in terms
of computational time and accuracy in determining the focal plane have been
already discussed [15, 26]. When the focus criterion is at an extremum, the fo-
cus of the reconstructed image is optimal. There are also various methods that
would allow an automated determination of the optimal reconstruction distance
[11]. However, all these approaches require the numerical reconstruction of a
set of images within a given range of propagation distances. Then, the focus
criteria is calculated from each reconstructed image, to determine the distance
of focusing. Figures 4(a), (b) and (c) show three reconstructed images at dif-
ferent distance ZR of the experimental hologram of the Fig. 3(b1). These three
images spaced by 10 µm from each other illustrate the difficulties of obtaining
a sharp focus criteria. Figure 4(d) shows the result of a focus metric based on
the image Laplacian [15] where the red crosses correspond to the case of the
panels (a), (b) and (c). The resolution of this normalized autofocusing method
is close to the DoF provided by the Numerical Aperture (NA) of the MO and
the wavelength λ used, which gives in our case DoF = 2λ/NA2 = 15 µm. Even
if these approaches could be efficient [11], they are computationally demanding
and time consuming, especially if the size of the hologram is large.
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4 Results

This section shows the results obtained by running a series of inferences on
test sets of different holograms. All the test results have been generated us-
ing the proposed tiny models: TViT, TVGG and TSwinT. Four datasets are
considered: experimental and simulated phase holograms of the pseudo-periodic
pattern, and amplitude and phase holograms of a simulated USAF pattern. The
simulated holograms are generated by using a plane-wave spectrum propagation
algorithm. Although the simulation reproduces the experimental parameters of
the sample and the imaging system, it is deliberately free of motion uncer-
tainties, surface defects, optical aberration and noise. This approach allows to
obtain the intrinsic performance limit of the neural networks proposed. Free of
mechanical limitation, the simulated Z pitches are therefore less than 1 µm and
over a total range of 100 µm.

For each set of holograms, TViT, TVGG and TSwinT have been trained
from scratch. The neural networks have been configured to apply a regression
on the input data. A total of 200 epochs have been executed and the learning
curves have correctly converged. The learning rate was set to 1 · 10−4 using the
Adam optimizer [24]. During the training, a total of 64 (TViT) or 32 (TSwinT
& TVGG) ROIs are selected randomly for each hologram. As showed in [5],
the log(cosh) loss function can improve the result of Varational Auto-Encoder.
This loss function

L(ZH , ZPred) =

n∑
i=1

log(cosh(ZPred
i − ZHi)), (9)

is also less prone to outliers than the mean squared error (MSE) or the mean
absolute error (MAE) where n is the number of training samples, Z and ZPred

are the expected and predicted values, respectively. Table 2 shows the perfor-
mance of the validation loss functions on our experimental hologram dataset
for all tiny networks. Table 3 shows the best validation loss L for each model
and each training set. In the following sections, the error ϵ of one inference is
measured by,

ϵ = ZPred
R − ZH . (10)

All the codes to train the proposed tiny networks (TViT, TVGG and TSwinT)
are accessible at this address https://github.com/scuenat/DHMTinyNetworks
and the data is available in [1].

Model MSE MAE log cosh
TVGG 0.25 0.39 0.11
TViT 0.42 0.50 0.13

TSwinT 0.30 0.43 0.12

Table 2: Comparison of the validation loss functions (log cosh, MSE or MAE)
for each proposed tiny models trained on experimental holograms.
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Model Pseudo-periodic pattern USAF (simulated)
Experimental Simulated Amplitude Phase

TVGG 0.11 0.003 0.04 0.05
TViT 0.13 0.004 0.09 0.04

TSwinT 0.12 0.012 0.05 0.07

Table 3: Validation loss (log cosh) for each model and each set of holograms.

