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Gaël Chevallier

Institut FEMTO-ST (UMR CNRS 6174), Université Bourgogne Franche-Comté, Département Mécanique
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Abstract

The interpretation of unlabeled acoustic emission (AE) data classically relies on general-purpose
clustering methods. While several criteria have been used in the past to select the hyperparame-
ters of those algorithms, few studies have paid attention to the development of dedicated objective
functions in clustering methods able to cope with the specificities of AE data. We investigate
how to explicitly represent clusters onsets in mixture models in general, and in Gaussian Mixture
Models (GMM) in particular. We propose the first clustering method able to provide, through
parameters estimated by an expectation-maximization procedure, information about when clus-
ters occur (onsets), how they grow (kinetics) and their level of activation through time. This
new objective function accommodates continuous timestamps of AE signals and, thus, their or-
der of occurrence. The method, called GMMSEQ, is experimentally validated to characterize the
loosening phenomenon in bolted structure under vibrations. A comparison with four standard clus-
tering methods on raw streaming data from five experimental campaigns shows that GMMSEQ not
only provides useful qualitative information about the timeline of clusters, but also shows better
performance in terms of cluster characterization.
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1. Introduction

ASTM standard E1316 [1, 2] defines Acoustic Emission (AE) as the detection of the subnano-
metric displacements of the surface of a material induced by the propagation of an elastic wave
generated by a sudden and permanent change in the material integrity. This capability makes the
AE technique particularly relevant to gain insights into the behavior of a material, a structure or5

an equipment under usage [3, 4, 5, 6, 7, 8] and accounts for its wide use in applications related to
material testing, Structural Health Monitoring (SHM) and process monitoring and control.

Original AE data take the form of a data stream recorded by sensors attached onto a structure
(Figure 1). The sensors, converting the subnanometric displacements into voltage signals, have to
be read continuously in order to catch all events originating from the material. The data stream is
then segmented using a wave-picking algorithm with the aim to detect damage-related (non-noise)
AE signals [9, 10, 11, 12, 13, 14]. In feature-based interpretation of AE signals, a feature extraction
step is performed in which AE signals are represented in a common feature space. The set of
feature vectors represents an AE data set for a given experiment and is generally stored in an
N × d feature matrix

X = [xᵀ
1, . . . ,x

ᵀ
i , . . . ,x

ᵀ
N ] (1)

where xᵀ
i ∈ Rd is the transposed feature vector computed from the i-th AE signal. The timestamps

of AE signals are their instants of occurrence and are denoted as ti with

0 = t0 < t1 < · · · < ti < · · · < tN = T, (2)

where T is the data stream duration. AE data have several special characteristics in terms of
data processing [15]; in particular timestamps are continuous and unequally-spaced in time, i.e., we
generally have

ti − ti−1
tj − tj−1

6= 1. (3)

For a given AE signal, the d features generally belong to a standard list of AE features, some
of which are listed, for example, in [16]. In the sequel, we suppose that the features have been
extracted using the algorithm introduced in [13], which implements in MATLAB® common features10

available in the Mistras AEWin® software. Unsupervised feature selection is not tackled in this
paper. The reader interested in this topics can refer, for instance, to the aforementioned references
and [17, 18, 19, 20].

Since a huge amount1 of AE signals can be detected in a data stream, it is difficult, except
for specific configurations, to know the ground truth for a sufficient large amount of AE signals.15

Lack of knowledge about the source of AE signals prevents us from using supervised learning
methods for AE data interpretation, or even for anomaly detection when “normal” condition data
are available [22, 23]. Unsupervised learning, particularly based on clustering, is generally used to
extract information from AE data. This is the main scope of the present work.

Clustering methods have been applied for decades to interpret AE data [24, 25, 26]. The20

most commonly used methods are the K-means [27, 28], the fuzzy C-means (FCM) [29, 30], the
Gustafson-Kessel (GK) algorithm [31, 21] and Gaussian Mixture Models (GMM) [32, 33]. A clus-
tering method computes membership degrees of feature vectors to clusters; a hard partition is then

1The number of AE signals depends on the materials and the type of loading. For example, hundreds of thousands
of signals were detected for composite materials during quasi-static tests reported in [21].
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Figure 1: Proposed methodology and illustration on a real data stream extracted from one of the campaigns.

obtained by assigning each vector to its maximum-membership cluster. Based on this partition,
data interpretation is generally necessary to determine the correspondence between clusters and25

damages. From a statistical point of view, the criteria used in classical clustering methods rely on
the assumption that AE signals are independent and identically distributed (iid). Therefore, the
partition, after applying one of those methods, does not depend on the ordering. From a physical
point of view, this seems counterintuitive in most of AE-related applications since the progression
of a damage type is known to depend on the preceding damage states and damage accumulation30

[34, 35]. To cope with this problem, we need a clustering method taking the time distribution
of AE signals into account. Note that “time” can be replaced by any monotonically increasing
measure such as cumulative loading or cycles.

Clustering methods dedicated to time-series have been developed in the past [36, 37] but only a
few of them are able to manage continuous and uneven timestamps as shown in the recent review35

[38]. One of the first attempts to modify standard approaches (such as K-means, FCM or GMM)
so as to accommodate temporal data with such timestamps was presented in [39]. The authors
modeled the time series as piece-wise linear functions and proposed a distance measure between
slopes. Using this distance, they derived a modified version of the FCM method.

Clustering methods describe a data set through a set of parameters such as, for example,40

the cluster centers in the K-means algorithm or the means, covariance matrices and proportions
in Gaussian Mixture Models. Parameters are identified from data by iteratively optimizing an
objective function that is an explicit function of these parameters. Additionally, clustering methods
also depend on hyperparameters such as, e.g. the number of clusters, which cannot be optimized
in this way. For hyperparameters, we need to perform a grid search by varying them and evaluate45

their impact on the clustering result. We also need a selection criterion (for determining, e.g., the
optimal number of clusters). For each set of hyperparameter values, the objective function is first
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optimized to estimate the parameters of the clustering method. Then, the best configuration is
selected. The learning process may, thus, be time-consuming.

