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Abstract In this era, we need to make everything about us more smartly and
communicating. Hence, the popularity of Internet of Thing (IoT) is increasing
quickly across industries. In such networks, the sensors represent the eyes of
the IoT that collect data about different environments and states, while the
sink node forms the brain of the network that must analyze the collected data
and take decisions. However, the big amount of data collected by the sensors
leads, from one hand, to consume the limited energy of the sensor and, from
another hand, to complicate the exploitation of the data at the sink for decision
making. In this paper, we propose a multi-tier prediction mechanism in order
to handle big data collected by sensor networks based on the clustering scheme.
The prediction model uses the least squares approximation method which is
applied at both tiers of each cluster: sensors and cluster-heads (CHs). At the
first tier, each sensor applies the prediction model in order to send a reduced set
of data to its appropriate CH; At the second tier, the CH combines data coming
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from sensors and provides a predictive model to the sink, representing data for
all sensors of the cluster. Extensive simulations on real sensor data collected
from several applications demonstrated that our mechanism can efficiently
reduce the data transmission and save the network energy, while maintaining
an acceptable data accuracy level.

Keywords IoT - WSN - Data prediction - Least squares approximation -
Cluster topology - Real sensor data

1 Introduction

The beginning of this decade have emerged an increasing number of connected
devices accompanied with a vast improvements in communication technologies.
This leads to the emergence of new sensing-based network applications called
the Internet of Things (IoT). Such new technology founds its way quickly
across industries affecting business and people lives [1]. From inside our homes
to across nature, loT represents a low-cost solution to sense surroundings and
people behaviors with the opportunity to directly store data at the cloud.
According to International Data Corporation (IDC) [2], it is estimated that
more than 30 billion ToT devices will be deployed by 2020 with a technology
spending about $1.2T. Applications dedicated to healthcare, security, retail,
climate, etc. will be the main targets of IoT investments.

Generally, the IoT networks consist of a set of components which can be
connected together to monitor desired zones. Wireless sensor network (WSN)
constitutes the main component of the IoT networks; the sensors represent the
eyes of the IoT that can be deployed at any place to monitor any environment.
Whilst, the sink node looks like the brain that allows IoT to collect and analyze
the data in order to take the right decision. However, data management is not
an easy task in sensor networks and it represents a major challenge for decision
makers as the amount of collected data is huge [3,4]. Furthermore, the sensors
have a limited power energies, which is mostly not rechargeable, where the
data transmission consumes lots of such available energy [5,6]. Hence, data
reduction and prediction mechanisms are at the heart of research focuses as
an efficient way to reduce data transmission and helping in taking decisions.

In this paper, we propose a multi-tier prediction mechanism dedicated to
periodic large-scale sensor network applications. First, we consider a cluster-
based network topology then we introduce a new prediction model that can
be applied at both sensor and cluster-head (CH) nodes. Subsequently, the
contribution of this study is described as follows:

— At the first tier, each sensor uses the least squares approximation method
in order to send a predictive set to the CH instead of sending the whole
periodic raw data.

— At the second tier, each CH at the second tier uses the same prediction
method in order to provide a unique predictive set to the sink, representing
the data of all sensors in that cluster.
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— Our mechanism is evaluated upon a serie of simulations and based on real
sensor data for various kinds of WSN applications. The results show the
efficiency of our mechanism in terms of energy consumption, data latency
and data accuracy.

The rest of paper is organized as follows. In Section 2, we briefly present
literature on data prediction and reduction techniques. Section 3 presents the
network design that is used in this paper. Section 4 and Section 5 detail the
prediction model proposed at the sensors and CH levels respectively. The de-
scription of datasets used in our simulation are described in Section 6. Section
7 presents the simulation results with necessary explanation. Section 8 con-
cludes this paper with some perspectives.

2 Related Work

Currently, researchers are focusing on data prediction approach as an efficient
way to handle big data produced from WSN and save network energy [7-9].
The idea behind such approach is to build, based on the collected data, a
predictive model in order to send to the sink which, in its turn, regenerates
the raw data. Researchers on [10] have presented a review article about var-
ious data prediction mechanisms proposed at the literature for WSN, while
comparing the difference between them.

The authors of [11] propose a similarity life prediction model of rolling
bearing that works on two steps. First, a set of degradation features is ex-
tracted from the bearing vibration signals followed by a fusion mechanism
to maintain the potential features based on the principle component anal-
ysis. Then, the life adjustment functions are constructed by calculating the
comprehensive similarity while the life prediction of the monitoring bearings
is corrected in real-time according to the PCA features. In [12], the authors
propose a prediction model, called MooCare, that helps farmers in increasing
their productivities of their daily cattle. After monitoring the animal feeding
through IoT devices, MooCare uses the ARIMA prediction to forecast the milk
production of each cow and, thus, allows farmers to design a suitable nutri-
tional plan for each one. In [13], the authors propose a diagnostic prediction
method for chronic kidney disease (CKD) that uses IoT networks. The pro-
posed method aims to select the potential features from the huge amount of
data collect about CKD then to predict the severity level of disease via several
classification techniques such as random forest and logistic regression. The
authors of [14] introduce a remaining useful life method for predicting data
in sensor networks based on a data fusion model. According to the proposed
method, the variation of the observed condition is expressed through a state
transition function accompanied with Wiener process. Then, another function
that uses multi-sensor signals has been adopted to inherent the system degra-
dation followed by a selection algorithm to choose the list of active sensors
while predicting the values of the sleep ones. In [15], the authors propose a
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data prediction mechanism that investigates the data correlation among sen-
sors with the objective to avoid transmitting unuseful information. Through a
mathematical model, the prediction mechanism allows to study the variation
between the readings collected by the sensors and eliminates the correlated
ones in order to save the node energy. In [16], a similar data prediction tech-
nique that takes benefit of relationships among sensor data is proposed. The
proposed technique introduces an enhanced version of linear regression that
identifies the shape similarities in data curve in periodical data collection.