4.1 Experimental holograms: pseudo periodic pattern

Holograms of Fig. 3 (a1), (b1) and (c1), recorded at different distances ZH , are
representative specimens of the set of experimental holograms used by the tiny
networks during the training phase. The experimental dataset, which contains a
total of 40,400 holograms (400 holograms for each distance ZH), was distributed
between learning, validation and testing sets with a 70/20/10 ratio. The models
have therefore been tested on a set of 4,040 holograms, 40 holograms for each ZH

spaced by 1.0 µm ranging on 92 µm. In Fig. 6, the results of the inferences testing
of the TViT, TVGG and TSwinT are represented on the panels (a), (b) and
(c), respectively. The average and the Full Width at Half Maximum (FWHM)
of the error are represented by the color bold curves and areas, respectively.
Comparable performances for the three neural networks with a high stability
along the full range and small errors can be observed. Figure 9 gives another
view allowing to appreciate the error distribution. The solid lines are Gaussian
fits of the error for each network model. The average and standard deviation
(half of the FWHM) are given for each case. Panel (a) illustrates the results of
the experimental dataset. This graph shows an error bounded by 1 µm for all
models. Figure 5 compares the error distribution of a TViT model with reference
neural networks in digital holography as VGG16, LeNet (as presented in [21])
and AlexNet (as presented in [37]). The original versions, SwinTransformer
Tiny (SwinT Tiny) and ViT/B16, are also represented. For the MO used, the
1 µm autofocusing accuracy achieved is 15 times smaller than the theoretical
DoF.

4.2 Simulated holograms: pseudo periodic pattern

Simulated phase holograms of pseudo-periodic patterns are used to test the limit
of the proposed models performances. 40,040 holograms, including 40 different
sites (in-plane position and orientation) vertically scanned per steps of 1µm,
ranging on 100 µm, constitute the full training dataset. The testing dataset is
composed of 6,819 holograms never viewed, spaced by 0.1 µm and ranging on
100 µm. Figure 9(b) shows the error distribution of the reconstruction distance
ZR for the three models. Without noise and exact Z position labelling, the
reconstruction error considerably decreases below 0.3 µm. The best models are
TViT and TVGG which have a FWHM of the error distribution of 0.160 µm.
These great performances for a testing with a step size ten time smaller than
the training dataset prove the high regression quality of the three tiny networks.
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4.3 Amplitude and phase object: USAF 1951 resolution
chart

In comparison with the pseudo-periodic sample, the USAF pattern is a more
complex pattern due to a wider spatial frequencies bandwidth. To avoid building
a dataset with empty regions without information, the pattern was simulated by
filling the space more densely than a commercial target. In order to characterize
the tiny networks performances in function of the amplitude or phase nature
of the holograms, two different datasets were constituted. Figures 7(a) and (b)
show two representative holograms in amplitude and phase, respectively. Both
training (testing) datasets are constitued of 400 (50) different holograms at each
step of 0.5µm ranging on 130 µm (100 µm), for a total of 104,400 (10050) holo-
grams. Figures 9(c) and (d) show the error distribution of the tiny networks
in case of amplitude and phase objects, respectively. In comparison with the
pseudo-periodic pattern, all tiny networks have worse performances but stays
highly competitive with a error below 0.35 µm. In case of amplitude holograms,
the TSwinT model shows better results than the other two. Contrary to the
TSwinT model which has the same performances whatever the characteristic
of the hologram, the TViT and the TVGG give more precise inferences for the
phase holograms. In this case, the three neural networks show similar perfor-
mances with an error smaller than 0.25 µm.
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Figure 5: Error distribution comparison between TViT and other state-of-the-
art models like AlexNet, LeNet and original models such as VGG16, SwinT
Tiny and ViT/B16. ε̄TViT = −0.07±0.61 µm, ε̄AlexNet = 0±0.51 µm, ε̄LeNet =
−0.02 ± 0.61 µm, ε̄VGG16 = 0 ± 0.56 µm, ε̄SwinT Tiny = −0.17 ± 0.59 µm,
ε̄ViT/B16 = 0.01± 0.66 µm

,

13



(a)

(b)

(c)

-
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Reconstruction distance ZR (µm)

Figure 6: Prediction error on experimental holograms of pseudo-periodic pat-
terns. The bold lines (area) are the average (standard deviation) of the error for
each reconstruction distance over 92 µm. (a), (b) and (c) correspond to TViT,
TVGG and TSwinT models, respectively.

