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Abstract

Periodic truss-lattice materials, especially when combined with current additive manufacturing
techniques, are attracting attention in lightweight material engineering. As a member of the
elementary cubic truss family, the simple-cubic truss lattice possesses the highest stiffness and
strength along the principal directions and plays an important role in load-bearing mechanical
metamaterials. High anisotropic mechanical properties and low resistance to buckling loading
and shearing loading, however, limit its use in energy absorption. Here, we present a class of
simple-cubic closed tubular lattice with limited loading direction dependence along with high
mechanical properties and irregular stable post-yield response. The fabrication of its complex
structure was made possible by direct laser writing at the microscale. Experiments and simula-
tions demonstrate that both the elastic modulus and the yield strength of the simple-cubic closed
tubular lattice are significantly larger than those of the simple-cubic truss lattice, regardless of
the loading direction. At a relative density of 0.1 and compared to the truss lattice, the closed
tubular lattice can absorb respectively 4.45 times and 6.14 times as much energy along directions
[100] and [110]. The average normalized Young’s modulus and yield strength are respectively
28% and 53% larger than those of the most outstanding shellular metamaterial with the same
mass. Such excellent mechanical properties make it a potential candidate for applications to
load-bearing and energy absorption.
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1. Introduction

During the last two decades, periodic lattice materials have attracted considerable attention
due to their outstanding mechanical properties [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] such as
high specific stiffness[14], high specific strength [15, 16, 17], controlled Poisson’s ratio [18, 19,
20, 21], high energy absorption and ability to recovery after unloading [22, 23, 24, 16]. Early
experiments performed by Deshpande et al. have shown that a well-designed periodic truss lattice
material exhibits much higher mechanical properties than non-periodic structural materials of
equal mass such as commercially available aluminum foams [25]. Thus, truss lattice materials
are very promising, especially when combined with current additive manufacturing techniques
such as selective laser melting or direct laser writing (DLW) [26, 27, 19, 28].
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As pointed out by Gibson and Ashby, the mechanical properties of truss lattice materials are
determined by structural topology and geometrical parameters besides the base material [29].
For instance, the stiffness and the strength of lattice materials that are governed by the bending
of micro-components scale non-linearly with the relative density (with an exponent between 1.5
and 2), while for lattice materials that deform in stretching mode, both stiffness and strength are
expected to scale linearly. Later, Deshpande et al. identified the topological criteria for dictating
the deformation mechanism of truss lattice materials [30]. Henceforth, truss lattice materials can
be topologically categorized as either bending-dominated or stretching-dominated.

As a member of the face-centered-cubic (FCC) family, octet truss lattice materials may be the
most well-known stretching-dominated lattices. Deshpande et al. derived theoretical estimates
for the effective mechanical properties of octet truss lattices under loading along the [100] direc-
tion [25]. Elsayed and Pasini investigated the effect of shaping the micro-strut cross-section on
the structural performance of the octet lattice [31]. Their study clearly showed that shaping the
cross-section of the strut could change the failure mode of the low relative density octet lattice
from buckling to plastic yield, therefore enhancing its strength. Later, Meza et al. experimen-
tally verified the above theory by presenting a class of strong, lightweight, and recoverable three-
dimensional ceramic hollow truss nanolattices [32]. Using a combination of classical molecular
dynamics simulations and theoretical analysis, He et al. demonstrated that surface effects have
little influence on the stiffness and the strength scaling of nanolattices [33]. Tancogne et al. nu-
merically determined the effect of the relative density and truss variations on the macroscopic
compressive response of octet truss lattice materials [34]. Simulations demonstrated that the
compression failure of metallic lattice materials is dominated by unstable twist rather than stable
bending for relative densities smaller than 0.3, the opposite being true for relative densities larger
than 0.3. The compressive response was revisited by Chen et al., both theoretically and experi-
mentally [35]. Their experiments clearly showed that the compressive response of an octet lattice
material made from Duraform PA changed from unstable shearing mode to stable bending mode
at a relative density between 0.22 and 0.23. Their experimental and theoretical results further
showed that both the nodal effect and the bending and shearing effects increased the compressive
stiffness and strength.