The authors in [17] propose a unsupervised machine learning algorithm,
called kohonen, for predicting data generated by the sensors. Kohonen intro-
duces a self organizing map based on a predictive temporal model that makes
sensor in standby mode to reduce its transmission. In [18], the authors propose
a mechanism that predicts future values based on the past one. The mecha-
nism uses an autoregressive model of order p and allows to study the variation
in sensed data along with the network lifetime. In [19], a derivative-based pre-
diction (DBP) technique is proposed. DBP is dedicated to WSN applications
requiring high data accuracy and it predicts the variation of data collected by
a sensor node. The authors in [20] uses time series in order to predict temper-
ature readings in WSN. First, the proposed model adapts the sensor sampling
rate based on the variation on accuracy of data collected. Then, a stochastic
process is used to analyze the temperature phenomena using time series model.
In [21], an online data tracking and estimation (ODTE) is proposed in order
to tracking poor data collected at the sink. ODTE is mainly based on two sys-
tems: Data prediction system (DPS) and distortion factor (DF). DPS is used
at the sensor in order to reduce its transmission using a defined limit while DF
estimates an optimal data collected at sink node. In [22], the authors intro-
duce an efficient method to predict the occupancy rate in the smart buildings
then to control the indoor conditions (air quality, heating, and ventilation).
The proposed method is based on an artificial neural network trained on an
indoor data and allows to trigger the ventilation rate control through an IoT
communication protocol.

Finally, some data prediction techniques on sensor networks are based on
aggregation and compression approaches. The idea behind such approaches is
to reduce the amount of data transmitted from source nodes while regenerat-
ing the aggregated/compressed data at the sink. In [23], the authors propose a
data aggregation mechanism that works at two levels: sensor and CH. At the
first level, a similarity function that searches, then eliminates, the redundan-
cies among raw data collected periodically by each sensor. At the second level,
an in-network reduction mechanism, called prefix frequency filtering (PFF), is
proposed. PFF allows the CH to remove the redundancies existing among data
collected by neighboring sensor nodes, before sending them to the sink. The
authors of [24] proposes a prediction technique based on a coding provenance
scheme (CBP). Typically, CBP is characterized by its high data reduction
rate due to its encoding and decoding operations that depends on the moni-
tored condition. Lastly, an efficient prediction method based on a compression
scheme, i.e. Sequential Lossless Entropy Compression (S-LEC), is proposed.
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The idea behind S-LEC is to order the alphabet of integers into groups where
each group is represented by two codes, i.e. entropy and binary; the entropy
code indicates the group number while the binary code indicates the offset
in the group. In [25], the authors propose a propose a multidimensional and
multidirectional data aggregation (MMDA) technique in order to enhance the
data communication and ensure the privacy of the data. MMDA allows each
sensor device to organize the data into matrices then applying an aggregation
process in two directions, e.g. rows and columns. The authors of [26] propose
an entropy-driven data aggregation with a gradient distribution (EDAGD)
technique that is relying on three algorithms. The first algorithm is called a
multi-hop tree-based data aggregation and aims to reduce the transmission dis-
tance among sensors and the sink by minimizing the number of hops required
to reach the destination. The second algorithm is a tree-based aggregation
scheme that uses the entropy and the Choquet integral that allows to monitor
and detect abnormal events based on the sleep/active nodes strategy. The last
aggregation method is a gradient deployment algorithm which aims to deal
with the energy hole problem in sensor applications.

Unfortunately, most of the proposed prediction techniques in sensor net-
works make a trade-off between data transmission ratio, latency, accuracy and
energy consumption. From one hand, minimizing the data transmission often
leads to save the sensor energies but it decreases the accuracy of the trans-
mitted data. On the other hand, preserving the integrity of data may require
complex techniques that mostly affects the latency of the transmitted infor-
mation. In this paper, we propose a novel data reduction mechanism based
on the prediction approach that ensures a trade-off among different metrics
evaluated in sensor applications.

3 Cluster-Based Network Architecture

Network topology is one of the most key features that should be consider when
deploying a sensor network. Although there are many topologies proposed in
WSN [27], researchers are mainly focused on two architectures: clustering and
tree. Indeed, tree-based WSN is more suitable for applications requiring a small
size of sensors otherwise, e.g. number of sensors gets bigger, construction of
the tree will be very complex. Such reconfiguration of the tree mostly requires
high time processing and network energy consumed especially when a node is
failed or its energy is depleted (particularly for those near to the sink). Hence,
for less-complexity reason, most of the proposed techniques are dedicated to
cluster-based topology in order to maintain the scalability of the network and
save its energy. Subsequently, the authors in [27] study the various topologies of
WSNss (tree, cluster, chain and flat) while comparing them according to many
performance metrics like energy usage, network lifetime, scalability, latency,
ete.

In this paper, we focus on cluster-based topology that has been widely
used in IoT applications, particularly for data reduction study and scalability
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purposes. Typically, a cluster is composed of a certain number of sensor nodes
and has one cluster-head (CH) to manage the members. The main task of a
sensor node is to sense the monitored field, detect events, perform quick local
data processing, and then transmit the data to a specified CH. The CH acts
as a gateway between its cluster members and the sink where it forwards data
collected by the sensors after performing some processing operations. Figure
1 shows the cluster-based topology considered in this work in which a direct
communication between sensors and their CH is established. Then, we consider
that the data transmission between sensors-CHs and CHs-sink is performed
in a periodic manner. Accordingly, we propose an energy-efficient mechanism
which performs data prediction at sensor nodes as well as CHs.

Cluster Sensor
nodes
Cluster

Fig. 1 Cluster-based topology for WSN.

Unfortunately, the formation of clusters is a critical task in sensing appli-
cations that imposes several challenges. Examples of such challenges include
the CH selection, assigning members to clusters, cluster connectivity, on-/in-
cluster data communication, etc. [28-36]. For the sake of simplicity, this paper
considers a geographical cluster scheme in which each sensor member is as-
signed to nearest CH.