In AE, hyperparameters are determined, in the majority of cases, by computing a criterion such50

as Davies-Bouldin or Silhouette, which focus on the shape of clusters. As a consequence, to be
selected, hyperparameters must lead to compact and well-separated clusters in the feature space
[33, 40, 41, 42, 43]. This is the definition of natural clusters often used in AE, originally based on
[44]. An alternative is to find hyperparameters that lead to clusters characterized by onsets which
are well distributed in time or load. This approach was developed recently because some authors55

found limitations in shape-based criteria for interpreting AE data [45, 21, 46, 47, 48, 49, 15, 50].
However, to the best of our knowledge, the onset times of clusters have not been considered in
an objective function so far. Taking into account onset times for clustering AE data is the main
objective of the present work. The proposed clustering method, called GMMSEQ, treats onsets as
parameters that can be optimized together with the other cluster parameters directly from data,60

which was not possible before.
GMMSEQ relies on a modification of the original GMM to account for the fact that AE signals

are indexed by continuous timestamps. More specifically, the proportions in the mixture are
assumed to vary in time according to a model of evolution based on sigmoid functions (Figure 1).
Each sigmoid function allows us to represent:65

• The level of activation of a given damage related to the cumulative number of signals gener-
ated by this damage;

• The growth rate of the damage driven by the slope of the sigmoid function at the origin and
related to the kinetics of the damage;

• The instant of the damage onset.70

Therefore, this new clustering method makes it possible to identify when a damage first occurs
(onset), how it grows (kinetics) and how it accumulates (cluster progression). The method makes a
step beyond the standard approach to AE analysis by characterizing damage progression through
three parameters estimated from the data.

The ability to represent onset times, kinetics and activation level makes this approach relevant75

for applications in which the chronology, sequence or timeline are of key importance. For example,
Sawan et al. argued for an AE analysis approach that seeks to separate observations into the
greatest number of clusters with distinct evolution behavior. For that, they used a GMM in its
original form and represented their results by means of a cumulated number of hits per cluster.
However, the analysis is subjective without a proper identification of parameters related to the80

evolution, which is a common problem in AE analysis based on damage progression. In a previous
paper [21], a criterion was proposed to identify clusters with different proportions and the authors
experimentally observed that the timeline suggested by the clusters (obtained by different methods)
was improved compared to standard shape-based criteria.

Another advantage of GMMSEQ is that the compactness and separability of clusters in the85

feature space is still of primary importance because it is managed explicitly using a mixture model
with the possibility to adapt the distribution to the data. While being developed to take AE data
characteristics into account, this new clustering method can be applied to other temporal data
for which onsets, growths and cumulative progression of clusters are relevant to the analysis. The
proposed optimization procedure assumes that all data are available at once (offline analysis).90
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The model and the estimation algorithm are presented in Section 2. The method is then
illustrated in Section 3 using simulated and real data sets. Data sets and codes are shared on
Dataverse [51] and Github2.

2. Gaussian Mixture Model with sequentially appearing clusters (GMMSEQ)

The GMMSEQ method introduced in this paper is based on a GMM with time-varying pro-95

portions. The model is described in Section 2.1, and parameter estimation is addressed in Section
2.2.

2.1. Model

Gaussian mixture models. In a mixture model, the data are supposed to follow a probability
distribution defined as a weighted sum of K distributions:

p(xi;θ) =
K∑
k=1

πkg(xi;θ), (4)

where πk denotes the proportion of component k and g can be, for example, a Gaussian, Gamma
or Student-t probability density function (pdf); the vector of all parameters is represented by θ. In
AE data clustering, GMM’s [32] have been widely used [33, 52, 53, 54, 55, 23] and are considered
in the following developments. Each component in the mixture (4) is then a Gaussian pdf:

φ(xi;µk,Σk) =
1√

(2π)d|Σk|
exp

(
−1

2
(xi − µk)TΣk

−1(xi − µk)
)
, (5)

where µk and Σk are, respectively, the mean and covariance matrix of component k.
After observing a realization x1, . . . ,xN from an iid sample, the likelihood function is

L(θ;x1, . . . ,xN ) =
N∏
i=1

K∑
k=1

πkφ(xi;µk,Σk), (6)

where θ = (µ1, . . . ,µK ,Σ1, . . . ,ΣK , π1, . . . , πK−1). The maximum likelihood estimates (MLE’s)100

cannot be computed in closed form and are usually computed numerically using the Expectation-
Maximization (EM) algorithm [56].

New model. We propose to modify (6) in order to incorporate a time-dependency of the data
through the proportions:

p(x1, . . . ,xN ;θ) =
N∏
i=1

K∑
k=1

πikφ(xi;µk,Σk), (7)

where the bold subscript in πik emphasizes the difference with (6), i.e., the proportion of each
cluster k are now dependent on the timestamps ti through additional variables αik:

πik =
αik∑K
`=1 αi`

, k = 1, . . . ,K, (8)

2The project is publicly available at https://github.com/emmanuelramasso/MIXMOD_SEQUENTIAL.
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where αi1 = 1 for i = 1, . . . , N and

αik =
βk

1 + exp[−γk(ti − τk)]
, k = 2, . . . ,K, i = 1, . . . , N. (9)

Parameters τk, βk and γk in the logistic (sigmoid) activation functions (9) must satisfy the following
constraints:

0 ≤ τk ≤ T, βk ≥ 0, γk ≥ 0 (10)

for k = 2, . . . ,K. As illustrated in Figure 1 (bottom-left), the degree of activation αik of the
k-th cluster depends on the real timestamps of AE signals through a sigmoid function delayed
by τk, with upper limit βk and slope γk. The delay τk represents the onset time of cluster k.105

The proportions πik in (8) are equal to the normalized activation degrees. An example of how
proportions can vary in time is shown in Figure 5b.

The apparently simple modification of GMM brought about by making the proportions in (6)
dependent on time allows us to tackle the problem mentioned in Section 2, concerning the inability
of standard approaches to manage continuous and irregularly spaced-in-time timestamps. By110

associating a sigmoid function to each cluster, GMMSEQ is, to our knowledge, the first clustering
method dedicated to AE data able to estimate, directly from data, parameters related onsets,
growth and kinetics of clusters. Its performance will be studied in Section 3. Parameter estimation
in this new model requires a specific, and more complex EM algorithm, described in the next
section.115

2.2. Parameter estimation

Maximum-likelihood parameter estimation in GMM’s is usually carried out using the EM al-
gorithm [57], an approach that will also be used here. However, there is no closed-form expression
to update parameters τk, βk and γk in the M-step, which makes it necessary to use a gradient
algorithm. The algorithm is described in detail below.120

Objective function. The first step is to write down the complete-data log-likelihood function for
our model:

`c(θ) =

N∑
i=1

K∑
k=1

yik log πik + yik log φ(xi;µk,Σk), (11)

where θ = ({µk,Σk}Kk=1, {τk, βk, γk}Kk=2) is the parameter vector, and the yik’s are binary cluster-
membership indicator variables such that yik = 1 if observation i belongs to k, and yik = 0
otherwise. Here, variables yik are missing. At each iteration q of the EM algorithm, we thus
replace `c by its conditional expectation given the observed data, which yields the so-called auxiliary
function Q [56]:

Q(θ,θ(q)) =

N∑
i=1

K∑
k=1

y
(q)
ik log πik︸ ︷︷ ︸
Q1

+
N∑
i=1

K∑
k=1

y
(q)
ik log φ(xxxi;µk,Σk)︸ ︷︷ ︸

Q2

, (12)

with y
(q)
ik = Eθ(q) [Yik | xxxi].