Body-centered-cubic (BCC) structures play an important role in bending-dominated lattice
materials. Based on the Euler-Bernoulli beam theory, Ushijima et al. presented a theoretical
model for predicting the compressive stiffness and the strength of BCC lattice materials [36].
Using Timoshenko beam theory, Gümrük and Mines suggested a more satisfying theoretical
method for all aspect ratio ranges [37]. They pointed out that the shearing effect should be taken
into account when the aspect ratio of the strut is larger than 0.1. Using the strain energy method,
Tancogne et al. derived theoretical estimates for the three independent moduli of the BCC truss
lattice [38]. Their numerical investigation revealed that the effective elastic modulus and the
specific energy absorption respectively increase by about 70% and 45% by tapering the beam
cross-section.

As defined by Zok et al., the simple-cubic (SC) lattice, together with the BCC lattice and the
FCC lattice, constitute an elementary cubic truss family [39]. In theory, the SC lattice should
belong to the bending-dominated family. In fact, the SC lattice possesses the highest Young’s
modulus but the lowest shear modulus along the [100] direction within the elementary cubic fam-
ily. High anisotropic mechanical properties and low resistance to buckling loading and shearing
loading limit its application to energy absorption. A recent work on elastically-isotropic elemen-
tary cubic lattices has shown that tailoring the hollow beam could reduce anisotropy, however, at
the expense of stiffness [40].
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According to theory, only closed-cell materials can attain the theoretical limit (Hashin-Shtrik-
man upper bounds) for isotropic mechanical properties [41]. Plate lattices [14, 42] may have been
the earliest to achieve the theoretical upper bounds. Their unstable buckling nonlinear mechani-
cal response, however, limits their use in energy absorption [43]. As an alternative to open-form
tubular lattice and plate lattice, a new class of SC closed-form tubular lattice is proposed in
this paper to overcome the above weaknesses, for energy absorption and load-bearing. Finite
element simulations are performed to investigate the elastic moduli and the collapse strength
of the proposed material for relative density ranging from 0.1 to 0.5. Numerical results show
that the closed tubes lead to higher mechanical properties, reduced anisotropy, and significantly
enhanced resistance to shearing and buckling loading, without affecting the stiffness. Uniax-
ial compressive experiments on micro lattices fabricated by two-photon lithography show that
the designed metamaterial possessing stable nonlinear response outperforms truss and shellular
cubic metamaterials of the same relative density.

2. Metamaterial design

For 3D lightweight load-bearing and energy absorbing material design, a crucial aspect is to
make the best use of every part of the structure. Obviously, in the absence of weight constraints,
the ideal candidate would be the homogeneous solid itself. However, when aiming at the design
of a lightweight structure, one has to decrease the volume and thus to remove material or to create
inner holes. Structural design therefore becomes the real playground for optimization.

Under uniaxial compression, a lightweight 2D SC frame generally exhibits a decreasing post-
buckling response following the initial linear regime valid for small displacements, as depicted
in Fig. 1A and B. Only the vertical strut supports loading, which is unreasonable from the design
point of view. The mechanical behavior changes significantly when the plain struts are replaced
with a closed tube. The force–displacement curves suggest that the tube possesses a slightly
larger elastic stiffness but mostly a much more stable nonlinear response. This may be attributed
to the fact that the sides of the cylinder tube provide additional support under loading and resist
the buckling strength, in contrast to struts.

This design idea also applies to the 3D case. Fig.1C defines the relevant geometrical parame-
ters. For a solid cylindrical strut of length L, the cross-section is circular with a constant diameter
d. For a closed cylindrical tube of length L and diameter D, the thickness t allows controlling the
relative density. The unit cells are shown in Fig.1D. The unit cell for the truss lattice is composed
of three intersecting struts. The unit cell for the tubular lattice is also composed of three inter-
secting tubes, but to avoid vanishing surface contacts between adjacent unit cells, a cuboid with
constant length l and thickness t is added, with l = 0.15D. redThe design procedure is detailed
in the Supporting Information. The relative density ρ∗ is defined as the ratio of the actual volume
to the volume of the cubic unit cell and can be easily obtained via a 3D CAD software.