4.4 Occlusion test

Another type of neural network performance is its robustness in a degraded
configuration. Experimentally we have already seen that the three proposed
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Figure 7: (a) and (b), two representative examples of simulated 1024X1024
USAF hologram in amplitude and phase, respectively.

models are resilient with respect to homogeneous sample illumination, as shown
in Fig. 3 and Fig. 4. To go further, areas of the experimental testing dataset
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Figure 8: Experimental results for all models in the case where the network
input ROI artificially undergoes a loss of information. (a) shows the average
error over the entire Z reconstruction range for the proposed tiny models with
a loss of 10%, (b) shows the same but for original and reference models and (c)
the limit of occlusion for a TViT model.
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have been deleted. A random squared region of 10% of the ROI selected as input
for the tiny neural networks is uniformly set to zero. This operation simulates
a dust or a sample defect and evaluates the degree of locality of the neural
networks. The results obtained are shown in Fig. 8, where panel (a) display the
error average along the Z for the proposed tiny models, panel (b) display the
error average along the Z for the reference and original models and panel (c) the
limit of occlusion in case of a TViT model. It can be observed that the TSwinT
and TVGG models are highly impacted by 10% of occlusion as the models,
AlexNet and LeNet. In contrast, TViT is clearly the most robust architecture
against occlusion. Figure 8(a) shows that on average the TViT error remains
stable on the full 92 µm range.

4.5 Inference speed

Whether for applications in microrobotics or in 3D microscopy for life sciences,
there is great interest in being able to work in real time and with commercially
accessible equipment. Therefore, Figure 10 shows the comparison of the me-
dian speed of 200 inferences with two different configurations for all the neural
networks compared (AlexNet, LeNet, VGG16, SwinT Tiny, ViT/B16, TViT,
TVGG and TSwinT). On the Intel i9-11900K @3.50GHz CPU the performance
is comparable to using a GPU NVidia RTX 3090, 24Gb, with an inference speed
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Figure 9: Error distribution of the three neural networks over the reconstruc-
tion distance Z. (a) and (b) are the results for the experimental and simulated
pseudo-periodic patterns, respectively. (c) and (d) are the results for the simu-
lated USAF patterns in amplitude and phase, respectively.
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below 25 ms for LeNet and TViT. As analyze in details [37], the reconstruction
time of an hologram for twenty different distances takes a total of 318 ms on
an Intel Core i5 processor. The image reconstruction knowing the predicted
distance ZPred

R is therefore of ∼ 15 ms. This value is also confirmed by the
DHM which has a reconstruction rate of up to 60 frames per second. The tiny
models proposed with low inference times, associated with an image reconstruc-
tion algorithm, therefore form a solution compatible with the constraints of real
applications.
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Figure 10: Comparison of the inference speed in log scale for AlexNet, LeNet,
VGG16, SwinT Tiny, ViT/B16, TVGG, TSwinT and TViT on different ar-
chitectures; GPU: RTX 3090 24Gb and CPU: Intel i9-11900K @3.50GHz.The
dashed line represents the real-time limit in robotics.

5 Discussion & conclusion

TVGG, TViT and TSwinT give close results when taking the different sets
of holograms (pseudo-periodic pattern experimental/simulated and simulated
USAF phase/amplitude). In this paper, it has been shown that TViT is more
robust in presence of occlusion (Fig. 8), considering that Z depth information is
present on the entire hologram due to diffraction properties in coherent imaging.
A TViT model benefits from the multi-head self-attention (Fig. 2) which takes
the complete ROI at each layer in consideration (not a set of extracted features).
A CNN like TVGG works a bit differently as it tries to build a set of features
through its first Convolution/Pooling layers followed by full connected layers
(regression). A CNN, by extracting at each layer a more complex representation
of the features, explains why it focuses on dedicated regions which impacts the
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accuracy of the inference in presence of occlusion. According to the above, a
TViT model seems more suited to the prediction of the in-focus distance in
DHM, as it scans everywhere and is more robust in terms of occlusion. This
goes in the same direction as presented in [35, 9] where it has been shown that
a ViT model is a lot more robust than a CNN. Although, a TSwinT model is
based on the derivative of a ViT model, it does not perform as well as a TViT
in case of added occlusion. As TSwinT is only applying the self-attention on
a set of windows (W-MSA) or shifted windows (SW-MSA) (through its Swin-
Transformer Blocks, Fig. 1(c2)), it can be assumed that the occlusion has a
bigger impact on the result of the multi-head attention than a pure ViT like
TViT.