We can observe that the term Q2 on right-hand side of (12) is identical to that of the auxiliary
function for a standard GMM (6) with fixed proportions, for which parameter updates that max-
imizes Q(θ,θ(q)) are known (and recalled below). The difference between our EM procedure and
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the usual one for GMM’s thus resides in the maximization of the first term Q1 with respect to the125

parameters defining the proportions πik. This procedure is detailed below.

E-step. In the E-step, we compute the conditional expectations y
(q)
tk from the current parameter

values as [32]:

y
(q)
ik =

φ(xxxi;µ
(q)
k ,Σ

(q)
k )π

(q)
ik∑K

l=1 φ(xxxi;µ
(q)
l ,Σ

(q)
l )π

(q)
il

(13)

with φ given by (5).

M-step for µk and Σk. In the M-step, parameters µk and Σk are first updated by maximizing Q2.
The update equations are [32]:

µ
(q+1)
k =

1

Nk

∑
i

y
(q)
ik xxxi, (14)

with Nk =
∑

i y
(q)
ik , and

Σ
(q+1)
k =

1

Nk

∑
i

y
(q)
ik (xxxi − µ(q+1)

k )(xxxi − µ(q+1)
k )ᵀ. (15)

M-step for τk, βk and γk. Since no explicit update equations for parameters τk, βk and γk can
be obtained, they need to be updated by an iterative optimization procedure. To enforce the
constraints (10), we first introduce the following auxiliary variables:

τk =
T

1 + exp(−ξk)
, βk = b2k, γk = g2k. (16)

The calculation of the derivatives of Q1 with respect to ξk, bk and gk is detailed in Appendix A.
Using the gradient, we can then use any unconstrained nonlinear optimization procedure. In the
experiments reported in Section 3, we used a trust region algorithm implemented in the MATLAB130

2020b Optimization toolbox. Several schemes were implemented and tested, included a Generalized
EM [58] and various optimization algorithms. The trust region method globally provided the best
results.

2.2.1. Regularisation of the τk’s

In the considered application related to acoustic emission data clustering, physical knowledge
can be available suggesting when, in the timeline of a test, some damages must have occurred. This
information can be provided, for example, as prior values τpriork for τk (for some or all k depending
on the application). In this case, the auxiliary function (12) can be replaced by a regularised
version

Qr(θ,θ
(q)) = Q(θ,θ(q))− λ‖τ − τ prior‖22, (17)

where λ is a regularization coefficient, ‖ · ‖ is the L2 norm and τ is the vector of τk’s for which a135

prior value is available. In that case, the updating is modified for τ according to Equation A.8.

3. Experiments

The GMMSEQ method is first illustrated on a toy data set in Section 3.1. It is then applied to
real experimental data from a mechanical system in Section 3.2.
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3.1. Simulated data set140

Model for data generation. A simulated data set was generated from the following model with
K = 4 clusters:

µ1 =
[
1 1

]
, µ2 =

[
2 3

]
, µ3 =

[
3 5

]
, µ4 =

[
5 6

]
,

and

Σ1 =

[
0.3 0.2
0.2 0.2

]
, Σ2 =

[
0.3 0.2
0.2 0.2

]
, Σ3 =

[
0.2 0.1
0.1 0.3

]
, Σ4 =

[
0.2 0.1
0.1 0.2

]
.

The numbers of observations in the four clusters were set to [1000, 1000, 3000, 1000] and the times-
tamps were generated randomly from a uniform distribution

ti = ti−1 + U[0,1],

starting from t1 = 0. The value of T is thus maxi ti and the length of the data is equal to 6000.
The parameters defining the time-varying proportions were set as follows:

β =
[
2.72 10.1 30.2

]
, γ =

[
0.009 0.015 0.012

]
,

and the τk were initialized to the time stamps ti with i ∈ {488, 1990, 2472}.
Because the proportions in this model vary with time, the mixture density also depends on

time. Contours of the mixture density are depicted in Figure 2 at four different time steps showing
the gradual emergence of the four clusters. Figure 3 shows a contour plot of the likelihood function
(assuming the correct number of clusters) as a function of β4 and γ4, with the other parameters145

fixed at their maximum likelihood estimates.

Model selection. In practice, we need a criterion allowing us to select the number of clusters
automatically. For mixture models, common choices are the Akaike Information Criterion (AIC),
the Bayesian Information Criterion (BIC) and the Integrated Completed Likelihood (ICL) [59, 60].
We used these three criteria to select the best GMMSEQ model for the simulated data. For each150

run, the model was initialized by:

1. A standard GMM (with a Matlab 2020b implementation provided in the Statistics and Ma-
chine Learning Toolbox);

2. The K-means algorithm (provided in the same toolbox as for GMM);

3. A segmentation of the data into K blocks of the same size and a Gaussian distribution fitted155

to each block.

For the three types of initialization, 10 runs were performed for a number of clusters varying from
2 to 10. After convergence, for each number of clusters, the best run was selected according to
the value of likelihood computed by (7). The values of AIC, BIC and ICL were finally computed
for each model. The criteria are plotted against the number K of clusters in Figure 4. AIC shows160

an evolution presenting an “elbow” from which the number of clusters can be chosen, while BIC
and ICL have a minimum for the correct number of clusters (K = 4). For ICL, depending on
the runs, the evolution can show several local minima as in the figure or a single one, but the
global minimum is always located at the correct value. For different runs, BIC and AIC showed
a consistent elbow-shaped behavior with a minimum that can be more or less pronounced for the165

correct number of clusters. This study with simulated data suggests that the three criteria have
the ability to provide the correct number of clusters.
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Figure 2: Contours of the mixture density at four successive time steps. The corresponding proportions πik correspond
to the locations of the square markers in Figure 5.

