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Abstract. Deductive program veri�cation greatly improves software qual-
ity, but proving formal speci�cations is di�cult, and this activity can only
be partially automated. It is therefore relevant to supplement deductive
veri�cation tools, such as Why3, with the ability to test the properties to
be veri�ed. We present a methodological study and a prototype for the
random and enumerative testing of properties written either in the Why3
input language WhyML or in the OCaml programming language used
by Why3 to run programs written in WhyML. An originality is that we
propose enumerative testing based on data generators themselves writ-
ten in WhyML and formally veri�ed with Why3. Another speci�city is
that the development e�ort is reduced by exploiting Why3's extraction
mechanism to OCaml and an existing random testing tool for OCaml.
These design choices are applied in a propotypal implementation of a
tool, called AutoCheck. The prototype and the paper are designed with
simplicity and usability in mind, in order to make them accessible to
the widest audience. Starting from the most elementary cases, a tutorial
illustrates the implemented features with many examples presented in
increasing complexity order.

Keywords: property-based testing · random testing · enumerative test-
ing · deductive veri�cation

1 Introduction

By proving that a given program respects a given functional speci�cation, once
for all its possible inputs, deductive veri�cation, aka program proof, provides a
high level of con�dence in software correctness. However, many obstacles limit
the spread of deductive veri�cation and its practice by development and valida-
tion engineers, despite the existence of numerous deductive veri�cation tools.

The �rst obstacle is the formalization of speci�cations. Their writing has be-
come easier thanks to a syntactic entity of formal assertion available in some
programming languages and to behavioral interface speci�cation languages, aka
contract languages, that are close to programming languages and are integrated
in code as formal comments, named annotations. Examples of contract languages
are JML for Java [31], ACSL for C [4] and Spec# for C# [3]. Deductive veri-
�cation tools � such as KeY [5] for Java/JML, the WP plugin [13] of Frama-C
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for C/ACSL or Boogie [8] for Spec#/C# � then reduce annotated code to logi-
cal formulas, named veri�cation conditions, whose validity entails conformance
between the code and its speci�cation.

Unfortunately, the complexity of main-stream programming languages often
leads to veri�cation conditions that are too di�cult to be automatically proved
by deductive veri�cation tools. A good strategy is to write speci�cation and
programs in the language of a tool dedicated to deductive veri�cation, such as
Why3 [7], which optimizes the interface with automated provers.

A remaining issue is that deductive veri�cation tools often do not provide
enough feedback to understand why a proof fails. A recent work has shown how
automated test generation can provide a better understanding of the origin of
proof failures, by classifying them as prover weakness, wrong speci�cation or
incomplete speci�cation [41]. Why3 integrates a prover-based counterexample
generator [26], but this feature su�ers from the limitations of the external provers
exploited to �nd these counterexamples [30].

Following the principles of property-based testing, we suggest to supplement
deductive veri�cation tools, such as Why3, with the ability to test the prop-
erties to be veri�ed. We present design principles and illustrate them with a
prototype, named AutoCheck, to test properties written in WhyML, the speci�-
cation and programming language of Why3. AutoCheck aims at the integration
of the complementary techniques of random and enumerative test data genera-
tion. AutoCheck is not yet complete enough for industrial applications, but it can
already be used and extended by OCaml and WhyML developers. It is presented
here as a proof-of-concept for the following design choices, which are as many
contributions:

1. AutoCheck includes a library of enumeration programs in WhyML, named
ENUM, which are certi�ed by formal proofs with Why3.

2. AutoCheck integrates the mature third-party random testing tool QCheck [43]
for OCaml.

3. AutoCheck completes QCheck with random testing for WhyML properties
and enumerative testing for WhyML and OCaml properties.

4. This implementation of random and enumerative testing for WhyML exploits
Why3's extraction mechanism from WhyML to OCaml and an implementa-
tion of random and enumerative testing for OCaml. This shallow approach
by extraction greatly reduces the amount of code to develop.

The paper is organized as follows. Section 2 introduces some background
about property-based testing and the tools involved in AutoCheck design, pre-
sented in Sect. 4. Section 3 presents our library of certi�ed enumeration programs
and the principles of their certi�cation by formal proofs with Why3. Section 5
is a tutorial on random testing for WhyML properties. Section 6 presents our
implementation of enumerative testing for OCaml and WhyML. Section 7 is
dedicated to concluding remarks.
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2 Background

This section shortly presents OCaml, the Why3 platform and its extraction
mechanism (Sect. 2.1), the principles of property-based testing and the notion
of property in this context (Sect. 2.2), some background on existing tools for ran-
dom and enumerative testing (Sect. 2.3) and a discussion about various possible
origins of properties for property-based testing (Sect. 2.4).

2.1 OCaml and Why3

OCaml is a programming language developed and distributed by INRIA since
1996 [38]. The powerful type system, as well as the automated memory manage-
ment (incremental garbage collector) make OCaml a very safe language. It comes
with a compiler producing native code for many architectures, and a compiler
producing bytecode, for increased portability.

Why3 is a platform for deductive program veri�cation. Programs for Why3
are written in the language WhyML, a veri�cation-oriented dialect of ML with
some functional features, such as polymorphic algebraic types, but also impera-
tive features, such as loops or records with mutable �elds.

WhyML o�ers usual non-mutable types such as unit, bool, int, or the poly-
morphic type list `a, where `a is a type variable that can be replaced by any
type. WhyML also o�er mutable types such as array 'a. It is possible to change
the value of a variable if its type is mutable. The value of a variable with a non-
mutable type cannot be changed, but it is possible to declare a reference on a
non-mutable type, with the keyword ref, and to access its value with the opera-
tor !. Some syntactic sugar is provided to lighten the notation � a documentation
on this can be found in Why3's manual [52, section 7.4.3].

The functional behavior of WhyML programs can be speci�ed with formal
annotations, globally called contracts: preconditions, postconditions, invariants
and loop variants, assertions, etc., in a �rst-order logic with polymorphic types.
Why3's standard library de�nes theories or data structures for common types
such as integers, lists or arrays. Why3 reduces programs and speci�cations to
logical veri�cation conditions whose satis�ability entails that the programs meet
their speci�cations. Then, automated provers (e.g., SMT solvers) or proof assis-
tants (e.g., Isabelle [10] or Coq [12]) can be used to prove these logical statements.
Why3 also provides a driver-based automated extraction mechanism. The driver
maps WhyML symbols to the syntax of the target language. A user can write
WhyML programs directly and get correct-by-construction OCaml [40] programs
using the OCaml driver provided by Why3. Why3 also accepts custom extrac-
tion drivers. Thus, the extraction can be adapted to di�erent languages, as is
the case for the C [49] or Rust [22] languages.

2.2 Property-based testing

�First things �rst, what is property-based testing? A property of a pro-
gram is an observation that we expect to hold true regardless of the
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program's inputs. It may involve only the output (�always outputs a
positive number�) or compare input and output (�preserves list length�)
or even assess external e�ects (�matches the output of a trusted external
program�).� [37].