The anisotropy of lattice materials is a very important property. An energy absorbing material
is indeed expected to display a similar mechanical behavior for all loading directions or at least
to have no obvious weak directions, to avoid stress shielding. For example, from the polar plots
in Figure 1D we find that the SC truss lattice possesses a high stiffness in the principal directions
but a much lower stiffness in all other directions. The SC tubular lattice is also, of course,
anisotropic. Its anisotropy, however, is significantly reduced from Emax/Emin = 14.36 down to
Emax/Emin = 1.25 compared to the truss lattice.
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Figure 1: Design concepts for tubular lattices. (A) Uniaxial compression mechanism for two dimensional simple cubic
lattices composed of either solid beams or closed tubes. (B) Schematic force–displacement curves of a single unit cell
show that the tubular lattice always exhibits higher elastic response and more stable nonlinear response compared to
a truss lattice of the same relative density. Geometrical parameters for (C) individual struts (either beam or tube) and
(D) the corresponding representative unit cell of an assembly. Polar plots depict the normalized Young’s modulus as a
function of the loading direction.

3. Numerical simulation

To identify the elastic moduli and yield strength of the SC lattice metamaterials, a series
of unit cell models with relative density ranging from 0.1 to 0.5 were built using commercial
software Abaqus. Truss lattices are meshed with first-order solid elements (type C3D8R) using
at least seven elements along the radius of a beam. Due to their complex geometry, closed tubular
lattices are built using quadratic tetrahedral elements (type C3D10). To ensure computation
accuracy, we employ meshes with 80,784 elements for the truss lattice and 670,320 elements for
the closed tubular lattice, as illustrated in Fig.2 A and B. For the same models with a relative
density larger than 0.1, twice coarser meshes are adopted.
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The basis material used in simulations is stainless steel 316L (SS316L). Such a homogeneous
solid is modeled using an isotropic hardening elasto-plastic material model with a Young’s mod-
ulus of 210 GPa and a Poisson’s ratio of 0.3. The 0.2% offset yield strength is assumed to be
418 GPa. The detailed stress-strain response for stainless steel is depicted in Fig.2 C. For all
models, the edge length of unit cells is fixed to 200 µm. The corresponding strut radius for the
truss lattice and the wall thickness for the closed tubular lattice change with relative density.
Periodic boundary conditions are applied by matching points for each pair of parallel unit-cell
boundary surfaces with linear constraint equations.

Figure 2: Mesh model for (A) truss and (B) closed tubular lattices at a relative density of 0.1. (C) Engineering stress-strain
curves for 316L stainless steel adopted in simulations.

Elastic simulations considering a small strain under uniaxial compression, pure shearing
loading and hydrostatic compression along principal direction are conducted to extract Young’s
modulus, shear modulus and bulk modulus, respectively. Additional compression simulations
up to a strain of −0.01 along 21 directions are performed to find extreme values for the yield
strength of cubic symmetric lattices. The initial yield strength is defined by the axial stress at the
point where the permanent strain is 0.2%.

3.1. Elastic properties
In the elastic region, the elastic anisotropy of cubic lattices is often quantified by Zener’s

ratio

Z = G
9K − E

3KE
(1)

where G, K and E are respectively the shear modulus, the bulk modulus and Young’s modulus of
the lattice material in a principal direction. Elastic isotropy is achieved only when Z = 1. Fig.3
A illustrates the dependence of Zener’s ratio with relative density for both the closed tubular
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lattice and the truss lattice; at a relative density of 0.1, Z = 0.76 for the former and Z = 0.05 for
the latter. For both lattices, as the relative density increases, Zener’s ratio increases and would
converge to 1 in the limit of the plain material. The influence of overlapping nodes as well as
bending and shearing coupling deformation on anisotropy become more important as the relative
density decreases, thus playing against lightweight lattices. It can also be observed that Zener’s
ratio for the closed tubular lattice is always far larger than for the truss lattice. As a whole, the
presence of the closed tube largely reduces the anisotropy of the SC lattice by redistributing the
stress in a more uniform manner.

