

Modeling clinical situations at risk of perineal tear during delivery

M. Lallemant^{1,2}, T. Kadiakhe², A. Lejeune², J. Chambert², N. Mottet^{1,2}, E. Jacquet²

- ¹ Department of Obstetrics and Gynaecology, Besançon University Medical Centre, Besançon
- ² Department of Applied Mechanics, FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, Besançon

Introduction

- Perineum :
- Soft structure made of skin and muscles
- Lowest part of the pelvic outlet
- Guarantee of its integrity by analyzing its mechanical properties
- During delivery :
- Induction of very large deformations of the perineum
- Occurrence of more or less severe perineal tears
- Third- and fourth-degree perineal tears :
- Synonymous : obstetrical anal sphincter injuries (OASIS)
- Damage of the anal sphincter complex and / or the anal epithelium
- Disabling disorders: anal incontinence, chronic perineal pain, sexual disorders
- Limited biomechanical data regarding the perineal behavior of women during delivery

• Aim of our global project: to model the clinical situations at risk of perineal tear during delivery to understand their mechanisms

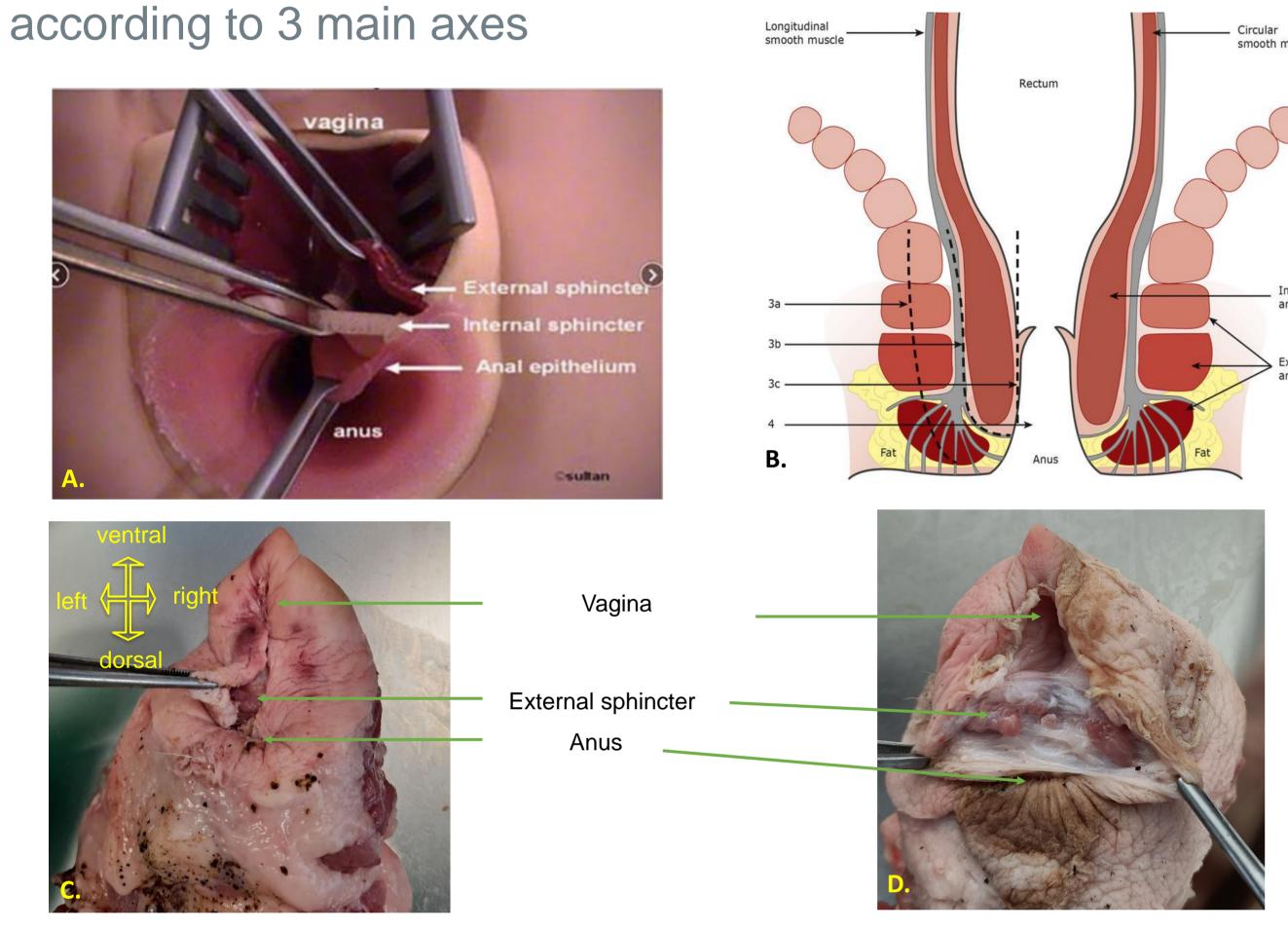
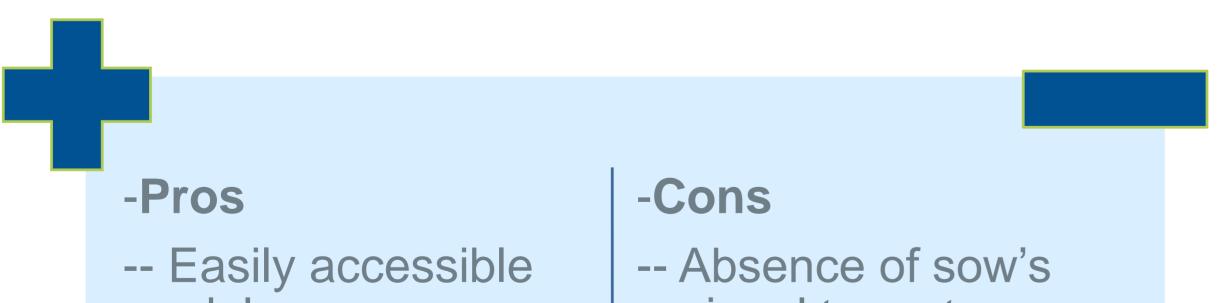