4 Data Prediction Model at Sensor Node

In almost WSN applications, data can be collected by the sensor nodes in three
different ways: on-demand, event-based or periodic-based [35]. In the first col-
lection model, the sensors collect the data according to a sink request. Such
model is usually used to know about the status of the monitored zone at a time
selected by the end user. In event-based collection, the nodes send data toward
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the sink when a predefined event occurs. Such model is suitable to detect nat-
ural disasters (forest fire, flood, volcano activity, etc.) and enemy infiltration.
In the periodic model, the target zone is constantly monitored where data are
periodically sent to the sink node. This model is mostly used to monitor nat-
ural, human and animal behaviors like climate change, plant progress, animal
movements, monitoring patient vital signs and tracking of elderly persons. In-
deed, periodic collection model has a great number of applications nowadays
but it introduces many challenges to WSN like data management and energy
consumption. In this paper, we are interested in the periodic data collection
model under the cluster-based WSN architecture. In this section, we propose
a prediction model that uses the least squares approximation method in order
to reduce the huge amount of data sent from each sensor to its appropriate
CH.

4.1 Periodic WSN: Notations and Challenges

In periodic WSN, each sensor collects data for a period of time then it send
them together to the CH, instead of directly sending each of one. Hence, each
period is divided into a set of 7 equal slots where a new reading is sensed at
each slot. Therefore, each sensor node N; will form a vector of 7 data readings
at the end of each period as follows: D; = [d;,,d;,, ..., d;_].

Indeed, the periodic collection model produces a high redundancy level
among the collected data due to several reasons:

— First, the spatial correlation between the sensors which are mostly ran-
domly dispersed over the target zone.

— Second, the temporal correlation between data collected by the sensors
resulted from the huge amount of data required to collect in periodic ap-
plications.

— Third, the dynamic of the monitored condition which can slow down or
speed up during the periods.

— Fourth, the sampling rate of the sensor which leads, in case of small slot
time, to collected similar data.

— Fifth, the size of the entire period (i.e. 7) where small value of 7 generated
more redundancy among data collected in each period (i.e. D;).

As a result for the redundancy, the periodic sensor networks face three
major challenges:

— Depleting overall network energy: Data transmission consumes lots of the
available energy in th sensors. Thus, sending redundant and useless data
leads to overload the network with unnecessary transmission that consumes
energy of the network devices (sensors and CHs) and minimizing its life-
time.

— Complicating makers’ decision: Discovering knowledge and information
from data received at the sink node is a fundamental operation in WSN in
order to take decisions. However, the huge amount of data collected with



8 Hassan Harb* et al.

the existing redundancy makes such task a complicated mission for the
makers’ decision.

— Delaying action response: Data latency is one of the most critical operations
in WSNs, especially for applications in healthcare and natural disaster
where a fast response must be taken at the right time. However, processing
time needed to eliminate redundancy among data collected can delay the
time response required for an occurred event.

In the next section, we propose a data prediction model based on the least
squares approximation method in order to reduce the amount of data sent
from each sensor to the CH.

4.2 Integrating Least Squares Approximation (LSA) Method at Sensor Tier

In this section, we aim to reduce the amount of data periodically collected by
each sensor node during each period, i.e. D;, before sending to the CH. Thus,
we propose to integrate the LSA method into the sensor processing in order to
create a predictive model for the collected data to send later toward the CH.
Indeed, LSA [37] is one of the most standard approaches used in statistical
analysis that aims to determine the curve that best describes the relation-
ship between expected and observed data sets by minimizing the sums of the
squares of deviation between observed and expected values. Subsequently, each
sensor finds the LSA polynomial that fits its data in D; then, it send the LSA
coefficient set toward the sink which, in its turn, it can regenerate all the raw
data based on the received coefficient equation.

Indeed, the processing time needed to calculate the LSA polynomial of
degree k will be huge, especially when the period size 7 is high. Hence, in
order to reduce the time complexity of LSA, we propose to select a subset of r
readings, named as R;, from D; to find the corresponding polynomial. R; can
be formed based on the following equation:

Ri = {(S145x |7/(r=1) > d14jx|r/(r—1)])s (57, d7)} (1)

where $1jx|r/(r—1)| are all readings collected at slot numbers sy jx|r/(r—1)]
(such that j € [0,7] and 1+ 7 x [7/(r —1)] < 7) and d; is the last reading in
D;.

After selecting the readings, the sensor computes the LSA polynomial by
resolving the equations mentioned in definition 1. Then, the sensor will send
only the coefficient set of LSA polynomial C; = {ag, a1, ...,ax} which is nec-
essary to recalculate the values of all raw readings.

Formally, Algorithm 1 describes the prediction method based on LSA ap-
plied at the node level. The algorithm takes data readings collected by each
sensor at every period and then returns the LSA coefficient set that will send to
its CH. First, the node selects the readings at indexes determined by equation
1 (lines 1-4). Then, the algorithm formulates and solves the system of equa-
tions determined by the Definition 1. Finally, the sensor sends the coefficient
set of the polynomial to the CH (lines 8-9).
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Algorithm 1 Prediction Node Algorithm.

Require: Node: N;, Period size: 7, Data readings: D; = [d;,,ds,,--.,d; ],
LSA degree: k, Subset size: r.
Ensure: Coefficient set: C;.
for j=1tor—1do
Ri <= Ri U{(S14x [r/(r—1) > D1jx |7/ (r—1)) ) }
end for
R, + R; U {(ST,d.,—)}
formulate LSA equations
solve the LSA equations
find the set C; of coefficients ag to ay
return C;

5 Data Prediction Model at CH Node

The CH will receive the sets of LSA coefficients sent from each sensor member,
C ={C,Co,...,C,}, at the end of each period. Subsequently, the CH receives
n %X (k+1) data values at each period, where n is the number of sensor nodes
and k + 1 is the size of each coefficient set. This amount of data will be of
huge size especially WSN where an enormous number of sensor nodes could
be deployed in the network along with an increasing value of LSA degree k. In
this section, we aim to reduce the size of data sets sent from each CH to the
sink node by proposing a prediction pattern to all LSA sets, instead of sending
each LSA coefficient set. Therefore, the available energy of CH will be saved
while the raw data can be periodically reconstructed at the sink.