Figure 3: Contours of the log-likelihood in the plane (β4, γ4), the other parameters being fixed to their maximum
likelihood estimates.
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Figure 4: AIC, BIC and ICL of GMMSEQ models with different numbers of clusters for the simulated data.

Onset estimation. In the introduction, we motivated this work by the need to process data with
continuous timestamps and we proposed a model including an estimation of the onsets of clusters.
The time-varying proportions (πik) are represented in Figure 5 using the true values of parameters,170

the estimated ones, and the values used in the initialization of GMMSEQ. We can observe that the
estimated proportions (β), kinetics parameter (γ) and onsets (τ ) are very close to the true ones,
validating the identification procedure in GMMSEQ.

3.2. Real data

Data set description. The benchmark data set ORION-AE [51, 61] is used in this section to demon-175

strate the performance of the GMMSEQ method. The experiments were designed to reproduce the
loosening phenomenon observed in aeronautics, automotive or civil engineering structures where
parts are assembled together by means of bolted joints (Figure 6). The bolts can, indeed, be
subject to self-loosening under vibrations. Consequently, it is of paramount importance to develop
sensing strategies and algorithms for early loosening estimation [62].180

The ORION-AE data set is composed of five parts collected during five measurement campaigns
denoted as B, C, D, E and F in the sequel. ORION is a simple jointed structure made of two plates
manufactured in a 2024 aluminium alloy, linked together by three bolts. The contact between the
plates is done through machined overlays. The contact patches have an area of 12× 12 mm2 and
are 2 mm thick. The structure was submitted to a 100 Hz harmonic excitation force. The load185

was applied using a Tyra electromagnetic shaker, which can deliver a 200 N force. The force was
measured using a PCB piezoelectric load cell and the vibration level was determined next to the
end of the specimen using a Polytec laser vibrometer.

Seven tightening levels were applied on the upper bolt. The tightening was first set to 60 cNm
with a torque screwdriver. After a 10 seconds vibration test, the shaker was stopped and this190

vibration test was repeated after a torque modification at 50 cNm. Torque modifications at 40, 30,
20, 10 and 5 cNm were then applied. Note that, for campaign C, the level 20 cNm is missing. All
dimensions are detailed in Figure 6 to enable readers to reproduce the test.
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(b) True values.
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(c) Estimated values.

Figure 5: Evolution of the proportions πik as a function of time (in arbitrary units and was generated randomly as
explained in the text). Squared-shape markers represent the values used in Figure 2.
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Figure 6: Setup description: part dimensions, sensors and bolts position (from [61]).

For each campaign, four sensors were used: a laser vibrometer and three different AE sensors
(micro-200-HF, micro-80 and the F50A from Euro-Physical Acoustics) with various frequency195

bands were attached onto the lower plate. All data were sampled at 5 MHz. The velocimeter was
used to control the amplitude of the displacement of the top of the upper beam so that it remains
constant for all tightening levels. During vibrations, stick-slip transitions or shocks in the interface
generate small AE events which are dependent on bolt tightening. These sources of AE signals
have to be detected and identified from the data stream, which constitutes the challenge.200

AE data sets are generally unlabeled because it is not possible to identify the AE source with
certainty for all AE signals. However, the ORION-AE data set contains raw data for which the
tightening levels are known. Therefore, it represents a good case study for performance bench-
marking of clustering methods like GMMSEQ or existing methods like GMM, K-means, hierarchical
clustering (HC) and Gustafson-Kessel (GK) algorithms. The data set is presented in a companion205

paper [61] with illustrations of raw data and signal processing for different campaigns. Figure 7
depicts the data in campaign F where the green curve represents the raw AE data (as used in this
study). The stairstep curve in blue represents the tightening levels. The red curve corresponds to
the vibrometer data (reflecting harmonic vibration at 100 Hz with displacement control).

Signal processing. When using a feature-based clustering algorithm like GMMSEQ, the raw AE data210

must be first preprocessed by a hit detection procedure. This procedure is common to most AE data
analyses and therefore, it is not often described in publications because commercial softwares are
often used. In this work, the method used was described in [13]. It is summarized in Appendix B
and some illustrations of this method applied to the ORION-AE data can also be found in [61]. The
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Figure 7: Tightening levels, acoustic emission and laser vibrometer data superimposed for measurements “F” and
sensor micro-200-HF. The x-axis is here represented using the time of test (about 70 s), starting from 60 cNm from
the left (around between t ∈ [0, 10] s) to 5 cNm on the right (from t > 60 s).

method provides the following features, which are commonly used in AE literature [63, 40, 13, 16]:215

Rise time, counts, PAC-energy, duration, amplitude, average frequency, RMS, average signal level,
counts to peak, reverberation frequency, initiation frequency, signal strength, absolute energy,
partial power in the intervals [0, 20, 100, 200, 300, 400, 500, 600, 800, 1000] kHz, frequency centroid,
peak frequency, weighted peak frequency. To this set of features were added the following ones:
the Renyi number calculated from the scalogram as in [64] using a Morlet wavelet, as well as the220

frequency of the maximum of energy in the scalogram3. The set of feature vectors obtained in each
campaign were then postfiltered using a 31-sample moving median applied to each dimension of the
resulting feature matrix in order to ensure temporal coherence. Principal Components Analysis
(PCA) was then used to extract the n first components explaining 99% of the variance. The value
of n varies for the different campaigns as shown in Table 1, where sensor micro-200-HF was used.225

Figure 8 displays the first two components for campaign E and sensor micro-200-HF, where the
colors are related to the level of loosening.

3.3. Results

We ran the algorithm 10 times for each of the same three initialization methods mentioned in
Section 3.1. The number of clusters was varied from 4 to 14. For each number of clusters, the230

parameter estimates corresponding to the highest likelihood were selected.
In Section 1, we discussed the importance of the onsets in the analysis of AE data set (repre-

sented by τk in GMMSEQ). These values were stacked for each campaign, independently of the type
of initialization or the number of clusters. Figure 9 shows how to interpret, in terms ot timeline,

3The feature matrices for all campaigns are available at https://drive.google.com/drive/folders/

1H413RxYu4ya7YMEgF_lTh_fHr7flvvOO?usp=sharing.
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Table 1: Some statistics about the feature extraction step (sensor µ200HF ).

Campaign B C D E F

# of tightening levels 7 6 7 7 7
# features before PCA 32 32 32 32 32
# features after PCA 16 17 16 23 25
Total # of signals 10, 866 9, 461 9, 285 15, 628 17, 810
Average # of signals per period 1.55 1.57 1.33 2.23 2.54
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Figure 8: First two principal components of campaign E data.