Property-based testing (PBT, for short) consists in identifying and testing
a set of properties that some functions should satisfy. Beyond the basic case of
function contracts, that are properties about one call of one function, proper-
ties addressed here are relational properties which can concern several functions
and/or several calls of the same function [6]. Some tests of relational properties
are presented in Sect. 5. Temporal properties, written in a temporal logic such
as LTL, CTL or µ-calculus, are out of the scope of the present work.

Along the line of many property-based testing tools described in Sect. 2.3, we
assume that each property to be tested comes under the form of an executable
function returning a Boolean value providing the test oracle (true if the test
passes, false if it fails). Hereinafter this function is often called an executable

property.
We shall see in Sect. 2.4 how properties could be derived from functional

speci�cations. The task of identifying the properties to be tested can be di�-
cult, especially for programmers who have no background in formal program
veri�cation. Property-based testing can allow these programmers to become fa-
miliar with formal methods, while increasing their level of code understanding,
since reasoning about code properties forces us to reason at higher levels of ab-
straction than we do with traditional unit tests. For more advanced users in
formal veri�cation, property-based testing can be an excellent complement dur-
ing the formal proof process, allowing the discovery of incomplete or erroneous
understanding of logical conjectures or speci�cations. Before investing time in
interactively proving a non-trivial lemma or theorem, it is wise to test it.

2.3 Random and enumerative testing tools

Our goal is to adapt to OCaml and Why3 the two most basic and oldest tech-
niques of PBT, which are random and enumerative testing. The integration of
more recent PBT approaches, such as fuzzing [39], may be studied later. Below
we list some random and enumerative testing tools and we note the complemen-
tarity between the two approaches.

Random testing. Random testing consists of the automatic generation of ran-
dom test cases. The ancestor of property-based random testing is the QuickCheck
tool [11], originally written for the Haskell language. It has been adapted to
more than thirty languages (see, e.g., fast-check for JavaScript [19], jetCheck for
Java [28], PropEr for ERlang [42], QuickChick for Coq [45] and theft for C [51]).

There are several random testing tools for OCaml, e.g., the QuickCheck mod-
ule from JaneStreet's core_kernel framework [44], Kaputt [48], Crowbar [14] or
QCheck [43]. Among them, we choose to embed QCheck in our prototype. Used
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to test OCaml functions [34], QCheck provides many useful combinators to gen-
erate di�erent types of data, and also allows users to write their own generators,
especially for recursive types, algebraic types or tuples. QCheck also provides
the shrinking function, which reduces the size of the counterexample provided in
case of test failure. For example, if the tested property is the existence of a given
number in a list, it should return a list of length 1 containing only this number.
In addition, QCheck is used in several OCaml teaching courses [33,35,36].

Enumerative testing. Enumerative testing, also known as bounded exhaustive
testing (BET, for short), is used in a variety of property-based testing tools.
It consists of generating and testing all possible inputs at a size limit. It has
�rst been used to check properties of functional languages, as exempli�ed by
SmallCheck in Haskell [50]. Then, it has been adapted to several proof assistants,
e.g., to Isabelle in Quickcheck [9] and to Coq, in an extension of QuickChick
named CUT (Coq Unit Testing) [16]. In a former work we have initiated a BET
tool for WhyML [18].

Complementarity. The complementarity of random and enumerative testing
becomes clear after listing some advantages and drawbacks of both approaches.
Indeed, while an enumerative test is useful for small data sizes [17], the num-
ber of test cases often increases exponentially with the size limit, meaning that
the test becomes too slow, perhaps impossible, beyond a relatively small input
size. Random testing can be an alternative to check data with large size. Unfor-
tunately, random testing does not support existential properties: �the random
testing would rarely give useful information about an existential property: often
there is a unique witness and it is most unlikely to be selected at random� [47].
Enumerative testing, in contrast, is more likely to �nd this witness or prove its
absence below some size.

2.4 Where can properties come from?

Most PBT tools, starting with the pioneer QuickCheck for Haskell, generate tests
from user-provided properties, i.e., properties assumed to be handwritten by the
user. Can we further assist the user, with methods and tools that would auto-
matically generate executable properties from formal speci�cations? We brie�y
explore this question in the context of the OCaml and WhyML languages.

The answer depends on the language: In a programming language like OCaml,
a property can only be speci�ed as a function returning a Boolean value, be-
cause the language supports no syntactic entity for logical formulas. In a logical
framework such as Coq, an executable property could also be derived from a
conjecture � a not-yet-proved lemma or theorem � in order to detect errors in
it before attempting to prove it. In a language such as WhyML, for logical for-
mulas, programs and formal program speci�cations, a property can again be a
function returning a Boolean value or be derived from a conjecture, but it might
also be derived from programs and their formal speci�cations.
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Whatever the possible origin of a property in a given language, to be tested
it has to be turned into an executable function returning a Boolean value. This
implementation can be arbitrarily hard or impossible, since it is nothing less
than providing a decision procedure for the problem expressed by the property.
It is therefore restricted to the limits of decidability.

In the deductive program veri�cation method implemented in Why3, the
program and its formal speci�cation are transformed into veri�cation conditions

(VC, for short) by a veri�cation condition generator (VCGEN, for short). Then
external automated provers are called separately on each VC, to try to prove it.
Because these automated proof attempts can fail or take much time, it can be
useful to supplement them with PBT on these VC.

For the sake of simplicity we hereafter say that the properties under test are
�user-provided�, even if they may be produced mechanically by some executable

property generator, as detailed here. The design of such a tool is left as future
work. For now, AutoCheck helps �nd errors in user-provided properties, thus
playing a role similar to that of an automated prover in the deductive method.

3 Library of certi�ed enumeration programs

Some enumerative testing tools implement techniques such as constraint solving
or local choice with backtracking, either to enumerate data or to derive e�ec-
tive generators from data de�nitions (see [15, Sect. 7] for references). However,
these techniques may fail or provide too slow enumerations. For e�ciency and
generality, we consider enumerative tests with custom enumeration programs

(sometimes hereafter called generators), which are di�erent enumeration pro-
grams handwritten for each family of data of interest.

Con�dence in enumerative testing is increased if its enumeration programs
are certi�ed, ideally with formal proofs of their properties. Genestier et al. [23]
developed a �rst version of a library of enumeration programs in the C language,
named ENUM, whose properties were formally speci�ed with ACSL clauses and
proved with the Frama-C plugin WP for deductive veri�cation [13]. A large frag-
ment of this library has been adapted in WhyML and certi�ed with Why3 [18].
ENUM is freely distributed at https://github.com/alaingiorgetti/enum. Its pro-
grams implement algorithms that enumerate combinatorial structures [2] and
have various applications in combinatorics.