 

Fig. S1 Comparison of the elastic properties of simple-cubic closed tubular lattices and of truss lattices, as 

obtained from numerical simulation. (A-D) Evolution as a function of relative density of Zener’s ratio, of the 

normalized Young’s modulus, of the normalized shear modulus, and of the normalized bulk modulus.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Comparison of the elastic properties of simple-cubic closed tubular lattices and of truss lattices, as obtained
from numerical simulation. (A-D) Evolution as a function of relative density of Zener’s ratio, of the normalized Young’s
modulus, of the normalized shear modulus, and of the normalized bulk modulus.

For cubic lattices, the directional dependence of Young’s modulus can be obtained as [44]

1
Ei jk

=
1
E
−

Z − 1
2G

(
l2i1l2j2 + l2j2l2k3 + l2i1l2k3

)
(2)

where Ei jk is Young’s modulus in the [i jk] direction, and li1, l j2 and lk3 stand for the direction
cosines of the [i jk] direction vector with respect to the principal axes. Fig.3 B shows the evolution
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of the maximum and the minimum Young’s modulus as a function of the relative density, for
both lattices. Hereafter, the effective mechanical properties of the metamaterial are normalized
to those of the basis material and to the relative density, to allow a fair comparison. Both SC
lattices exhibit their stiffest and softest uniaxial Young’s modulus respectively along directions
[100] and [111]. The stiffness of the closed tubular lattice is always larger than that of the truss
lattice, regardless of the loading direction. The choice of loading direction has little influence
on the stiffness of the closed tubular lattice, since it is always stretching dominated, while the
opposite observation is true for the truss lattice: the stiffness of the truss lattice is stretching-
dominated for [100] direction loading and bending-dominated for [111] direction loading. At a
relative density of 0.1, the normalized stiffness of the truss lattice has a maximum of 0.41 and
a minimum of 0.02. At the same relative density, the normalized stiffness of the closed tubular
lattice is 1.12 times larger at the maximum and 18.5 times larger at the minimum. The normalized
stiffness of the closed tubular lattice, whether in the maximum or the minimum direction, is very
close to the theoretical limit for a plain solid. At a relative density of 0.5, the maximum and
minimum values for the closed tubular lattice attain respectively almost 96% and 89% of the
Hashin-Shtrikman(HS) bound.

The definition of the shear modulus requires to consider both the normal to the shear plane
and the direction of shear. It is practical to consider a transformed coordinate system in which
axis 3 is parallel to the normal of the shear plane and axis 2 is the direction of shear. The shear
modulus can then be determined as [45]

Gi jk = G
(
1 + 2

(
1
Z
− 1

) (
a2

31a2
21 + a2

32a2
22 + a2

33a2
23

))
(3)

where the ai j are direction cosines specifying the angle between the ith axis of the transformed
reference frame and the jth axis of the material reference frame. Figure S1C illustrates the scaling
of the maximum and the minimum of the shear modulus as a function of the relative density, for
both the closed tubular lattice and the truss lattice. The shear modulus generally increases with
the relative density. Both lattices have their softest elastic shear modulus when either the shear
direction is [100] or the shear plane is {100}. The lower limit for the closed tubular lattice is much
larger than for the truss lattice. At a relative density of 0.1, the closed tubular lattice possesses a
normalized shear modulus of about 0.39, almost 15.6 times as much as for the solid truss lattice,
and almost reaches 71% of the HS bound. The stiffest elastic shear modulus is found on plane
{100} when the shear direction is [1̄00], almost irrelevant of the choice of strut element. Both
lattices have nearly the same extreme elastic shear response and attain about 93% of the HS
bound even at relative densities as low as 0.1.