Figures 10 to 14 representing, in blue, the normalised histograms of onsets estimated by GMMSEQ235

for each campaign. The dashed lines represent the instant when the tightening level was changed.
These lines are separated by about 10 s (duration of each period) for each level; therefore, the
horizontal axis, which represents time, can also be related to the tightening level: 0 s to 10 s
corresponding to 60 cNm, 10 s to 20 s corresponding to 50 cNm, and so on until 60 to 70 s for 5
cNm (see Figure 9). The red bars represent the histograms when a prior on onsets is integrated240

through (17) for K=7 clusters.
In Figures 10 to 14, a peak in the histogram means that several models provided similar values

for τk. Note that there are, for the blue bars,
∑14

k=4 k = 99 estimates of the τk values, whereas
there are K = 7 values of τk for the red bars. In the latter case, we can observe that the prior
on onsets allows us to obtain values of τk approximately equal to the ground truth (dashed lines)245

for all data sets and all tightening levels. The red bars depict a uniform distribution since the τk
values are all different.

For the purely unsupervised setting (in blue), we can observe that the values of τk with the
highest probability generally correspond to the instants when a change was made on the tightening
level. This observation shows that GMMSEQ is able to discover the levels of tightening from the250

features. For each campaign we can make the following comments, remembering that the levels
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Figure 9: Timeline of tightening levels to interpret the next figures.
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Figure 10: Campaign B: (blue) Histogram of τk estimates for the three initialization methods and K ranging from
4 to 14, and (red) histogram with prior on onsets with regularization.

were approximately equal to 60 (cluster 1), 50 (cluster 2), 40 (cluster 3), 30 (cluster 4), 20 (cluster
5), 10 (cluster 6) and 5 cNm (cluster 7):

• Campaign B (Figure 10): Levels 60, 40, 30, 20 are precisely detected with a clear peak
centered at the correct place. Levels 50, 10 and 5 shows less noticeable peaks but the bins in255

the histogram show modes that are well positioned around the expected positions.

• Campaign C (Figure 11): For this campaign, a level is missing, which explains why there is
no peak around 5 cNm (right-hand side); the levels were indeed shifted by one level in the
figure due to one missing level. Figure 11 shows clear peaks at the correct positions. There
are also two additional peaks at 25s (30 cNm) and (5 cNm), which may be due to a change260

in the level during vibration tests.

• Campaigns D (Figure 12) and E (Figure 13): All levels are precisely detected with a clear
peak centered at the correct location.

• Campaign F (Figure 14): Levels 60, 50, 40, 20, 10, 5 are precisely detected with a clear peak
(or two close peaks) centered at the correct location. For level 30 the peak is less noticeable.265

Some additional peaks appear around 5 s (middle of the period of 60 cNm) and 43 s (20
cNm), which may be due to a change in the level during vibration tests.
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Figure 11: Campaign C: (blue) Histogram of τk estimates for the three initialization methods and K ranging from
4 to 14, and (red) histogram with prior on onsets with regularization.
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Figure 12: Campaign D: (blue) Histogram of τk estimates for the three initialization methods and K ranging from
4 to 14, and (red) histogram with prior on onsets with regularization.
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Figure 13: Campaign E: (blue) Histogram of τk estimates for the three initialization methods and K ranging from 4
to 14, and (red) histogram with prior on onsets with regularization.
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Figure 14: Campaign F: (blue) Histogram of τk estimates for the three initialization methods and K ranging from 4
to 14, and (red) histogram with prior on onsets with regularization.

17



Table 2: Performance of GMMSEQ with and without (“w/o”) prior on onsets, according to four measures of perfor-
mance. Each measure is bounded in [0, 1] (the higher the better).

Campaign Precision Recall Entropy ARI
with w/o with w/o with w/o with w/o

B 1.00 0.123 1.00 1.00 1.00 0.944 0.708 0.731

C 1.00 0.146 1.00 1.00 1.00 0.992 0.974 0.966

D 1.00 0.098 1.00 0.857 1.00 0.852 0.733 0.842

E 1.00 0.156 1.00 1.00 1.00 0.955 0.772 0.774

F 1.00 0.143 1.00 1.00 1.00 0.961 0.899 0.847

From these figures, it can also be observed that GMMSEQ generated onsets with quite similar
probability (except for campaign B). The bars in the histogram generally exhibit quite similar
values for all tightening levels, which means that the number of AE signals for each tightening270

level are quite similar. Since the vibration has a fixed frequency independent of the tightening, the
sources of AE signals seem to be activated in each cycle.
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Figure 15: Campaign B: Comparison between standard clustering methods and GMMSEQ.

The evaluation of onsets was made by four criteria, each presenting a different view of the
performance, namely precision, recall, entropy and ARI, detailed below. Each estimated onset was
compared with the ground truth: If it remains within only ±0.5 second around a true value then
it is considered as a correct estimation and qualified as a true positive (TP). If the onset is outside
the interval, it is counted as a false positive (FP). If no onset is found in a given interval, a false
negative (FN) is counted. TP, FN and FP are counted for all onsets. Then the accuracy is given
by

Pr =
TP

TP + FP
,

which means that if a method has no false positive, the accuracy is 1. A low accuracy corresponds
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Figure 16: Campaign C: Comparison between standard clustering methods and GMMSEQ.
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Figure 17: Campaign D: Comparison between standard clustering methods and GMMSEQ.
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Figure 18: Campaign E: Comparison between standard clustering methods and GMMSEQ.

4 5 6 7 8 9 10 11 12 13 14
0.3

0.4

0.5

0.6

0.7

0.8

0.9
Kmeans
GMM
Linkage
GK
GMMSEQ

Figure 19: Campaign F: Comparison between standard clustering methods and GMMSEQ.
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to many FP. Therefore, a complementary criteria, called recall, is also used:

Rec =
TP

TP + FN

which means that if a method does not miss any onset, the recall is 1. A method with many FP
can have a high recall if all expected onsets are found.

We also expect the methods to find onsets at similar locations when the number of clusters
is changed (as explained in the analysis of histograms discussed above). For that purpose, the
normalized entropy of the cumulated onsets is computed as

Ent = −
∑6 or 7

k=1 p(k) log2 p(k)

log2K
,

where the sum is over the number of levels (6 for campaign C and 7 for the others) and with

p(k) =
number of estimated onsets falling in ± 0.5 s around the truth

total number of onsets estimated by the method

which means that if a method provides n onsets and there are n/7 onsets per level correctly275

located (or n/6 for campaign C), then the entropy is 1. An example of cumulated onsets with
perfect location (leading to an entropy of 1) is given with the red bars in Figures 10 to 14.