5.1 LSA Method at CH Node

As shown before, LSA can effectively reduce the amount of data sent from
sensors to CH. In this section, we aim to adapt again the LSA method to
be applied at the CH. Consider the following matrix that represents the LSA
coeflicient sets coming from all sensors at the end of each period:

an aq NN Qg

Cl = ai, ay, NN ay,

Cg = ag, ag, NN ag,,
; 2)

Cn= \Qny Gn, n,,

In order to reduce the size of the matrix, we propose to apply LSA method
at each column separately thus reducing the number of rows in the matrix.
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Subsequently, we aim to find the LSA polynomial of degree k’ for each column
Ao ={a1y,02q5 -y any b, A1 = {a1,,a2,, ..., an, }and A = {a1,, a2, ..., an, }-
The LSA polynomial for each column A; can be found similarly to the process
mentioned in Definition 1, where the x —axis represents the sensor number and
the y-axis represents the coefficient set values. Subsequently, the LSA polyno-
mial for each column A; can be represented as: y; = ag, +af,x +ab x* + -+
a;{:ck,. Furthermore, in order to maintain the accuracy of the polynomial, the

value of k' should be greater than that selected for k.
Therefore, the CH will convert, at each period, the matrix of dimensions
(n, k+ 1) in equation 2 to a matrix of dimensions (k + 1, ¥’ 4+ 1) as follows:

ap, ady ... aj

S / / /
Co= [ay, aj, ... ap,

S / / /
Ch=[ay ay, ... ap,

(3)

!/ / ! !/

C'k = \ay, ai, .- ap,

Algorithm 2 describes the prediction model applied at the CH level. As
input, the algorithm takes all set coefficients sent from the sensor nodes and
returns, as output, a new and reduced set of coefficients to send to the sink.
Briefly, the CH searches the coeflicient values at the same index (lines 2-5)
then, it calculates the LSA polynomial of degree k' based on the equations
mentioned in Definition 1. Finally, the CH sends the new set of coefficients to
the sink for raw data regeneration purpose (lines 6-10).

Algorithm 2 Prediction CH Algorithm.

Require: LSA Coefficient Sets: C = {C1,Ca,...,Cyn}, LSA degree: k’.
Ensure: Coefficient set: C' = {C'1,(’a,...,C';}.

1: for i =0to k do

22 T+ 0 // T is a temporary list
for j =1ton do

T+TU {(37C]1)}

end for
formulate equations of Definition 1 based on T
solve the equations of Definition 1 for T’
find C’; of coefficients ;) to a},
C'+cCcu{cC;}
10: return C’
11: end for

5.2 Raw Data Regeneration at Sink Node

Once the final coeflicient sets are periodically received, the last process phase
in our technique is starting and aims to reconstruct raw data at the sink
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node. Obviously, the main mission is to find approximate reading values to
those collected by the sensor rather than finding similar ones, which is not
possible with regression and polynomial interpolation. Indeed, the accuracy of
our model is highly dependent on the polynomial degree selected at the sensor
node (e.g. k) and the CH level (e.g. k'); more the values of k& and k&’ more the
accuracy of regenerated data is.

The process of data regeneration can be done inversely to that used when
searching the LSA polynomials at sensor and CH nodes. When the sink receives
the reduced matrix mentioned in equation 3, it applies the following steps to
retrieve raw data collected by all sensors:

— Step 1: Searches the coefficient set for each sensor. This can be done by
formulating the equation for each row in the matrix of equation 3; the first
row allows to find the first coefficient for the polynomial of each sensor, the
second row finds the second coeflicient and so on. Therefore, the following
equations can be formulated according to equation 3:

Yo = ag, + ay, T + ... "’a;chk,
Yy =ag, +ay, x4 ... +a;€,xk,
1
B R T IR
Vo= dh, +aha b a et

— Step 2: For each of the obtained equation, it computes the value of y;(z) for
all z € [1, n]. This leads to find all set coefficients for all sensors determined
in equation 2 as follows:

(o)) aq Qg
Ci= [y(1) w1 (1) i (1)
Co yo(2)  y1(2) Yi(2)
Co= \wh(n) wi(n) ... wp(n)

— Step 8: From the above matrix, finds the polynomial equation for row
which represents the data collected by each sensor as follows:

v =yp() +yi(Mz + ... + y(1a”
y2 = y(2) + i@z + ... + y(2)a”
D= 4+ 4

yn = yp(n) + yi(m)z + ... + yj(n)*

— Step 4: For each of the above equation, it computes the value of y;(z) for
all € [1,7] in order to find the data set for D; for each sensor as follows:

Dl = [yl(l)v y1(2)7
Dy = [y2(1)7 y2(2)7

Y1 ()]
9 92(7'”
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5.3 Illustrative Example

In this section, we show an illustrative example for how to construct the LSA
polynomial at the CH as well as the reconstruction of raw data at the sink
node (Figure 2). First, assume that 5 sensor nodes collect their reading sets,
e.g. Dy to D5 respectively, during a period then each of them computes its LSA
polynomial equation and sends its LSA coefficient set to the CH (see section
IV.D). After receiving the sets of coefficients from the 5 sensors, the CH selects
a LSA degree k’ equals to 2 then it finds the LSA polynomial for each column
in the received coefficient matrix; for instance, the equation y{ corresponds
to the column [5,6,3,4, 4], y; corresponds to the column [3,1,4, 1, —1] and so
on. After that, the CH sends the LSA coefficients for each equation to the
sink, e.g. Cj to C4. Later, the sink receives the coefficient sets and follows the
reverse process to reconstruct the raw data; first, it regenerates the polynomial
equations based on the received coefficient sets, reconstructs the coefficient
sets for each sensor by scanning z-values from 1 to 5, regenerates the LSA
polynomial for each sensor and, finally, finds raw data for each sensor by
computing y-values for all z-values from 1 to 7.

6 Simulation Data Description

WSNs support a huge number of applications ranging from weather to indus-
trial and healthcare environments. In order to evaluate the relevance of our
technique, we conducted extensive simulations based on real sensor data col-
lected from various domains. The objective of these simulations is to test the
performance of our technique against different types of data and application
circumstances. In the next sections, we show the description of each sensor
data along with the simulation setup.