This section details the principles and contents of the library ENUM. All
enumeration programs implement the same interface and share the same speci�-
cation, both described in Sect. 3.1. As an illustrative example, the implementa-
tion and certi�cation of a generator of permutations are presented in Sect. 3.2.
Section 3.3 presents a simple way to de�ne a generator, by �ltering the output of
another generator. The certi�ed enumeration programs distributed to date are
described in Sect. 3.4. The integration of ENUM in AutoCheck is detailed in
Sect. 6.2.

https://github.com/alaingiorgetti/enum
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3.1 Generic interface and contract of enumeration programs

Since enumeration is a particular form of iteration, the enumeration programs
in ENUM are adaptations of the modular iterators de�ned by Filliâtre and
Pereira [20,21]. They modify a state, called a cursor, whose type is

type cursor = {

current: array int;

mutable new: bool;

}

in WhyML. The �eld current only stores the last data generated so far. For
simplicity, it is here a mutable array of integers, but the approach could be
extended to other datatypes. The Boolean �ag new is set to false if and only if
the data stored in the current �eld has already been exploited, for instance to
test a property.

Each generator is composed of two enumeration functions, declared and for-
mally speci�ed in WhyML in Listing 1.1. A constructor create_cursor initiates
the cursor with the �rst element of length n of the iteration. A function next

replaces the data in the cursor with the next one, if it exists. Otherwise, it sets
the �eld c.new to false.

1 val create_cursor (n: int) : cursor

2 requires { n ≥ 0 }

3 ensures { result.new → sound result }

4 ensures { result.new → min result.current }

5

6 val next (c: cursor) : unit

7 requires { sound c }

8 ensures { c.new → sound c }

9 ensures { c.new → lt (old c.current) c.current }

10 ensures { c.new → inc (old c.current) c.current }

11 ensures { not c.new → max (old c.current) }

Listing 1.1. Enumeration functions and their contracts.

Each generator is expected to satisfy the following behavioral properties.
Soundness is the property that each generated data satis�es the characteristics
(or data invariant) of its family, such as being a duplicate-free or a sorted array.
Completeness is the property that the program produces all existing data with
a given length, without omitting any of them. Generally, proving completeness
is more challenging than proving soundness. Therefore, we limit ourselves to
algorithms enumerating data in a prede�ned strict total order, hereafter denoted
by ≺, and we adopt two strategies. The �rst strategy is to specify completeness as
the conjunction of the following three properties: the property min that the �rst
generated data is the smallest one, the property max that the last generated data
is the largest one, and the incrementality property that each data a2 generated
from data a1 is the smallest data strictly greater than a1. In other words, no
sound data a3 is such that a1 ≺ a3 ≺ a2. When proving completeness seems
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too di�cult, the second strategy is to address the less challenging property �
named progress � that each generated data is strictly greater than the former
generated data. Since we assume that there are �nitely many data with each
length, progress entails termination of enumeration.

Listing 1.1 shows a formalization of these properties in WhyML, as contracts
(pre- and postconditions) for the enumeration functions. The precondition on
Line 2 speci�es that the length n of data should be a natural number. Most of the
properties are formalized by postconditions guarded by a condition on the value
of the cursor �eld new. Indeed the value of this Boolean �ag should be initialized
to true if and only if the set to be enumerated is not empty, and set to false as
soon as the set of data remaining to be enumerated becomes empty. This informal
speci�cation of the cursor �eld new could also be formalized as postconditions
for functions create_cursor and next. Since proving this additional contract can
be hard, we defer these speci�cations and proofs for future work.

We assume that a predicate

predicate sound (c: cursor)

encapsulates the data invariant. Then, a generator is sound if the �rst generated
data satis�es this predicate (postcondition on Line 3) and if the output of the
next function satis�es this predicate (postcondition on Line 8) whenever its input
does (precondition on Line 7). The progress property is formalized on Line 9, with
a predicate lt formalizing the strict total order ≺. (The expressions (old e) and
e in a function postcondition respectively denote the values of the expression e

before and after the function call.) The properties min, incrementality and max

(entailing the completeness property) are respectively formalized on Lines 4,
10 and 11, with predicates min, inc and max respectively formalizing minimality,
incrementality and maximality of the restriction of the order ≺ to data satisfying
the data invariant sound.

The library ENUM provides formal de�nitions (in WhyML) of these predi-
cates min, inc and max for any data invariant, when the order ≺ is the lexico-
graphic order induced on arrays of integers by the standard order < on integers.
Thus, the designer of a program enumerating a new family of integer arrays in
lexicographic order can re-use these de�nitions. She just has to implement the
enumeration functions and perform their deductive veri�cation, as detailed on
an example in Sect. 3.2.

The contracts of the enumeration functions are proved by a combination of
the following two deductive veri�cation techniques: Auto-active veri�cation [32]
consists in providing additional speci�cations, such as variants (for termination),
invariants, assertions and lemmas (for partial correctness), before running an
automated prover. Interactive veri�cation consists in reducing the proof goal
step by step, by applying rules � named tactics in Coq and transformations in
Why3.
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3.2 Certi�ed enumeration of permutations

This section presents an implementation and a deductive veri�cation of enumer-
ation functions for permutations on the set [0..n− 1] of �rst n natural numbers.
We encode such a permutation p by the integer array a of its images. It is the
array of length a.length = n such that a[i] = p(i) for 0 ≤ i < n. We characterize
these permutation arrays with the predicate

predicate is_permut (a: array int) = range a ∧ injective a

where (range a) speci�es that the values of array a are in [0...a.length − 1]
and (injective a) speci�es injectivity of the function represented by a, i.e.,
uniqueness of values in a.

Initialization. The smallest permutation in lexicographical order is the one
sorted in ascending order, i.e. the identity function. It is characterized on any
subarray a[l..u] by the predicate

predicate is_id_sub (a:array int) (l u:int) =

∀ i:int. l ≤ i < u → a[i] = i

which speci�es that each array value is its index. The function create_cursor

(Listing 1.2) returns a cursor initialized with the identity table and the new �eld
equal to true.

1 let create_cursor (n: int) : cursor

2 requires { n ≥ 0 }

3 ensures { result.new && sound result }

4 ensures { min result.current }

5 ensures { result.current.length = n }

6 = let p = make n 0 in

7 for i = 0 to n-1 do

8 invariant { 0 ≤ i ≤ n }

9 invariant { is_id_sub p 0 i }

10 p[i] ← i

11 done;

12 { current = p; new = true }

Listing 1.2. Initialization function for a generator of permutations.

The function �rst creates an array initialized to 0 (Line 6), then sets each array
value to its index (Line 10). The second invariant (Line 9) asserts that at each
loop iteration the array is the identity up to the current index. The postcondi-
tions ensure the soundness property (Line 3) and the minimality property (Line
4).
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Successor function. The function next computing the next permutation in
lexicographic order is presented in the Listing 1.3. Its contract speci�es the
soundness, progress and completeness properties by one precondition (line 2)
and four postconditions (lines 3-6).