Fig.3 D depicts the variation of the bulk modulus as a function of the relative density for the
closed tubular lattice and the truss lattice. The bulk modulus increases with the relative density
for both lattices. It is noted that the closed tubular lattice exhibits a larger bulk modulus than the
truss lattice; it is at least 1.5 times larger at a relative density of 0.1. Moreover, the closed tubular
lattice reaches the HS bound faster than the truss lattice.

For cubic lattices, Poisson’s ratio for arbitrary loading directions is calculated using formulas
from our previous work [19]. Fig.4 illustrates the maximum and the minimum Poisson’s ratio for
both configurations as a function of relative density. Extreme values for SC lattices are always
found along directions [100] and [111]. Generally, Poisson’s ratio increases with the relative
density. However, the upper limit for the SC truss lattice decreases with the relative density.
Moreover, the upper limit and the lower limit for the SC closed tubular lattice are very close
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Figure 4: Comparison of Poisson’s ratio between closed tubular lattice and solid truss lattice, for the material SS316L.

to each other, especially when compared to its competitors. This provides further evidence of
reduced anisotropy.

 

Fig. S3 (A) Engineering stress-strain curves for SC truss and closed tubular lattices at a relative density of 0.1, 

under uniaxial compression along directions [100], [110] and [111]. (B-G) Corresponding contour plots of the 

Normalized von Mises stress in closed tubular and truss lattices at a strain of 0.01. 

 

  

Figure 5: (A) Engineering stress-strain curves for SC truss and closed tubular lattices at a relative density of 0.1, under
uniaxial compression along directions [100], [110] and [111]. (B-G) Corresponding contour plots of the Normalized von
Mises stress in closed tubular and truss lattices at a strain of 0.01. The material considered is SS316L.

3.2. Yield strength

Fig.5 and Fig.6 compare the computed compressive responses of the truss lattice and the
closed tubular lattice. While not isotropic, the closed tubular lattice exhibits a similar linear
elastic behavior along the three high-symmetry directions for all relative densities considered.
In contrast, the linear elastic response of the truss lattice is highly dependent on the loading
direction, especially at low relative density. With regard to the subsequent nonlinear region of
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the compressive response, the closed tubular lattice still offers distinctive advantages over the
truss lattice. The Von Mises stress distributions in Figure Fig.5 B-G clearly indicate that stress in
the closed tubular lattice is distributed much more uniformly than in the truss lattice. As a result,
the closed tubular lattice makes better use of its components than the truss lattice regardless of
the loading direction.

Figure 6: (A-D) Compressive response of truss lattices and closed tubular lattices, with the relative density ranging from
0.2 to 0.5. The material considered is SS316L.

The evolution of the relative yield strength as a function of relative density is summarized
in Fig.7. For the truss lattice, the strongest direction is [100], whereas the weakest direction
is [110]. The yield strength distributions in the closed tubular lattice with relative densities of
0.1 and 0.2 are presented in Fig.7 (C,D). The maximum and minimum values are respectively
found around directions [53,10,0] (as can be identified from the polar plot) and [100]. The yield
strength of the closed tubular lattice is significantly larger than that of the truss lattice. Even in the
worst case, when the loading direction is [100], the closed tubular lattice is stronger than the truss
lattice. Fig.7 B displays the anisotropy of the yield strength. The relative density has little effect
on the yield anisotropy of the closed tubular lattice: the yield strength ratio σmax

Y /σmin
Y is almost

constant and close to 1. In contrast, the truss lattice possesses a much higher yield anisotropy.
At a relative density of 0.1, the yield strength ratio σmax

c /σmin
c ≈ 4. Anisotropy decreases as the

relative density increases.
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Figure 7: (A) Normalized yield strength and (B) yield anisotropy of closed tubular and truss lattices as a function of
relative density. Polar figures for yield strength distribution of the closed tubular lattice are shown with relative densities
(C) 0.1 and (D) 0.2. Similar trends are observed at higher relative densities. The material considered is SS316L.