6.1 Weather Data Collected at Intel Lab

The first kind of sensor data are picked up from sensors deployed in the Intel
Berkeley Research lab [38]. In such network, 46 sensor nodes of type Mica2Dot
with weather boards that collect temperature, humidity, light and voltage
values once every 31 seconds. Sensor nodes are deployed for about 40 days
starting at February 28" where 2.3 reading values are approximately collected
during this period. Furthermore, the dimensions of the monitored zone (e.g.
lab) were 42 x 33 meters where the indoor sensing range for each sensor is
25 meters. In our simulation, we assume a CH located at the center of the
lab with a sink distant at 50 meters from the CH. Finally, for the sake of
simplicity, we are interested, in this paper, in the temperature readings field
where other fields are treated in the same manner.
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Data collection D; Polynomial construction Sending D; LSA Coefficients

D1={d11.d12.---,d11}—b@—> y1=5+3x—x*+2x) = ¢€;,=[5 3 -1 2]

Dz={dzl.d22....,dz,}-'@-* y2=6+x+x’+x* = C=[6 1 1 1]
D3={d31.d32....,d31}—>@—> y3=3+4x—-2x2+x> = €3=[3 4-2 1] —>
D4={d41,d42,...,d41}—>@—> Ya=4+x+2x2+2x3 = ¢, =[¢ 1 2 2]
Ds = {ds,, ds,, ..., ds } == @ =) ys=4-x-3x2-x = Cs=[4-1-3-1]
Sending LSA Coefficients Column-based p.olynomial l
construction
Select LSA

€y=[6.6 —1.25 0.14] <= y'  =6,6—1.25x + 0.14x?
C1=[1 177 —0.42] & y,=1+177x—0.42x> ==
¢,=[-3.2 27 —0.5] & y',=-3.2+27x—0.5x2

degree

C¢3=[1 078 —0.21] & y3=1+0.78x—0.21x2

!

Column-based polynomial D; LSA Coefficient reconstruction
reconstruction a, a; a, a;
Yo =6.6—1.25x + 0.14x* Ty ¢, =[549 235 -1 157
mnd y’,(x =466 286 0.2 172
- _ 2 i C; .
Y1=1+177x-0.42x" gy | foran =) ¢, =411 253 04 145
y'2=—3.2+2,7x— 0.5x? x€[1,5] C,=|384 136 -—04 076

C;=1385 —-0.65 —-22 -035

1

y's =1+ 0.78x — 0.21x?

D; data reconstruction D; Polynomial reconstruction

Dy ={dy,.dy,, ... ds} y1=>5.49 +2.35x — % + 1.57x3
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Fig. 2 Illustrative example of our technique at CH and sink nodes.

6.2 Underwater Data Collected by ARGO Project

The second type of data evaluated in our simulation are coming from sensors
used in Argo project [39]. Argo is an underwater sensor network that deploys
more than of 3800 free-drifting profiling nodes that measures temperature,
salinity and velocity data of the upper 2000m of the ocean. Float sensors
collect data in a daily basis where collected data are sent at a period of 10 days
to a float navigator which, in its turn, forwards them to the end centers through
satellite communication. In our simulation, we focus on data sensed by 119
float sensors dispersed in the Indian ocean over an area of 5000 x5000 m. About
1.5 million reading profiles are collected by the sensors during approximately
3 months of deployment in 2014. Data collected by the float sensors are sent
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to the float navigator, located at the center of the ocean zone, by means of
wireless acoustic links. Finally, in our simulation, we are interested in the
salinity readings.

6.3 Healthcare Data Collected by MIMIC

In the third kind of simulation, we used real medical readings collected from
the online MIMIC (Multiple Intelligent Monitoring in Intensive Care) database
[40]. MIMIC has 72 patient records that contains data about vital signs ob-
tained from bedside ICU monitors. Vital signs data include heart rate, blood
pressure (mean, systolic, diastolic), respiration rate, oxygen saturation, etc.
Every one second, the medical sensors capture new vital signs for a patient
during his stay in hospital. The size of data collected exceeds 5 million med-
ical readings for all patients with an average of 70000 readings for each one.
In our simulation, we are interested in the heart rate vital sign. We assume
that sensors send their data to a PDA located at the emergency staff center
to detect and analyze urgent situations of patients.

6.4 Methane Gaz-based Industrial Sensor Data

The last type of data is dedicated to industrial sectors where readings about
methane gas have been collected [41]. Mostly, the leakage of methane gas leads
to a critical explosion of an industry thus, constantly monitoring this gas is an
essential operation in most industries. A small SensorScope network contains
16 chemical sensors has been deployed at an industry located at the Grand-
St-Bernard pass at 2400 meters between Switzerland and Italy. The industry
area is about 140 x 120 m2. More than 4 million methane readings have been
collected by each sensor at a sampling of 1 reading per minute. The collected
data are sent to a central device (represent the CH) located at the center of
the industry.

7 Simulation Results

In this section, we show the simulation results obtained of our technique over
each of the described data. We compared the results to the PFF technique
proposed in [23] and the S-LEC compression method in [42]. We varied the
parameter variables as follows:

The period size 7T takes the values: 50, 100, 250 and 500 readings.

— The LSA polynomial degree at sensor (k) takes the values: 2, 4, 6 and 8.
The LSA polynomial degree at CH (k') takes the values: 6, 8 and 10.

— The selected size of readings at the sensor r takes the values: 5 for 7 = 50,
8 for 7 = 100, 10 for 7 = 250 and 12 for 7 = 500.
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The performance of our technique is tested according to the following met-
rics:

— Variation between raw and regenerated data at sensor and CH levels.
— Data ratio sent from each sensor to the CH and between CH and sink.
— Execution time at sensor and CH nodes.