The fourth criterion is the Adjusted Rand Index (ARI) [65]. ARI is a corrected-for-chance
(and, thus, more severe) version of the Rand Index used for clustering evaluation in the presence
of a ground truth (in the present case, it corresponds to the tightening levels). The ARI is 1.00280

for perfect clustering and 0 in case of random assignment of clusters or totally wrong clustering.
The results are summarized in Tables 3, 4, 5, 6 and 7 for all campaigns (B to F respectively),
all criteria (precision, recall, entropy and ARI) and several clustering methods (results will be
described below).

For comparison purposes, four standard clustering methods were applied: K-means, a standard285

GMM, a hierarchical clustering (HC) using the Ward method and the Gustafson-Kessel (GK)
algorithm (implementations are available in the MATLAB Statistics and Machine Learning (SML)
toolbox and on MATLAB Central). The same matrix of features was used for all methods, including
GMMSEQ. The K-means algorithm was run 10 times and the model with the smallest sum of
squared-distance was selected. GMM was run 10 times with full covariance matrices for each290

cluster and the model with the highest likelihood was selected. A GMM was used to initialize the
Gustafson-Kessel algorithm with fuzziness degree set to 1.5 as proposed in [21]. For these three
methods, the onsets are defined by the time of the first occurrence of every cluster. For GMMSEQ,
onsets were given by τ values.

Figures 15 to 19 depict the ARI for all methods and all campaigns with respect to the number295

of clusters. In each figure, the curves with diamond markers represent the ARI for GMMSEQ. For
this method, it can be observed that the maximum is generally observed for 6 to 9 clusters which
is consistent with the expected number of tightening levels. These figures show that GMMSEQ
globally outperforms K-means, GK, HC and GMM clustering methods. A more detailed analysis
is provided in Tables 3 to 7 using the four aforementioned criteria. The ARI is the average over 6300

to 9 clusters (and 5-8 for campaign C). In the tables, the “bold” font is used for the best overall for
a given criterion, while an “underlining” is used when comparing only GMMSEQ and the original
GMM. Therefore, if one of these two methods is both underlined and bold then it represents the
best of all methods for a given criterion.

The tables show that:305
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• For all campaigns and all methods, the precision is very low meaning that no method is able
to detect all onsets at ±0.5 second around the true value.

• For the recall criterion, GMMSEQ provides a value of 1.0 for four campaigns, while providing
a value of 0.85 (against 0.714 only for GMM) for campaign D. It globally outperforms all
methods. The recall of the original GMM is never better than the recall of GMMSEQ.310

• According to the entropy, GMMSEQ provides the best performance for four campaigns, and is
only outperformed by HC for campaign D (0.852 against 0.921). The entropy of the original
GMM is never better than the entropy of GMMSEQ.

• Finally, GMMSEQ provides the best ARI for all campaigns. Compared to the GMM, we have
+13.3%, +13.3%, +19%, +1.3% and +10.3% for, respectively, campaign B, C, D, E and F.315

The ARI of the original GMM is thus never better than the ARI of GMMSEQ.

These tables show that there is no best method for all campaigns and according to all criteria.
However, from a quantitative point of view, GMMSEQ globally outperforms the GMM which shows
the significance of the proposed model.

Table 3: Campaign B: Performance

Algo/perf precision recall entropy ARI

Kmeans 0.066 0.571 0.597 0.601

GMM 0.100 0.857 0.805 0.589

HC 0.067 0.571 0.712 0.652

GK 0.081 0.714 0.706 0.620

GMMSEQ 0.123 1.00 0.944 0.722

Table 4: Campaign C: Performance

Algo/perf precision recall entropy ARI

Kmeans 0.188 1.00 0.853 0.810

GMM 0.200 1.00 0.931 0.814

HC 0.118 0.667 0.739 0.877

GK 0.177 1.00 0.963 0.732

GMMSEQ 0.146 1.00 0.992 0.947

Table 5: Campaign D: Performance

Algo/perf precision recall entropy ARI

Kmeans 0.152 1.00 0.799 0.480

GMM 0.086 0.714 0.791 0.572

HC 0.212 1.00 0.921 0.493

GK 0.098 0.714 0.801 0.511

GMMSEQ 0.097 0.857 0.852 0.762
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Table 6: Campaign E: Performance

Algo/perf precision recall entropy ARI

Kmeans 0.065 0.429 0.561 0.529

GMM 0.146 1.00 0.891 0.786

HC 0.069 0.571 0.600 0.651

GK 0.058 0.429 0.547 0.665

GMMSEQ 0.156 1.00 0.956 0.799

Table 7: Campaign F: Performance

Algo/perf precision recall entropy ARI

Kmeans 0.062 0.571 0.646 0.515

GMM 0.146 1.00 0.896 0.729

HC 0.078 0.714 0.774 0.565

GK 0.100 0.714 0.728 0.431

GMMSEQ 0.143 1.00 0.961 0.832

The previous results and analyses demonstrated the usefulness of considering onsets, τ , as320

parameters to be identified from AE data together with clusters parameters. The simulated data
also allowed us to show that our model was able to perfectly recover not only the onsets but also
the levels of activation, β, and kinetics, γ for four clusters with different behavior. In order to
conclude this study, we propose an analysis of these parameters, at the core of GMMSEQ, on the
real data.325

Figures 20 to 24 illustrate the degrees of activation, πtk, in each campaign computed from the
GMMSEQ model with the highest ARI. The value πtk is obtained from τ , β and γ using Eq. 8.
Onsets, kinetics and levels of activation are well illustrated on these figures. It is expected that
the levels of activation (the height of curves) should be similar for all tightening levels since we
have about the same number of cycles per tightening level. This is well illustrated on the figures.330

Ideally, level 1 should tend to 1 due to the normalization (Eq. 8), which is the case for campaigns
C (Fig. 21, D (Fig. 22) and F (Fig. 24). For campaign B and E, three or more clusters coexist at
the start of the test (60 cNm) but the highest probability is still assigned to the correct cluster.