For n = 2, repetitive calls to the function next, starting from the array 0 1 2
generated by the function create_cursor, generate (in place, in the cursor c) the
arrays 0 2 1 , 1 0 2 , 1 2 0 , 2 0 1 and 2 1 0 .

1 let next (c: cursor) : unit

2 requires { sound c }

3 ensures { sound c }

4 ensures { c.new → lt (old c.current) c.current }

5 ensures { c.new → inc (old c.current) c.current }

6 ensures { not c.new → max c.current }

7 =

8 let p = c.current in

9 let n = p.length in

10 label L in

11 if n ≤ 1 then

12 c.new ← false

13 else

14 let ref r = (n-2) in

15 while r ≥ 0 && p[r] > p[r+1] do

16 invariant { -1 ≤ r ≤ n-2 }

17 invariant { is_dec_sub p (r+1) n }

18 variant { r+1 }

19 r := r-1

20 done;

21 if r < 0 then

22 c.new ← false

23 else

24 let ref j = (n-1) in

25 while p[r] > p[j] do

26 invariant { r+1 ≤ j ≤ n-1 }

27 invariant { all_lt p r j } (* p[j+1..n-1] < p[r] *)

28 variant { j }

29 j := j-1

30 done;

31 swap p r j;

32 reverse p (r+1) n;

33 assert { lt_at (p at L) p r };

34 c.new ← true

Listing 1.3. Second enumeration function for a generator of permutations.

This function calls two auxiliary functions swap and reverse not reproduced
here. The function swap comes from Why3's standard library. The statement

(swap a i j)
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swaps the elements of the array a at the indices i and j. The function reverse

is such that (reverse a l u) reverses the subarray a[l..u− 1] of the array a.
In order to lighten the code, the variables p and n respectively represent the

current permutation and its size. If this size is 0 or 1, the current permutation
is the last permutation (c.new ← false). Otherwise, the program proceeds by
revising the su�x of the array p, as detailed in the following execution example.
Let p be the integer array

i 0 1 2 3 4 5
p[i] 4 1 2 5 3 0

storing the values of a permutation on [0..5], also noted p (p[i] = p(i) for i =
0, . . . , 5). The program transforms the array p in place, in order to turn it into the
smallest array p′ that is strictly greater than p (according to the lexicographic
order ≺) and represents a permutation p′. The �rst step of the program (lines
14-20) looks for the revision index r such that p and p′ have the largest common
pre�x p[0..r−1] = p′[0..r−1]. When p is a permutation, this index is the largest
index i such that p[i] is less than p[i+ 1]. In our example of permutation p, the
revision index is r = 2. The su�x is the subarray p[r..n − 1], from the revision
index to the end of the array. The second step of the program (lines 24-30)
determines the new value of p[r], such that the array p′ is greater than p, is
as small as possible and represents a permutation. This new value of p[r] is the
smallest value p[j] greater than p[r] and present in the subarray p[r+1..n−1] after
the revision index. In our example, it is the value p[4] = 3, for j = 4. The third
step (line 31) exchanges the values of p[r] and p[j], thanks to the function swap.
We obtain then the array p1 = 4 1 3 5 2 0 . The fourth step (line 32) computes
the smallest possible subarray p′[r + 1..n − 1]. For p′ to be a permutation, this
subarray must be the subarray p1[r + 1..n− 1] sorted in ascending order. Since
this subarray p1[r + 1..n − 1] is sorted in descending order, it is su�cient to
invert it with the function reverse, which produces the array p′ = 4 1 3 0 2 5 .
If a revision index was not found during the �rst step, then r is −1 and p is
the last permutation, which is indicated by assigning the value false to the new
�eld of the cursor (line 22).

The loop invariant on Line 17 states that the subarray p[r + 1..n − 1] is
decreasing. The loop invariant (all_lt p r j) on Line 27 states that all values
in the subarray p[j+1..n-1] are strictly lower than p[r]. Consequently, the value
p[j] after the loop is the smallest value greater than or equal to p[r] in the
subarray p[r + 1..n − 1], so the swap and the reverse after the loop minimally
increase the array, a key argument to prove the completeness property. In the
assertion on Line 33 (p at L) denotes the permutation p at the beginning of the
function (Line 10). The assertion states that the subarrays (p at L)[0..r-1] and
p[0..r-1] are equal and that (p at L)[r] < p[r].

With these annotations, auto-active veri�cation of the soundness, progress,
min and max properties succeeds. However an interactive proof in Coq was
required to prove the harder property of incrementality. An intermediate version
of this work, without the proof of completeness, has been presented during a
French conference [24].
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3.3 Enumeration by �ltering

Assume you already have implemented, speci�ed and certi�ed an enumeration
program for some family of data. Then an enumeration program for those data
that satisfy an additional constraint can easily be implemented by running your
program and selecting among its outputs those satisfying that constraint. Of
course, the more data are rejected, the less e�ective is the resulting program.
However, we have shown in a former work [18, Sect. 3.2] that this �ltering tech-
nique provides a speci�cation, an implementation and a certi�cation of the re-
sulting enumeration program almost for free.

3.4 Contents of ENUM 1.3

Table 1 presents the generators in ENUM 1.3 and some metrics about them.
The �rst column assigns a name to each generator. The number of lines of code
(resp. WhyML annotations) is recorded in the second (resp. third) column. The
fourth (resp. �fth) column gives the number of transformations (resp. lemmas)
needed to prove their soundness, progress and completeness properties. All of
them have been proved automatically with Why3 1.4.0 and the SMT solvers Alt-
Ergo 2.4.0, CVC4 1.6, Z3 4.7.1 and Z3 4.8.10, except the completeness property
for the generator of permutations, which required an interactive proof of two
lemmas with Coq 8.12.2.

Array family Code Speci�cation Transformations Lemmas

rgf 26 22 1 0
sorted 22 26 4 0
perm 42 86 5 16
barray 22 23 3 0
fact 22 20 1 0
endo 22 22 0 0

sorted ⊂ barray 24 15 0 0
inj ⊂ barray 24 16 0 0
surj ⊂ barray 34 25 0 0
comb ⊂ barray 17 10 0 0

Table 1. Generators in ENUM 1.3.