7.1 Data Redundancy Study

We aim first to study the redundancy between data collected by various types
of sensors and for different types of applications. As mentioned in section
IV.A, redundancy is mostly happened in WSNs for several reasons, especially
between neighbouring nodes. Figure 3 shows real examples of redundancy gen-
erated inside each sensor or among nearest nodes, for the first 1000 readings
collected by each sensor. In each subfigure, we selected three random sen-
sors collecting temperature, salinity, heart rate and methane gas respectively
then we study the variation of their collected data. The obtained results allow
several observations: first, the successive readings collected by a sensor are
almost similar (Figs 3(a) to 3(d)). Second, neighbouring sensors are probably
generating redundant data like in Figure 3(a). Third, distant sensors can be
also temporally correlated depending on the slow variation of the monitored
environment. This can be confirmed by the 3 sensors collecting salinity condi-
tion which are very dispersed in the ocean however they collect very similar
readings. Fourth, spatial correlation does not have any effect on redundancy
between collected data in some critical application like healthcare; for instance,
Figure 3(c) shows 3 neighboring medical sensors in which data collected is de-
pendent on the situation of the patient (critical for patient IDs 1 and 20, and
normal for patient ID 40). Fifth, sometimes, it may occur that sensors take
similar data for a period of time then, later, they collect different readings
(see Figure 3(d)). This happens when an event occurs nearest a sensor and far
from others.

7.2 Discussion of Weather Data Results

In this section, we discuss the results of simulation conducted over the tem-
perature data collected by the sensor nodes deployed at the Intel research
Berkeley lab according to the following metrics:

7.2.1 Variation Between Raw and Regenerated Data at Sensor

Figure 4 shows the efficiency of the LSA prediction model at the sensor node
level when fixing the period size to 250 and the LSA polynomial degree to 6.
According to the obtained results, we can clearly observe that our prediction
model ensures a high level of data accuracy where the regenerated data are



16

Hassan Harb™ et al.

M sensor ID=16 l Sensor ID=17 H Sensor ID=25

M sensor ID=1901148 H Sensor ID=5903238 [l Sensor ID=7900335

|
0 200 400 600 800 1000
slot number

0 200 400 600 800 1000
slot number

(a) Temperature sensors at Intel laboratory

(b) Salinity sensors in Indian Ocean

W sensor ID=1 l Sensor ID=20 @ Sensor ID=40

B sensor ID=1 H Sensor ID=7 H Sensor ID=14

slot number

140 ¢ 5000
21301, = 4000
4 ©
2120 2 3000
2 107 £ 21000
IWOW g oo

20 =

8 10

0 200 400 600 800 100 0 200 800 1000

400 600
slot number

(c) Heart rate sensors at hospital

(d) Methane gas at an industry

Fig. 3 Redundancy among readings collected by various sensors, 7 = 1000.

much closer to those collected by the sensor. Subsequently, the worst scenario
happens at the slot number 23 where an error of about 0.1 is noticed between
raw and regenerated data. This error is almost negligible and it does not affect
the accuracy of the temperature condition.

25 50 75 100

H Raw data [0 LSA data

125 150 175 200 225 250
slot number

Fig. 4 Raw data vs regenerated data using LSA, 7 = 250, k = 6.

7.2.2 Data Transmission Ratio at Sensor

Figure 5 shows the data transmission ratio from each sensor to its CH, after
applying the LSA method and by varying the value of the prediction degree
and the period size. The obtained results show the efficiency of our technique
in reducing the amount of sent data compared to other existing techniques.
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Particularly, our technique reduces up to 86% and 93% compared to PFF
and S-LEC when fixing k& (Figure 5(a)), and up to 82% and 89% when fixing
period size (Figure 5(b)). Such reduction is performed due to the reduced set
of coefficients sent with LSA method while the aggregation and compression
operations impose a minimum portion of data to be sent instead of the entire
raw data. As a result, our technique will save the sensor energy more than
that with PFF and S-LEC since energy consumption is highly dependent on
the amount of transmitted data.
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Fig. 5 Data transmission ratio from sensor to CH.

7.2.8 Execution Time at Sensor

Indeed, complexity takes a play role in IoT networks due to the limited re-
sources of the sensors. In this paper, we study the complexity metric of each
technique in terms of the processing time required to execute their algorithms
at the sensor level (Figure 6). Thus, a proposed technique must minimize the
execution time in order to deliver the packet to the sink as soon as possible.
The results show that the execution time of our technique is highly optimized
to those of PFF (i.e. 2 to 9 times of minimization) and S-LEC (i.e. 3 to 11
times of minimization). In addition, we show that the execution time of our
technique is independent from the prediction degree and the period size unlike
those of PFF and S-LEC that increase with the increase of the period size.

7.2.4 Variation Between Raw and Regenerated Data at CH

In this section, we aim to study the efficiency of the LSA prediction model
at the CH level when fixing the LSA polynomial degree to 8. Figure 7 shows
the coefficient value sent from each sensor to the CH (e.g. raw coefficient) and
the regenerated coefficient value when applying the LSA method. Obviously,
a small variation of the LSA coefficient can lead to a high change in the raw
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Fig. 6 Execution time required for each algorithm on the sensor.

data of the sensor. The obtained results show a high convergence between raw
coeflicient values and those regenerated by the CH before sending to the sink.
Therefore, our prediction model canbe efficiently used at sensor and CH levels.

© Raw coefficients ¢ LSA coefficients

Coefficient value

50)

sensor number

Fig. 7 Raw coefficients vs regenerated LSA coefficients using LSA, 7 = 250, k = 6, k' = 8.

7.2.5 Data Transmission Ratio at CH

In this section, we show the efficiency of LSA prediction model at the CH
level in terms of reducing the amount of data sent to the sink node (Figure 8).
We studied the efficiency in terms of three variables: the period size (7), the
LSA degree at sensor (k) and at CH (k). The obtained results reflect a huge
difference between the data transmitted using our technique and PFF; our
technique reduces from 71% to 96% of data sent toward the sink. Furthermore,
the following observations can be noticed:

— by increasing the period size from 50 to 500, the number of sent readings
using PFF increases while it still fixed using our technique. This is because,
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the similarities between readings decrease in PFF when the period size
increases while our technique does not dependent on the period size.
— by icnreasing the LSA degree at the CH, the data transmission from the
CH increases because more coefficient values will sent to the sink.
— by increasing the LSA degree at the sensor, the CH sends more data to the

sink.
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Fig. 8 Data transmission ratio from CH to the sink.