Another expectation is that the kinetics should be similar between levels and the slope of the
changes in the values πtk should be quite steep because the tightening levels are modified abruptly335

according to [61]. This is also well illustrated on the figures where the slopes are globally similar and
steep for each new onset detected. It is worth noting that gradual onsets are obtained for campaign
E characterized by lower γ values (estimated as [0, 3.8587, 2.9722, 1.2202, 2.4498, 3.4912, 1.9343]
seconds so an average of 0.719± 0.652 s at one standard deviation) than for the other campaigns
(with average of 1.298 ± 1.31 s for B, 2.77 ± 1.46 s for C, 2.07 ± 1.17 s for D and 2.28 ± 1.35 s340

for F). As seen on Figure 21, the slopes for C are the steepest ones and the γ values are also the
largest as expected. The differences between values are sufficiently important to strongly modify
the slopes through the exponential in the sigmoid function (Eq. 9).

The onsets are not always sufficient to characterize the performance. Indeed, despite two
confusions illustrated for campaign E (levels 1/2 and 6/7), the clustering is close to be perfect with345

an ARI around 0.975. It means that the mixture parameters (means and covariances of GMMSEQ)
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also play a key role in the performance (as expected since these parameters pave the feature space).
Despite high ARI values compared to Tables 3-7 (in these tables, the best model was selected

based on maximum likelihood, not based on the ARI), the location of the sigmoids is not perfect:
For example, for campaign D, we can observe that the second level (50 cNm) is not detected350

properly with a confusion with level 1 (60 cNm). Level 2 is detected but its probability is around
0.2 against 0.8 for level 1. With these curves, the end-user is thus able to visually identify some
confusions which is not possible with other methods. A similar behavior can be observed for
campaign B. For this campaign, the best ARI is obtained with 11 clusters with several of them
concentrated around levels 1 and 2. These confusions partly explain the result of 0.762 (resp.355

0.722) for the ARI of campaign D in Table 5 (resp. campaign B in Table 3). It is worth noting
that, in both cases, the main confusion arises between two consecutive levels (60 cNm and 50 cNm)
which is more understandable than if the confusion were between very distinct levels.

Figure 20: Campaign B: πtk values provided by GMMSEQ.
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Figure 21: Campaign C: πtk values provided by GMMSEQ.
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Figure 22: Campaign D: πtk values provided by GMMSEQ.

Figure 23: Campaign E: πtk values provided by GMMSEQ.

Figure 24: Campaign F: πtk values provided by GMMSEQ.
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4. Conclusion

GMMSEQ is a new clustering method introduced to manage continuous timestamps attached360

to AE signals. Timestamps are exploited during the clustering process allowing one to gain new
insights into the AE data streams. In addition, cluster onsets, growth rates and levels of activation
through time are estimated together with the parameters of their distributions in the feature space.
Therefore, this new clustering method has unique characteristics that stand out from existing
methods for AE data interpretation.365

GMMSEQ represents the first clustering method specifically developed for AE data, and it is
the only method that allows AE users to estimate, directly from data, parameters related onsets,
growth and kinetics. To our knowledge, there is no method with similar features in the literature.

The performance of the method has been demonstrated on simulated and real data sets. Close
to perfect results were obtained on simulated data with noise. On real data, we demonstrated370

the relevance of the clusters during loosening of bolted joints. The comparison with four standard
clustering methods and according to different performance criteria shows that GMMSEQ not only
provides useful qualitative indications about the timeline of clusters, but also has better perfor-
mance in terms of cluster characterization.

This work opens up several perspectives. First, the approach can be extended to other mix-375

ture models considering non-Gaussian distributions. Our shared code includes, for example, an
extension to a mixture of multivariate Student-t distributions, which is not described in this paper.

The possibility to include prior information about the cluster onsets was addressed in the paper
using a regularization of the objective function. Prior information about some other parameters
such as the cluster centers could be exploited too, which could potentially improve the convergence380

of the algorithm to “better” estimates with a clear physical interpretation. The possibility of
incorporating physical knowledge in the objective function could also be investigated.

Another direction to explore concerns the optimization procedure. In this paper, we have
assumed that all data are available at once (offline or batch analysis). The extension to online
clustering with evolving parameters is a promising perspective for application, for example, to385

structural health monitoring or statistical process control.
Finally, while being developed with the goal to process AE data, this clustering method can be

applied to other data sets containing data streams with gradually emerging clusters.
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http://dx.doi.org/10.7910/DVN/FBRDU0. The features used as inputs for GMMSEQ can fi-
nally be downloaded at https://drive.google.com/drive/folders/1H413RxYu4ya7YMEgF_lTh_400

fHr7flvvOO?usp=sharing.

Appendix A. Gradient of Q with respect to gk, bk and ξk

The gradients of the auxiliary function Q with respect to the variables of interest are given
below. We first start by expressing the derivatives with respect to the instrumental variables,
namely gk, bk, ξk for each component in the mixture:

∂Q

∂gk
=
∂Q

∂γk

∂γk
∂gk

= 2gk
∂Q

∂γk
, k = 2, . . . ,K (A.1a)

∂Q

∂bk
=
∂Q

∂βk

∂βk
∂bk

= 2bk
∂Q

∂βk
, k = 2, . . . ,K (A.1b)

∂Q

∂ξk
=
∂Q

∂τk

∂τk
∂ξk

=
∂Q

∂τk
τk

(
1− τk

T

)
, k = 2, . . . ,K, (A.1c)

where (A.1c) uses the following property of the logistic function Λ(u) = 1/(1− exp(−u)): Λ′(u) =
Λ(u)[1− Λ(u)]. The derivatives with respect to βk, γk and τk are given by

∂Q

∂βk
=

K∑
l=1

N∑
i=1

∂Q

∂πil

∂πil
∂αik

∂αik
∂βk

, k = 2, . . . ,K, i = 1, . . . , N (A.2a)

∂Q

∂γk
=

K∑
l=1

N∑
i=1

∂Q

∂πil

∂πil
∂αik

∂αik
∂γk

, k = 2, . . . ,K, i = 1, . . . , N (A.2b)

∂Q

∂τk
=

K∑
l=1

N∑
i=1

∂Q

∂πil

∂πil
∂αik

∂αik
∂τk

, k = 2, . . . ,K, i = 1, . . . , N. (A.2c)

We have
∂Q

∂πil
=
y
(q)
il

πil
, l = 1, . . . ,K (A.3)

and

∂πil
∂αik

=



∑K
q=1 αiq − αil(∑K
q=1 αiq

)2 if k = l

−αil(∑K
q=1 αiq

)2 if k 6= l

(A.4)

for all k and l in {1, . . . ,K}.
Using the equality αik = βkΛ(γk(ti − τk)), we have

∂αik
∂βk

= Λ(γk(ti − τk)) =
αik
βk

, (A.5)
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∂αik
∂γk

= βk(ti − τk)Λ′(γk(ti − τk)) (A.6a)

= αik(ti − τk)[1− Λ(γk(ti − τk)] (A.6b)

= αik(ti − τk)
[
1− αik

βk

]
, (A.6c)

and

∂αik
∂τk

= −γk βk Λ′(γk(ti − τk))] (A.7a)

= −γk αik [1− Λ(γk(ti − τk))] (A.7b)

= −γk αik
[
1− αik

βk

]
. (A.7c)

Remark 1. To impose the constraint γ1 = . . . = γK , we simply sum the derivatives w.r.t. γk:

∂Qr
∂γ

=
K∑
k=1

∂Q

∂γk
,

where ∂Q
∂γk

is computed using (A.2b).