Figure 5 shows that the tiny models (TVGG, TSwinT and TViT) are as
accurate as the original versions (VGG16, SwinT Tiny and ViT/B16). It also
shows that a AlexNet or LeNet model reach similar performance. Considering
the inference speed on CPU (Figure 10) and the robustness against an occlusion,
TViT is the best model proposed.

As mentioned in [39], a ViT (TViT) would need a lot of data to be trained
from scratch. This is not what has been experienced, as a TViT can be trained
from scratch using our set of experimental holograms of pseudo-periodic pattern
using a total of 2,327,040 ROIs (36,360 holograms × 64 ROI). A huge amount of
data is normally needed as a ViT (TViT) projects each patch on an embedded
dimension (Fig. 1(a), Patch embedding). The reconstruction distance Z infor-
mation is spread over the complete space of the hologram, which is most likely
an argument to explain why a ViT-like network can learn from scratch without
having a huge dataset at disposal.

Our experiments showed that the reconstruction distance Z can be predicted
in DHM with a high accuracy using deep learning last generation techniques,
especially regression models. An error bounded by ∼1 µm on the reconstruc-
tion distance Z has been reached for a dataset of experimental holograms on
a range of 92 µm. The regression approach allows experimentally to surpass
the DoF of the MO by an order of magnitude. Moreover, this error can be
lowered down to ∼0.3 µm when the models are trained on the simulated holo-
grams of a pseudo-periodic pattern or USAF pattern (phase or amplitude). The
discrepancy between results obtained from experimental and simulated datasets
is partly due to the limited accuracy of the actuator used where bi-directional
repeatability is of 0.3 µm. Acquisition noise may also play a significant role in
that reduction of performances obtained from experimental datasets. All pro-
posed tiny models offer an alternative to expensive GPUs as the time for an
inference is below the real-time limit in robotics of 20 Hz (Fig. 10), less than
25 ms on an Intel i9.

The ability of tiny networks to determine the in-focus depth with a FWHM of
about one micron opens attractive application prospects. Indeed, if two wave-
length DHM are considered, the ambiguity range is about twice the FWHM
demonstrated in this paper (with our commercial DHM, λ1 = 674.99 nm and
λ2 = 793.63 nm; i.e. λeq/2 = 2.25 µm). This means that DL may bridge the
gap between the MO DoF and the Z-information provided by the interferometric
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phase to achieve Z-position determination down to the interference sensitivity;
i.e. around 1 nm over ranges of tens of microns. Such a prospect would sig-
nificantly improve the current capabilities of computer vision position sensing
applied to 3D microscopy.
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Guillaume J Laurent. Sensing one nanometer over ten centimeters: A mi-
croencoded target for visual in-plane position measurement. IEEE/ASME
Transactions on Mechatronics, 25(3):1193–1201, 2020.

[4] Miguel Asmad Vergara, Maxime Jacquot, Guillaume J Laurent, and
Patrick Sandoz. Digital holography as computer vision position sensor
with an extended range of working distances. Sensors, 18(7):2005, 2018.

19



[5] Pengfei Chen, Guangyong Chen, and Shengyu Zhang. Log
hyperbolic cosine loss improves variational auto-encoder.
https://openreview.net/forum?id=rkglvsC9Ym, 2019.

[6] Tristan Colomb, Nicolas Pavillon, Jonas Kühn, Etienne Cuche, Christian
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