4. Experiments

Polymeric samples with 4×4×4 unit cells were fabricated from the ’IPS’ resin, using a 3D
commercial printing system (Photonic Professional GT, Nanoscribe GmbH, Germany) with a
speed of 100 mm/s and a laser power of 100 mW. Samples on top of fused silica substrates were
developed via the polymerization of the liquid negative-tone photoresist. A subsequent 20 min
PGMEA(1-methoxy-2-propanol acetate) bath is applied to remove the unexposed photoresist
(see Supporting Information).

Two different configurations with relative densities 0.1 and 0.2 are considered in this work.
For each configuration, two types of samples oriented along directions [100] and [110] were
fabricated by dip-in DLW optical lithography in view of compression tests (see Figure 8). All
samples feature a unit cell length of 200 µm. For the SC truss lattice, relative densities of 0.1
and 0.2 are obtained respectively for a strut diameter of 44.3 µm and 65 µm. For the SC closed
tubular lattice, the tube thickness is respectively 2.3 µm and 5.1 µm. As a note, circular holes of
a diameter of 15 µm had to be added at the center of each face to remove the unexposed resin
(see Supporting Information) [42]. Their effect of the holes on mechanical properties is almost
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Figure 8: SEM images of simple-cubic polymeric samples fabricated via 3D printing technology. Isometric views and
zoom-in views are shown for truss and closed tubular lattices with relative density 0.1. (A) [100] truss lattice and (B)
[100] closed tubular lattice. (C) [110] truss lattice and (D) [110] closed tubular lattice.

insignificant, as detailed in the supplementary material.
Once fabricated, the polymeric microlattices were mechanically tested under uniaxial com-

pression at a constant strain rate of 10−3 s−1. Samples were placed between a fixed glass substrate
and a flat loading device. The loading device equipped with a sensitive force sensor (Go Tronic
model CZL616C or model CZL635-5) was driven by a brushless stepping motor (PI model M-
404.42S, 200-nm resolution) and used to record the reacting force after analog to digital conver-
sion (PhidgetBridge 4-input), see Fig.S5. The linear force sensor was calibrated using a set of
standard masses. The position obtained directly from the linear stage was only used to monitor
the fatigue of the material. Front-view videos of samples were used to monitor the deformation
of the lateral faces and hence to correct the load and displacement curves via an in-house digital
image correlation (DIC) algorithm [46]. For the 800 µm × 800 µm × 800 µm sample, the pixel
resolution is about 550 nm per pixel, which insures the measurement precision. The Young’s
modulus was calculated based on the local axial strain measured from reference points at the
central row of the unit cells (Fig.S2), and yield strengths were taken as the 0.2% offset strength
of the engineering stress-strain curves.

5. Results and discussion

Fig.9 illustrates the result of compressive experiments. Experimental stress-strain curves at
a relative density of 0.1 are shown in Fig.9 A. The [100] truss lattice samples exhibit an almost
linear elastic response followed by a brittle fracture at a stress of about 3 Mpa. The peak stress
is taken as the experimental yield strength εY in the following. The subsequent decrease of
the response continues until the engineering strain reaches 0.15. At this point, the structure
almost looses its loading capacity due to the catastrophic failure of sub-bottom layer struts (see
Fig.9 C and Movie S1). The following oscillations of stress are caused by layers contacting and
collapsing one after the other. In contrast, the catastrophic collapse mode of the [110] truss lattice
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Figure 9: Uniaxial compression experiments of SC [100] and [110] samples with different relative densities. Engineering
stress-strain curves for the closed tubular and the truss lattices are shown for relative density (A) 0.1 and (B) 0.2. Pho-
tographs of the deformed samples during compression are shown for relative density 0.1 for (C) the [100] truss lattice,
(D) the [110] truss lattice, (E) the [100] closed tubular lattice, and (F) the [110] closed tubular lattice. εY is the strain at
the peak stress σY , or the experimental yield strength. All scale-bars are 200 µm long.

sample is greatly reduced, as well as its compressive mechanical response. The brittle failure of
struts along the diagonal direction is mainly affected by shearing forces rather than by nonlinear
buckling (see Fig.9 D and Movie S2).