When considering a prior on onsets, the derivatives w.r.t. τk (A.2c) become:

∂Qr
∂τk

=
K∑
l=1

N∑
i=1

∂Q

∂πil

∂πil
∂αik

∂αik
∂τk

− 2λ

(
τk − τpriork

)
, k = 2, . . . ,K, i = 1, . . . , N. (A.8)

Algorithm 1 summarises the different steps of the gradient computation.405

Appendix B. Summary of the hit detection and feature extraction steps

The AE signals were detected from the raw data stream using a method developed in [13]. This
method is made of three steps: It starts by filtering the data stream, then applying a standard
hit detection procedure, and finally feature extraction. The data were initially prefiltered using a
high-pass filter of order 5 with a band-pass frequency set to 10 kHz and a band-pass ripple equal410

to 0.2 dB in order to remove the DC component of the data stream.

Step 1. The wavelet filtering step relies on wavelet denoising applied by frames of 250000 samples,
practically shown in [13] to be a good compromise between computation time and quality of
denoising with a better adaptation to noise and signals with varying properties. As advised in
[13], the wavelet was set to a Daubechies “dB45” made of 90 coefficients, together with 14 levels415

of decomposition in order to detect the onset of AE signals. The soft Donoho-Johnstone universal
threshold was applied on wavelet coefficients with a rescaling using a level-dependent estimation
of level noise. A compensation of the group delay induced by the filtering was also performed.
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Algorithm 1 Gradient computation.

Require: βk, γk, τk, k = 2, . . . ,K
for i = 1 to N do

for k = 2 to K do
Compute ∂αik

∂βk
using (A.5)

Compute ∂αik
∂γk

using (A.6)

Compute ∂αik
∂τk

using (A.7)
for l = 1 to K do

Compute ∂πil
∂αik

using (A.4)
end for

end for
end for
for k = 2 to K do

Compute ∂Q
∂βk

using (A.2a)

Compute ∂Q
∂γk

using (A.2b)

Compute ∂Qik
∂τk

using (A.2c) or (A.8)

Compute ∂Q
∂bk

using (A.1b)

Compute ∂Q
∂gk

using (A.1a)

Compute ∂Q
∂ξk

using (A.1c)
end for

Ensure: Gradient ∂Q
∂ω =

{
∂Q
∂bk

, ∂Q∂gk ,
∂Q
∂ξk

}K
k=2

Step 2. After filtering, a hit detection is applied. The goal is to find the start and end samples
for each AE signal remaining after filtering. For that, samples are treated gradually. When one420

sample becomes above a threshold on amplitude (in our case 1.2 mV), samples are stored until one
sample falls below the threshold. In this case, a counter is run. If the samples remain below the
threshold during “HDT” microseconds (set to 1100µs), then the end of the signal is found. If not,
the counter is reinitialised to 0. When HDT is reached, a second counter, “HLT” (set to 80µs), is
run during which the detector is blind. It means that if the signal becomes above the threshold, it425

is not taken into account. This procedure is applied after filtering. However, the start and end are
used to extract the AE signal in the raw data stream, not the filtered one (because the filtering
alters the signals). This is one of the characteristics of the method.

Step 3. The features are finally extracted on each AE signal detected. Common features are
described in [63, 40, 13, 16]: Rise time, counts, PAC-energy, duration, amplitude, average frequency,430

RMS, average signal level, counts to peak, reverberation frequency, initiation frequency, signal
strength, absolute energy, partial power in the intervals [0, 20, 100, 200, 300, 400, 500, 600, 800, 1000]
kHz, frequency centroid, peak frequency, weighted peak frequency. To this set of features were
added the following ones: the Renyi number calculated from the scalogram [64] using a Morlet
wavelet, as well as the frequency of the maximum of energy in the scalogram. For example features435

calculated in the frequency domain are well described in [63, 40]. Time-based features are described
in [63, 13, 16].
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Illustration. After AE hit detection, the start time of each AE signal is superimposed onto vibrom-
eter data for measurement B for a few cycles in Figure B.25. We can observe that about 1-2 signals
per cycle are found in this sample of about 1 s. This is confirmed in Table 1 that summarized440

the average over all campaigns and all files. We can also observe that the onsets are generally
positioned on a similar displacement level (measured by the vibrometer) which means that the
hit detection procedure finds signals mostly located at similar levels of displacement. This result
demonstrates the reproducibility of the tests as well as the relevance of the hit detection.

Figure B.25: Position of onset of acoustic emission signals onto vibrometer data (for measurements B, 60 cNm, first
file of the data set, using micro-200-HF sensor). The horizontal axis represents the sample index.
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[11] D. Bianchi, E. Mayrhofer, M. Gröschl, G. Betz, A. Vernes, Wavelet packet transform for detection of single
events in acoustic emission signals, Mechanical Systems and Signal Processing 64 (2015) 441–451.

[12] T. W. Liao, Feature extraction and selection from acoustic emission signals with an application in grinding470

wheel condition monitoring, Engineering Applications of Artificial Intelligence 23 (1) (2010) 74 – 84.
[13] M. Kharrat, E. Ramasso, V. Placet, M. Boubakar, A signal processing approach for enhanced acoustic emission

data analysis in high activity systems: Application to organic matrix composites, Mechanical Systems and
Signal Processing 70 (2016) 1038–1055.

[14] R. Madarshahian, P. Ziehl, J. M. Caicedo, Acoustic emission bayesian source location: onset time challenge,475

Mechanical Systems and Signal Processing 123 (2019) 483–495.
[15] E. Ramasso, P. Butaud, T. Jeannin, F. Sarasini, V. Placet, N. Godin, J. Tirillò, X. Gabrion, Learning the
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