Figure 1. Anatomy of the perineum A. Multi-layered perineum (Sultan anal sphincter trainer) B. Description of the anal sphincter (Lone F, The Obstetrician & Gynaecologist 2012) C. Sow's perineum D. Simulation of a stage III obstetrical anal sphincter injuries on a sow's perineum

First axis: mechanical properties of the soft tissues of the sow's perineum

Rationale for the sow model:

- model -- OASIS suture
- training model
- -- Inability to perform in vivo tension tests
- perineal tear at delivery (no dystocia)
- -- Greater stiffness of the sow's perineum compared to humans

Exp: ultrasound, share wave elastography, unidirectional tension tests, stereophotogrammetry

4 steps:

1. Study the influence of all experimental conditions on these tissues before determining the biomechanical properties

Contacts

Nom: Marine Lallemant

Courriel: mlallemant@chu-besancon.fr

- 2. Determine the biomechanical properties:
 - Hyperelastic behavior
 - Viscoelastic behavior
 - Fracture analyses
- 3. Simulation of the head expulsion using the Epino® device on the sow's perineum
- 4. Simulation of head and shoulder expulsion using the Epino® device on the sow's perineum

Second axis: clinical prospective study

Objective: to evaluate the perineal elasticity and mechanical fields (strain and stress) induced by the fetus during delivery.

Material & Methods:

- Prospective, longitudinal, monocentric study in the maternity hospital of Besançon
- Research study involving the human person (RIPH) of category 3 according to the Jardé law: request of the committee of persons protection in progress
- Inclusion criteria: Primiparous women over 18 years old with a singleton pregnancy of normal course
- Study design: an appointment at the end of the 9th month of pregnancy and an evaluation in the birth room at delivery (Figures 2. and 3.)
- Primary endpoint: to define a fracture criterium based on the threshold value of the equivalent strain obtained by stereovision camera

9th month appointment

- Demographic data 3rd trimester fetal ultrasound data
- Clinical data
- Dynamic pelvic MRI data if performed during pregnancy
- **Perineal**
- elastographic data **Perineal** deformation data (stereophotogram

metry)

In the delivery room, during early labor (<5cm)

- Clinical data Obstetrical
- ultrasound data Perineal
- elastographic data Perineal
- deformation data (stereophotogram metry)

At delivery, before the beginning and during expulsive efforts

- Obstetrical ultrasound data
- Perineal elastographic data
- Perineal
- deformation data (stereophotogram metry)

In the delivery room, after childbirth

- Obstetrical data
- Neonatal data
- Perineal elastographic data
- Neonatal Neonatal measurements (head and shoulders)

Figure 2. Precision on the study design

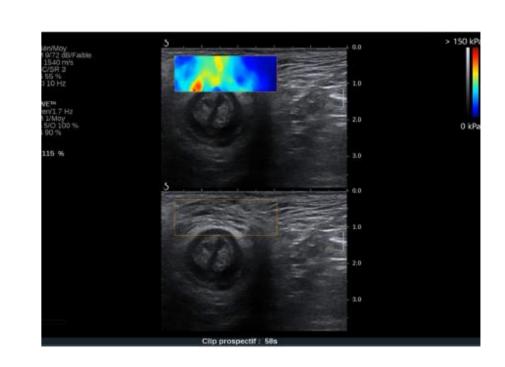


Figure 3. Acquisition of elastographic (Gachon et al. BMC Musculoskelet Disord, 2020) measurements at the 9th month of pregnancy and during delivery

Third axis: numerical model

- Incorporation of mechanical, imaging and clinical data into a digital model obtained from dynamic pelvic MRI of the perineum and pelvic system
- Development of a numerical model predicting the mechanical response of the perineal tissues, the fissure front and its path during the deformations due to fetal progression

INSTITUT FEMTO-ST 15 B AVENUE DES MONTBOUCONS 25030 BESANÇON CEDEX - www.femto-st.fr