The �rst block of lines in Table 1 concerns e�ective enumeration programs.
The �rst four are adaptations of C++ programs proposed in [2]. The program
rgf (for �restricted growth function�) enumerates the arrays a of length n such
that a[0] = 0 and a[i] ≤ a[i−1]+1 for 1 ≤ i ≤ n−1. sorted generates all arrays
from {0, ..., n−1} to {0, ..., k−1} sorted in increasing order. perm enumerates the
permutations on {0, ..., n− 1}. barray (for �bounded array�) (resp. endo) (for
�endo-array�) enumerates the arrays of length n whose values are in {0, ..., k−1}
(resp. {0, ..., n− 1}). fact enumerates the n! factorial arrays [25] f of length n
such that 0 ≤ f [i] ≤ i for 1 ≤ i ≤ n− 1.
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The second block concerns enumeration programs obtained by �ltering. We
denote by Z ⊂ X an enumeration program of data Z implemented by �ltering
among more general data X. For instance, sorted ⊂ barray enumerates in-
creasing arrays �ltered among bounded arrays. By �ltering from barray we get
generators for the following data families: arrays sorted in increasing order, in-
jections from {0, ..., n−1} to {0, ..., k−1} for n ≤ k (inj ⊂ barray), surjections
from {0, ..., n−1} to {0, ..., k−1} for n ≥ k (surj ⊂ barray), and combinations
of n elements selected from k, which are encoded by arrays c of length n such
that 0 ≤ c[0] < . . .< c[n− 1] ≤ k − 1 (comb ⊂ barray).

4 AutoCheck

This section presents the principles, design choices and architecture of our pro-
totype AutoCheck for random and enumerative test data generation and test ex-
ecution. It is freely distributed at https://github.com/alaingiorgetti/autocheck.
The work presented in this paper corresponds to its pre-release 0.1.2. It contains
the most basic functionalities, and is intended to be completed collaboratively
in the coming years.

AutoCheck has been designed with simplicity (for users, but also for tool au-
thors) and usability as highest priority. Firstly, a Docker�le is provided, making
installation as simple as running a system command (provided). The command
builds a virtual machine (a container in docker terminology) in which the tool
can be executed safely for the host system. Secondly, many examples of tests
in OCaml (resp. WhyML) syntax are provided, in a single �le named TestEx-

amples.ml (resp. TestExamples.mlw). They are ordered by increasing complexity
and they cover all the functionalities of the prototype. Some of these examples
are documented in Sections 5 and 6. Moreover, syntaxes for OCaml and WhyML
random and enumerative tests have been chosen to be as similar as possible.

The prototype work�ow is depicted in Fig. 1. AutoCheck itself is represented
by the largest rectangle with rounded corners. Automatically generated �les are
represented by dashed rectangles. Each AutoCheck's input is represented by a
rectangle with square corners. It is either a WhyML or an OCaml �le (respec-
tively named Tests.mlw or Tests.ml in the �gure) containing the implementation
under test and a description of tests. Since the properties to be tested and
their tests respectively are ordinary OCaml or WhyML executable functions
and function calls, and since OCaml and WhyML applications can be made up
of multiple �les, the implementations under test, their properties and the tests
of these properties can be in a single �le or provided in multiple �les.

Each test in OCaml exploits one or more random or enumerative data genera-
tors, respectively de�ned in the third-party random testing tool QCheck (whose
main �le is QCheck.ml) and in our enumerative testing prototype for OCaml
(whose main �le is SCheck.ml). As detailed in Section 6.2 the latter encapsulates
several enumeration programs from release 1.3 of ENUM library. This OCaml
code, gathered in the �le Enum.ml, is automatically extracted by Why3 from
WhyML enumeration programs whose properties are proved with Why3, as de-

https://github.com/alaingiorgetti/autocheck
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tailed in Sect. 3. The �les QCheck.mlw and SCheck.mlw respectively de�ne ran-
dom and enumerative testing in WhyML, so that tests can be written in WhyML
(in Tests.mlw in the �gure) and their automated extraction with Why3 generates
tests in OCaml, exploiting the random and enumerative testing functionalities
for OCaml de�ned in QCheck.ml and SCheck.ml.

Test

verdicts

Tests.ml

Tests.mlw

QCheck.ml

QCheck.mlw

SCheck.ml

SCheck.mlw

Enumeration
programs
in WhyML,
proved with

Why3

Enum.ml

OCaml

Extracted tests
in OCaml �les

Why3 extraction

Why3
extraction

Fig. 1. AutoCheck work�ow.

AutoCheck 0.1.2 is developed for release 1.4.0 of Why3. It exploits QCheck

0.17 and the SMT solvers Alt-Ergo 2.4.0, CVC4 1.6, Z3 4.7.1 and Z3 4.8.10.

5 Random testing for Why3

This section is a tutorial on random testing for WhyML properties with Au-

toCheck. The pre-release presented in this paper provides random generators
for WhyML built-in types (unit, bool and Cartesian products) and some types
from Why3's standard library ((option 'a), (list 'a) and (array 'a), for any
type variable 'a). The tutorial presents examples of random tests for each type,
in increasing order of complexity. The tested properties are either lemmas in
Why3's standard library or relational properties between functions de�ned in
that library. In order to eliminate any risk of confusion between a function un-
der test returning a Boolean value and an executable property, the name of all
the user-de�ned executable properties presented below is su�xed by _prop.

5.1 Basic types and Cartesian products

Example for the unit type. The most elementary type in WhyML (and
OCaml) is unit. Its unique inhabitant is (). To illustrate counterexample gener-
ation, let us start with the false property �() is not an inhabitant of unit�. The
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property is implemented by the function is_unit_prop reproduced on Lines 1-2
in the Listing 1.4.

1 let is_unit_prop (x: unit) : bool

2 = match x with () → False end

3
4 let is_unit_test = QCheck_runner.run_tests (

5 Test.make QCheck.unit is_unit_prop)

Listing 1.4. Test of a false property about the unit type.

The test (on Lines 4-5) is built by the Test.make function, applied to a random
generator QCheck.unit of data with type unit, and to the executable property
is_unit_prop. The function QCheck_runner.run_tests implements test execution.

Assume that the code in Listing 1.4 is in the module RandomTests of the �le
TestExamples.mlw. Then, the command

bash ./why3_check.sh TestExamples RandomTests

executes all the tests de�ned in that module. Here, it generates the following
result:

--- Failure ----------------------------------------------

Test is_unit_prop failed (0 shrink steps):

()

---------------------------------------------------------

The test fails, as expected, and prints as counterexample the inhabitant () of
type unit.

Random tests for two Boolean functions. Let us now consider the type bool
for Booleans. The Boolean functions andb, orb, notb, xorb and implb, respectively
for conjunction, disjunction, negation, exclusive disjunction and implication on
Booleans are de�ned in Why3's standard library1. (This is not a language con-
straint, but, for clarity, the name of each Boolean function used or de�ned here
ends with a 'b', when it is not intended to be an executable property.)

1 let function equivb (x y : bool) : bool

2 =

3 match x with

4 | True → y

5 | False → notb y

6 end

Listing 1.5. A user-de�ned function for Boolean equivalence.