7.2.6 Execution Time at CH

Figure 9 shows the execution time required at the CH when applying our
technique and PFF, and when varying 7, k and k’. As expected, our technique
largely outperforms PFF in terms of execution time in all cases. Subsequently,
our technique reduces 19 to 37 times the execution time when varying the
period size (Figure 9(a)), from 27 to 36 when varying the LSA CH degree
(Figure 9(b)) and from 20 to 64 when varying the LSA sensor degree (Figure
9(c)), compared to PFF. This is because the PFF works by searching the
similarities between every pair of sets which takes a long time processing unlike
our technique which computes the equation coefficients based on predefined
formulas.
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Fig. 9 Execution time required for each algorithm on the CH.

7.3 Discussion of Underwater Data Results

In this section, we discuss the results of simulation conducted over the salinity
data collected by the underwater sensor nodes deployed in the Indian ocean
according to the following metrics:

7.8.1 Variation Between Raw and Regenerated Data at Sensor

Similarly to Figure 4, Figure 10 shows the difference between raw data and
those generated by LSA model collected about salinity condition. Obviously,
the salinity condition is varying very slowly compared to the temperature
condition, where the salinity values changed in range [34.5,35.1] (a variation
of 0.6 degree) for a period of 250 readings. Consequently, the LSA model
produces a very small error of, at most, 0.05 compared to the raw data.

7.3.2 Data Transmission Ratio at Sensor

Similarly to Figure 5, Figure 11 shows the average number of salinity readings
sent from each sensor to the CH. Indeed, using LSA model, the sensor sends
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Fig. 10 Raw data vs regenerated data using LSA, 7 = 250, k = 6.

the same number of values (e.g. LSA coefficient set) which is dependent on
the LSA degree and independent from the monitored condition. However, the
amount of data sent using PFF and S-LEC are highly dependent on the moni-
tored condition which can generate less or more redundant data. The obtained
results show that our technique reduces up to 72% and 84% compared to PFF
and S-LEC, when varying 7 and k.
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Fig. 11 Data transmission ration from sensor to CH.

7.3.3 Execution Time at Sensor

Figure 12 shows the execution time required to apply each algorithm at under-
water sensor node. The obtained results show that our technique accelerates
time processing at the sensor from 2 to 3 times compared to PFF and from
2 to 5 compared to S-LEC. Compared to temperature results, our technique
gives less performance in comparison with PFF and S-LEC; this is because
the salinity condition produces more redundancy than temperature among
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the collected data which increases the performance of PFF and S-LEC while
that of our technique still fix.
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Fig. 12 Execution time required for each algorithm on the sensor.

7.8.4 Variation Between Raw and Regenerated Data at CH

Similarly to Figure 7, Figure 13 shows the difference between raw coefficients
sent from the sensor and those regenerated by the LSA for the salinity con-
dition. The obtained results reveal a well convergence between both curves
except for few values produced at sensor IDs ranging from 105 to 120. This er-
ror is expected since when the coefficient value of any sensor diverges far from
the other sensors (like the case of sensor IDs 105 and 110), then the regenerated
curve using LSA with simultaneously diverge for the nearest sensors.

@ Raw coefficients ¢ LSA coefficients

sensor number

Fig. 18 Raw coefficients vs regenerated LSA coefficients using LSA, 7 = 250, k = 6, k' = 8.
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7.3.5 Data Transmission Ratio at CH

Figure 14 shows the number of salinity readings sent from each CH to the sink.
As shown, we notice that the data transmission at CH is highly minimized
using our technique compared to that sent with PFF; using our technique, the
CH only sends, in the best case, 1.4% among the raw to the sink while PFF
sends at least 5% of raw data. Hence, our technique allows to reduce from 66%
to 96% of data transmission at CH compared to PFF.
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Fig. 14 Data transmission ratio from CH to the sink.

7.3.6 Execution Time at CH

Figure 15 shows the processing time needed for each algorithm, our technique
and PFF, at the CH when varying 7, k and k’. Similar to temperature condi-
tion, our technique largely outperforms the execution time of prediction than
that required for PFF; An enhancement of 98 times has been detected using
our technique at the CH level compared to PFF.
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7.4 Discussion of Medical Data Results

In this section, we discuss the results of simulation conducted over the heart
rate data collected by the MIMIC according to the following metrics:

7.4.1 Variation Between Raw and Regenerated Data at Sensor

Similarly to Figure 4 and Figure 10, Figure 16 studies the variation of between
raw and regenerated data for heart rate medical sensor. Indeed, heart rate
condition usually varies more quickly than temperature and salinity, where
the heart rate of a patient can change from minute to minute according to its
situation. The figure shows the raw data of a normal patient where his heart
rate varies between 69 and 71 whilst, the regenerated data appear nearly to
the raw data. In the worst case, an error of 1 degree is noticed which still the
patient in his normal status. Therefore, our model can be efficiently used in
critical application while keeping the status of the monitored condition as it
is.
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7.4.2 Data Transmission Ratio at Sensor

Figure 17 shows the average number of heart rate readings periodically sent
from each sensor to the CH. As mentioned before (Figure 16), the variation of
heart rate condition is more noticeable compared to temperature and salinity
conditions thus, the performance of PFF and S-LEC will degrade. The ob-
tained results show that our technique reduces up to 91% and 94% of readings

sent from each sensor compared to PFF and S-LEC, when varying 7 and k.
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(a) LSA sensor degree, k =6

7.4.8 Ezecution Time at Sensor

Figure 18 shows the execution time required to apply each algorithm at med-

(b) period size, T = 100

ical sensor nodes. The obtained results show that our technique accelerates

time processing at the sensor about 3 times compared to PFF and S-LEC
techniques. We can also notice that, due to the high variation between col-
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lected data, PFF and S-LEC gives approximate execution time results when
varying k and 7.
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Fig. 18 Execution time required for each algorithm on the sensor.