1 http://why3.lri.fr/stdlib/bool.html.

http://why3.lri.fr/stdlib/bool.html
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Let us implement a Boolean function for equivalence and test this new func-
tion. Function equivb in Listing 1.5 is implemented by using the Boolean func-
tion notb for negation. In order to check this implementation, let us now test
that this equivalence corresponds to the conjunction of two implications. This
relational property about the Boolean functions equivb, andb, implb and notb

is implemented by the function equivb_prop on Lines 1-7 in Listing 1.6, taking
a pair of Boolean values as input. In order to test this property (on Lines 11-
12 in Listing 1.6) we de�ne a random generator bool_pair_arbitrary of pairs of
Booleans (Listing 1.6, line 9) by specialization of a generic generator QCheck.pair
for the Cartesian product of two types, provided for WhyML by AutoCheck, by
extraction to a similar generator provided for OCaml by QCheck.

1 let equivb_prop (x : (bool,bool)) : bool

2 =

3 let (a,b) = x in

4 match andb (implb a b) (implb b a) with

5 | True → equivb a b

6 | False → notb (equivb a b)

7 end

8
9 let bool_pair_arbitrary = QCheck.pair QCheck.bool QCheck.bool

10
11 let equivb_test

12 = QCheck_runner.run_tests (Test.make bool_pair_arbitrary equivb_prop)

Listing 1.6. Test of the relational property equivb_prop about the function equivb.

The execution output

success (ran 1 tests)

indicates a successful test. The property has been tested by generating 100
test data and no counterexamples have been found. The complementary out-
put �ran 1 tests� between parentheses, also produced by the third-party tool
QCheck, can be confusing. It does not mean that the property has only been
tested once, but that only one property has been tested. The default number of
100 test data can be changed by using the function Test.make_count instead of
Test.make. For instance, the code

let equivb_test

= QCheck_runner.run_tests (

Test.make_count bool_pair_arbitrary equivb_prop 10000)

de�nes a test of the equivb_prop property by random generation of 10000 data.
As detailed in Listing 1.8, let us now use the new executable property equivb

to check the commutativity property of the orb function for disjunction, whose
de�nition is recalled in Listing 1.7.

let function orb (x y : bool) : bool =
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match x with

| False → y

| True → True

end

Listing 1.7. Function orb.

1 let orb_commut_prop (x: (bool,bool)) : bool

2 =

3 let (a,b) = x in equivb (orb a b) (orb b a)

4
5 let orb_commut_test = QCheck_runner.run_tests (

6 Test.make bool_pair_arbitrary orb_commut_prop)

Listing 1.8. Test of the property �orb is commutative�.

Examples of random tests with integers. Now let us consider the WhyML
type int for integers and its theory in Why3's standard library. Since WhyML
integers represent unlimited mathematical integers, they are usually extracted to
the arbitrary-precision integers of Zarith OCaml library [53]. However QCheck
for OCaml does not provide any support for arbitrary-precision integers, and
it is tricky to extend it to Zarith, because a choice must be made between
the types Zarith.t of arbitrary-precision integers and int of limited-precision
integers for each use of integers in this third-party code. Therefore, we have
chosen to extract WhyML integers to OCaml regular integers. Of course, this
semantical change may lead to contradictions between test and proof results.
Properties with integers can only be safely tested under the hypothesis that
there will be no arithmetic over�ow.

AutoCheck promotes to WhyML the three random generators of integers
de�ned in QCheck: a random generator int of OCaml integers, a generator
int_range of random values in some interval [a..b], and a generator int_bound of
random values in some interval [0..n]. The following example shows how using a
generator of limited integers increases the chances of �nding a counterexample.
Consider

lemma Abs_pos: ∀ x:int. abs x ≥ 0

about the abs function from Why3's standard library. The lemma claims that
the absolute value of a number is non-negative. Let us test a mutation of this
property, where the large order ≥ is replaced by the strict order >. The corre-
sponding lemma is on Line 1 in Listing 1.9. This false property is implemented
as shown on Line 3 and tested with two di�erent random generators as shown
on Lines 5-6 and 8-9 in Listing 1.9.

1 lemma Abs_gt0: ∀ x:int. abs x > 0

2
3 let wrong_abs_pos_prop (n: int) : bool = abs n > 0
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4
5 let wrong_abs_pos_test1 = QCheck_runner.run_tests (

6 Test.make QCheck.(int_range (-100000) 100000) wrong_abs_pos_prop)

7
8 let wrong_abs_pos_test2 = QCheck_runner.run_tests (

9 Test.make QCheck.(int_range (-10) 10) wrong_abs_pos_prop)

Listing 1.9. Test of a wrong property, mutation of lemma Abs_pos.

The �rst test (lines 5-6) uses the random integer generator QCheck.int_range
with a large interval, and thus passes almost always without �nding a coun-
terexample. The second test (lines 8-9) uses the same generator with a smaller
interval, and thus almost always fails. For example, when running several times,
the test failed 6 times out of 10 for the interval [−100..100], and only once out
of 10 for the interval [−1000..1000]. The duration of both tests is about half a
second.

Now, let us check

lemma Abs_le: ∀ x y:int. abs x ≤ y ↔ -y ≤ x ≤ y

fromWhy3's standard library. We turn it into an executable property abs_le_prop

(Listing 1.10, lines 1-4) which uses the previously de�ned Boolean equivalence
equivb. A generator of pairs of bounded integers is de�ned on Lines 6-9. This
makes the test on Lines 11-12 more readable.

1 let abs_le_prop (n: (int, int)) : bool

2 =

3 let (x,y) = n in

4 equivb (abs x ≤ y) (-y ≤ x ≤ y)

5
6 let pair_int_arbitrary =

7 QCheck.(pair

8 QCheck.(int_range (-100) 100)

9 QCheck.(int_range (-100) 100))

10
11 let abs_le_test = QCheck_runner.run_tests (

12 Test.make pair_int_arbitrary abs_le_prop)

Listing 1.10. Test of Lemma Abs_le.

5.2 Option type

The option type in WhyML is de�ned in Why3's standard library by a module
reproduced in Listing 1.11. In the type de�nition, 'a is a type variable, which
can be replaced by any type expression. Thus, we consider here the �rst example
of random testing with a polymorphic type.
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module Option

type option 'a = None | Some 'a

let predicate is_none (o: option 'a)

ensures { result ↔ o = None }

=

match o with None → true | Some _ → false end

end

Listing 1.11. De�nition of (option 'a) in Why3.

In WhyML a de�nition starting with let predicate simultaneously de�nes a log-
ical predicate (for speci�cations) and an executable property (for computations).
Thus, the function is_none implements (for free) the (false) property that �the
only inhabitant of type (option 'a) is None�.

let is_none_test = QCheck_runner.run_tests (

Test.make QCheck.(option QCheck.int) is_none)

Listing 1.12. Example of test for option type.

The listing 1.12 shows how to randomly test this property. For the option
type, AutoCheck promotes to WhyML the random generator (option _) de�ned
in QCheck. Inspection of its code reveals that it chooses the constructor None in
15% of the cases. When it chooses the constructor Some, it uses the generator
provided as parameter to derive data of type 'a. In this example, it uses a random
generator of integers named Qcheck.int.