7.4.4 Variation Between Raw and Regenerated Data at CH

Figure 19 shows the raw coefficient values for heart rate sensors compared to
coefficient values regenerated by LSA method. The obtained results are very
similar to those obtained with salinity readings where the raw coefficient and
LSA coefficient curves are very converged to each other except for some values
generated for sensor IDs 40 to 50. However, it is important to notice that the
maximum obtained difference between both curves does not exceed 0.12.
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Fig. 19 Raw coeflicients vs regenerated LSA coeflicients using LSA, 7 = 250, k = 6, k' = 8.
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7.4.5 Data Transmission Ratio at CH

Figure 20 shows the number of heart rate readings sent from each CH to the
sink. the obtained results shows that the data transmission at CH reduced by
at least 86% when varying the period size, 90% when varying the LSA degree
at the sensor and 89% when varying the LSA degree at the CH, compared to
PFF technique.
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Fig. 20 Data transmission ratio from CH to the sink.

7.4.6 Ezecution Time at CH

Figure 21 shows the execution time required to apply both our technique and
PFF over heart rate readings at the CH. Unlike temperature and salinity con-
ditions, PFF gives less performance in terms of execution time because medical
data varies quickly which decreases the redundancy among the collected data
(thus increases time processing). Otherwise, our technique gives the same per-
formance independent on the monitored conditions. Therefore, it accelerates
the execution time from 23 to 142 times compared to PFF.
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7.5 Discussion of Industrial Data Results

In this section, we discuss the results of simulation conducted over the methane
gas data collected by the chemical sensor nodes according to the same previous
metrics:

7.5.1 Variation Between Raw and Regenerated Data at Sensor

Figure 22 shows the variation between the methane gas values compared be-
tween raw data and regenerated data using LSA model. Similarly to the results
obtained with other conditions, LSA polynomial allows to regenerate raw data
with high level accuracy. Hence, LSA prediction model proposed in our tech-
nique can be efficiently adapted to any type of sensor and applied in various
domains.

7.5.2 Data Transmission Ratio at Sensor

Figure 23 shows the average number of methane gas readings sent from each
chemical sensor to the CH. The variation of methane gas condition seems
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Fig. 22 Raw data vs regenerated data using LSA, 7 = 250, k = 6.

similar to the temperature condition at the Intel lab and far from the heart rate
condition which varies quickly. The obtained results show that our technique
reduces up to 86% and 92% of readings sent from each sensor compared to
PFF and S-LEC, when varying 7 and k.
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Fig. 23 Data transmission ratio from sensor to CH.

7.5.8 Execution Time at Sensor

Figure 24 shows the execution time required to apply each algorithm at chem-
ical sensor nodes. The obtained results show that our technique accelerates
time processing at the sensor up to 4 compared to PFF and up to 6 times
compared S-LEC technique.

7.5.4 Variation Between Raw and Regenerated Data at CH

Figure 25 shows the variation between raw coefficient values and values re-
generated by LSA at the CH level for the methane gas sensors. The results
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Fig. 24 Execution time required for each algorithm on the sensor.

show that the LSA prediction model allows to regenerate very close coefficient
values for each sensor where the error arrives to 0.001 in the worst case. There-
fore, LSA model can be considered as an efficient prediction method for both

sensors and CHs.
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Fig. 25 Raw coefficients vs regenerated LSA coefficients using LSA, 7 = 250, k = 6, k' = 8.

7.5.5 Data Transmission Ratio at CH

Figure 26 shows the number of methane gas readings sent from each CH to
the sink after applying our technique and PFF. The obtained results shows
that the data transmission at the CH reduced by from 5% to 87% compared to
PFF, when varying the period size, LSA degree at sensor and CH. We can also
notice that our technique gives better results when the period size increases.
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Fig. 26 Data transmission ratio from CH to the sink.

7.5.6 Execution Time at CH

Figure 27 shows the execution time required to apply both our technique and
PFF over methane gas readings at the CH. The obtained results that our
technique can accelerate the prediction processing time at the CH from 9 to
18 times when varying the period size, from 10 to 16 times when varying k
and from 9 to 30 times when varying k’.

8 Conclusion and Future Work

As the number of connected devices will continue to rise every day, the IoT will
take more attention from both industries and governments. Thus, data reduc-
tion and prediction algorithms will remain at the heart of data management in
IoT. In this paper, we have proposed an energy-efficient prediction mechanism
dedicated to periodic large-scale sensing-applications. Our prediction model
uses the least squares approximation method at sensors and CHs nodes in a
cluster-based network architecture. Our model allows each sensor, at the first
tier, to send a predictive set of data to the CH, while, at the second tier, it al-
lows CH to send one predictive set for the whole cluster nodes toward the sink.
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Fig. 27 Execution time required for each algorithm on the CH.

We evaluated our mechanism through extensive simulation on real sensor data
collected from various sensor applications (weather, underwater, health, and
industrial). Compared to other existing techniques, the results demonstrated
the efficiency of our mechanism in terms of optimizing the data regeneration
error, the data transmission ratio, and the execution time at both sensors and

CH levels (Table 1).

Data regeneration error | Data transmission ratio Execution time

Sensor CH Sensor CH Sensor CH
Weather 0.1 0.008 93% 96% 11 times | 37 times
Underwater 0.05 0.09 84% 96% 5 times 98 times
Health 1 0.12 94% 90% 3 times 142 times
ndustrial 20 0.001 92% 87% 6 times 30 times

Table 1 Summarizing of best results obtained with our mechanism.

Several directions can be pass through to improve our mechanism. First,
a scheduling strategy can be applied inside each cluster in order to switch
correlated sensors into sleep/active modes. Second, we plan to increase the
accuracy of data received at the sink by adding some improvements to the
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proposed prediction algorithm. Third, we seek to adapt our mechanism to
heterogeneous sensor networks where each node can collect data about several
conditions.

9 Data Availability Statements

The datasets generated during and/or analysed during the current study are
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and MIMIC repository, https://archive.physionet.org/mimic2/.
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