--- Failure --------------------------------------------------------------------

Test is_none failed (63 shrink steps):

Some (0)

QCheck always �nds the counterexample Some (0). Any term of the form
Some (_) would be a counterexample for the wrong property claiming that the
type option is only inhabited by None, but here shrinking is in action and the
tool chooses the integer 0 instead of any integer.

5.3 Polymorphic lists

The basic theory of polymorphic lists in Why3's standard library contains the
de�nition

let predicate is_nil (l: list 'a)

ensures { result ↔ l = Nil }

=

match l with Nil → true | Cons _ _ → false end
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to characterize the empty list Nil. The false property that �the only inhabi-
tant of type (list 'a) is Nil� can be directly tested with is_nil, as shown in
Listing 1.13. Notice that WhyML lists are polymorphic but a generator of list
elements (here, QCheck.bool, for Booleans) has to be provided to the test gener-
ator, �xing the actual type of the generated lists.

1 let is_nil_test = QCheck_runner.run_tests (

2 Test.make QCheck.(list QCheck.bool) is_nil)

Listing 1.13. Test with is_nil function as property.

The test fails after reducing the counterexample to a list of length 1:

--- Failure ----------------------------------------------

Test is_nil failed (64 shrink steps):

[true]

---------------------------------------------------------

Let us now see how a property on lists can be constructed with the help
of the recursive function for_all from Why3's standard library reproduced in
Listing 1.14. This function returns true if and only if a given function p returns
true for all items in a given list l. So, it provides a Boolean implementation for
a family of universal properties over list items.

let rec function for_all (p: 'a → bool) (l: list 'a) : bool =

match l with

| Nil → true

| Cons x r → p x && for_all p r

end

Listing 1.14. Executable function for_all from Why3's standard library.

As an example, let us consider lists of integers and the parity property that �all
list items are even�. The parity of an integer is de�ned by the side-e�ect free
function is_even on Line 1 of Listing 1.15. The parity property is implemented
on Line 2 and tested on Lines 3-4.

1 let is_even (n: int) : bool = mod n 2 = 0

2 let for_all_prop (l: list int) : bool = for_all is_even l

3 let for_all_test = QCheck_runner.run_tests (

4 Test.make QCheck.(list QCheck.int) for_all_prop)

Listing 1.15. Parity of all items in a list of integers.

After execution, the test fails by returning a list of length 1 containing an odd
integer.
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5.4 Polymorphic arrays

The theory of polymorphic arrays in Why3's standard library speci�es as follows
a function make creating an array of length n whose elements are all initialized
with value v:

val function make (n: int) (v: 'a) : array 'a

requires { [@expl:array creation size] n ≥ 0 }

ensures { ∀ i:int. 0 ≤ i < n → result[i] = v }

ensures { result.length = n }

Its second postcondition can be tested with random lengths in [0..1000] as fol-
lows:

let length_make_prop (n: int) : bool =

length (Array.make n 0) = n

let length_make_test = QCheck_runner.run_tests (

Test.make QCheck.(int_bound 10000) length_make_prop)

This is an example of relational property about arrays whose test does not require
any array generator.

AutoCheck speci�es for WhyML the following two array generators:

val function array_of_size

(n: Gen.int) (a: arbitrary 'a) : arbitrary {array 'a}

val function array (a: arbitrary 'a) : arbitrary {array 'a}

They are extracted to the OCaml array generators

array_of_size : (RS.t → int) → 'a arbitrary → 'a array arbitrary

array : 'a arbitrary → 'a array arbitrary

The �rst one accepts as �rst parameter any random generator of integers for
the length of the generated arrays, whereas the second uses an implicit random
generator of natural numbers to choose this length.

6 Enumerative testing

The �rst pre-release of AutoCheck presented in this paper o�ers enumerative test-
ing for the OCaml types unit, bool, int, ('a option), (int array) and (int list),
and for the correspondingWhyML types unit, bool, int, (option 'a), (array int)

and (list int), where 'a is a type variable. Subsequent releases will moreover
cover Cartesian products, polymorphic lists and arrays and user-de�ned types,
which require a more substantial implementation e�ort.

Section 6.1 presents a basic example of an enumerative test for WhyML
properties. Section 6.2 details the integration in AutoCheck of the certi�ed enu-
meration programs presented in Sect. 3.
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6.1 Elementary example for WhyML

AutoCheck provides generators (SCheck.int_range a b) and (SCheck.int_bound n)

to enumerate integers in an interval [a..b] or [0..n]. They are used in Listing 1.16
to test by enumeration the wrong lemma shown on Line 1 in Listing 1.9. The
�rst (resp. second) test �nds the counterexample 0 in around 3 seconds (resp.
less than 1 second).

1 let wrong_abs_pos_test1 = SCheck_runner.run_tests (

2 Test.make SCheck.(int_range (-10000000) 10000000) wrong_abs_pos_prop)

3
4 let wrong_abs_pos_test2 = SCheck_runner.run_tests (

5 Test.make SCheck.(int_bound 10000) wrong_abs_pos_prop)

Listing 1.16. Enumerative tests of Lemma Abs_gt0.

We can notice that all these tests of this property take less than one second.
However, a precise interval and luck are required for the random test to �nd a
counterexample, whereas the enumerative test always �nds a counterexample,
even with a large interval of data. Thus, this example illustrates an advantage
of enumerative testing over random testing.

This example and the one in Listing 1.9 make it clear that the syntaxes of
random and enumerative tests have been made so similar that it is elementary
to turn a random test into an enumerative one, when a generator is available
for it. This integration of random and enumerative testing should be reinforced
on two points: instead of being de�ned in two modules presenting a similar
interface, both modules could clone a single module de�ning a more abstract
common signature. This would make it possible to mix random and enumerative
generation, e.g. have an array generator that uses an enumerator for its length,
up to a �xed size, and a random generator for the array elements.

6.2 Integration of certi�ed enumeration programs

Enumerating integer arrays is realistic and useful when their length and range
of values are not too large. It is typically the case when arrays represent com-
binatorial objects such as permutations. An exhaustive testing of some array
property, up to a given upper bound for array length, can also be considered as
a partial proof (by enumeration) of that property. In Sect. 3 we have presented
several e�ective programs enumerating arrays satisfying given invariants, such
as being sorted or duplicate-free, and their certi�cation with Why3. This section
presents their integration in AutoCheck.

Illustrative example. Our illustrative example is the function inverse_in_place

from the gallery of veri�ed WhyML programs2. Its speci�ed header is reproduced
in Listing 1.17. The contract speci�cation syntax (requires, ensures) is part of

2 http://toccata.lri.fr/gallery/inverse_in_place.en.html, April 30, 2021

http://toccata.lri.fr/gallery/inverse_in_place.en.html
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WhyML, its meaning is more detailed in Sect. 3.2. The predicate is_permutation
used in this contract is similar to the predicate is_permut presented in Sect. 3.2.
The function computes the inverse of its input array, assumed to be a permu-
tation, in place, i.e. in the array itself. It is a speci�cation and implementation
in WhyML, by M. Clochard, J.-C. Filliâtre and A. Paskevich, of an adaptation
to an array on [0..n − 1] of Algorithm I described by D. Knuth for an array on
[1..n] in Section 1.3.3, page 176 of The Art of Computer Programming, volume

1 [29].

let inverse_in_place (a: array int)

requires { is_permutation a }

ensures { is_permutation a }

ensures { ∀ i. 0 ≤ i < length a → (old a)[a[i]] = i }

Listing 1.17. Inversion of a permutation in place, function contract.

Here we do not intend to explain the code � it is well done in the provided ref-
erences � but to test by enumeration its following two properties, corresponding
to the two postconditions in Listing 1.17:

(P1) The function inverse_in_place preserves permutations.
(P2) The function inverse_in_place computes in place the inverse permutation

of its input.

Let us �rst observe that the deductive veri�cation of these properties is highly
non-trivial. First, the loop invariant proposed in the version of this example dis-
tributed with Why3 1.4.03 is made up of seven universal formulas and occupies
ten lines of code. Second, Why3's most advanced automated proof strategy,
named Auto level 3, does not overcome this proof. It is completed by an inter-
active proof step, applying the transformation split_goal_right. Thus, before
looking for an interactive proof of these properties, it is relevant to test them.

Enumerative test session. Let us now detail how to test (P1) by enumeration
with AutoCheck, and how it works internally. The postcondition (is_permutation a)
is not executable. In order to test it, the logical predicate is_permutation has to
be implemented by an executable function returning a Boolean value, such as
the following one:

let b_permutation (a: array int) : bool = b_range a && b_injective a

It implements the logical predicate is_permutation if the functions b_range and
b_injective respectively implement the predicates range and injective de�ned
in Sect. 3.2. We only detail the implementation b_range of the predicate

predicate range (a: array int) =

∀ i: int. 0 ≤ i < a.length → in_interval a[j] 0 n

3 In the folder https://gitlab.inria.fr/why3/why3/-/blob/1.4.0/examples.

https://gitlab.inria.fr/why3/why3/-/blob/1.4.0/examples
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A naive (i.e., non-optimized) implementation of the predicate injective is sim-
ilar. The de�nition

let predicate in_interval (x l u: int) = l ≤ x < u

is a speci�city of WhyML. It is indeed both a logical predicate and an executable
function, because it is also the case for the comparison operators ≤ and < on
integers. Thus, it can be used in a speci�cation and in a program.

The function b_range in Listing 1.18 implements the predicate range. The
universal quanti�cation is implemented by a for loop that stops at the �rst
array value not in the interval [0..n− 1]. The postcondition (on Line 2) ensures
that the function implements the logical predicate range: the function returns
true if and only if the predicate holds for the input array a.

1 let function b_range (a: array int) : bool

2 ensures { result ↔ range a }

3 =

4 let n = a.length in

5 for j = 0 to n - 1 do

6 invariant { range_sub a 0 j n }

7 if not (in_interval a[j] 0 n) then return false

8 done;

9 true

Listing 1.18. Implementation of the predicate range.

A loop invariant (on Line 6) helps to prove the postcondition. It uses the following
generalization of range which controls that each element of the subarray a[l..u−1]
is in the interval [0...b− 1]:

predicate range_sub (a: array int) (l u b: int) =

∀ i: int. l ≤ i < u → in_interval a[i] 0 b

The function b_permut allows us to de�ne an executable property for (P1),
as follows:

let inverse_in_place_permut_prop (a: array int) : bool

= let newa = copy a in inverse_in_place newa; b_permut newa

Then, an enumerative test of (P1) with all permutations of size 6 is

let inverse_in_place_permut_test

= SCheck_runner.run_tests (

Test.make SCheck.(permut_of_size 6) inverse_in_place_permut_prop)

An important limitation of Why3 at work here is that the second parameter of
Test.make, as a function, should be without side e�ect. So, a simpler version of
inverse_in_place_permut_prop, such as

let inverse_in_place_permut_prop (a: array int) : bool

= inverse_in_place a; b_permut a
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would not be accepted, since it modi�es the input array a.
The functions SCheck_runner.run_tests, Test.make and Scheck.permut_of_size

are automatically extracted into OCaml functions with the same names. The
OCaml function Test.make builds a test case by assembling a serial and an
executable property. A serial is an OCaml record grouping a printer of inte-
ger arrays, borrowed from the third-party tool QCheck, and a data generator.
Here, the latter is a generator of permutations from ENUM library, automati-
cally extracted with Why3 from a certi�ed generator of permutations written in
WhyML.

Each enumerative test is executed by the OCaml function SCheck_runner.run_tests,
which enumerates all data and checks the same property for each data, thanks to
the provided test oracle. Moreover, the execution counts the number of passing
data before failure. So, the output is either a counterexample or the number of
passed tests. For the present example the output is:

Test inverse_in_place_permut_prop succeeds (ran 720 tests)

Property (P2) is checked similarly.
Enumerative testing is suitable for arrays containing integers in a small in-

terval, as it is the case for permutations here. For larger integer ranges, random
generation is preferable.

7 Conclusion

In this work, we laid foundations for random and enumerative data generation
to test properties expressed in OCaml or WhyML language. These properties
are assumed to be provided as executable functions returning a Boolean value,
providing the test oracle. They can be de�ned by the user or produced by an
external tool.

We presented several design choices and illustrated them by an open-source
prototype, named AutoCheck. The �rst originality of our work is to propose for-
mal speci�cation and formal proofs for the data enumeration programs, thus ad-
dressing the certi�ability issue of automated testing tools. A second methodologi-
cal proposition is to lighten the development of the tool for the WhyML language,
by exploiting an existing extraction mechanism from WhyML to OCaml and a
third-party random testing tool for OCaml. Another contribution is a tutorial,
with elementary examples, that a beginner can follow to practice property-based
testing on the supported types. We also explained code certi�cation (Section 3)
and the tool's architecture (Section 4). This allows OCaml and WhyML devel-
opers to contribute to its extension.

A major direction of future work is to design and implement mechanisms to
automate the generation of properties to be tested, from formal not-yet-proved
lemmas or function contracts, when it is reasonably feasible. For function con-
tracts, this generation would work as a veri�cation condition generator in the
deductive veri�cation method, with the di�erence that the generated veri�cation
conditions would have to be executable. AutoCheck has to be extended before
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pretending to compete with industrial tools such as Quviq [46], the commer-
cial version of QuickCheck. The presented certi�cation of enumeration programs
should be extended to the entire code. Data enumeration should be generalized
to user-de�ned datatypes. The speci�cation and certi�cation of more e�cient
enumeration programs may also be explored. Another direction could be to in-
tegrate fuzzing, which has become very popular for property testing [27,1] and
even coverage-guided fuzzing [39] which makes random testing more e�cient.
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