In the case of the closed tubular lattice samples, the mechanical response and the deforma-
tion mechanisms are completely different. For both directions [100] and [110], a nearly stable
nonlinear response and a progressive failure are observed during compression (see Fig.9 E and
F, and Movie S3 and S4). Deformations are more uniform compared to the truss lattice and
slight oscillations arise from local buckling of the thin tubes. Similar trends were observed for
all samples with the higher relative density 0.2 (see the stress-strain curves in Fig.9 B). The main
difference is that truss lattice samples were completely crushed at an engineering strain of only
0.15. It may be attributed to the fact that struts with large diameters bear larger strength at low
strain and are hence more sensitive to flaws and imperfections.

Table1 summarizes the experimental values of Young’s modulus, the yield strength and the
specific energy absorption (SEA) of all test samples. At low relative density, Young’s modulus
and yield strength of the tubular lattice along the [100] direction are sightly larger than those of
the truss lattice. To evaluate the adaptability between experiments and numerical simulations,
the normalized ratios of the elastic modulus and strength for tubular lattice and truss lattice are
compared. Experimental results are in good agreement with numerical predictions in the [100]
direction, since the deviation between estimated values and experimental results with regards
to both stiffness and strength are less than 9% and 2%, respectively. For the [110] direction,
however, they are respectively 8.05 times and 6.6 times larger. Experimental values for the [110]
direction are respectively 17 % smaller and 20 % larger than the simulated values. Prediction
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Table 1: Mechanical data absorption of the tested samples, including Young’s modulus, yield strength and specific energy,
for different configurations and different relative densities.

Specimens Relative density Direction E (MPa) σY (MPa) SEA (J/g)

Truss lattice 0.1 [100] 97.76 2.95 4
[110] 13.93 0.65 3.13

Tubular lattice 0.1 [100] 112.98 3.99 17.79
[110] 111.13 4.3 19.21

Truss lattice 0.2 [100] 227.35 6.86
[110] 48.77 2.22

Tubular lattice 0.2 [100] 249 8.13 25.13
[110] 270 8.24 25.73

errors maybe attributed to printing errors, imperfections and flaws. Truss lattices seems to be
more sensitive to imperfections and flaws. In addition, unit cell simulations confined by periodic
boundary conditions always provide an estimation that is stiffer than experiments with finite
samples [48]. Moreover, the limited number of unit cells also reduces the elastic response of
stretching-dominated materials with high stiffness [48, 49], whereas it has a limited influence
on bending-dominated materials [36], which refers to the [110] truss lattice here. The opposite
observation is true for the elastic-plastic phase. Therefore, deviations are expected to reduce
when increasing the number of unit cells. Samples at higher relative density show similar trends.
The SEA is defined as the work performed under uniaxial compression up to a strain of 0.5 per

gram of mass as SEA =

(
V

∫ 0.5
0 σdε

)
/M. At low relative density, the SEA for the closed tubular

lattice along the [100] direction and the [110] direction is respectively 4.45 times and 6.14 times
larger than for the truss lattice. For a relative density of 0.2, absolute values SEA = 25.13 J/g and
25.73 J/g are found respectively for directions [100] and [110].

Fig. 10 shows the dependence versus relative density of the average normalized Young’s
modulus and yield strength for the closed tubular lattice, compared with competing isotropic
tubular lattices [40] and shellular lattices [47]. Note that the lattices mentioned above are taken as
representative of the tubular and the shellular families, especially for those lattices [32, 50] with
anisotropic elastic response. It is interesting to observe that both normalized elastic modulus and
yield strength of the closed tubular lattice scale almost linearly with relative density. They can be
approximated by the linear functions E/(Esρ

∗) = 0.365 + 0.475ρ∗ and σ/(σsρ
∗) = 0.4 + 0.48ρ∗.

Both elastic modulus and yield strength are significantly larger than in the case of isotropic tubu-
lar lattices and shellular lattices, with a maximum advantage of 28% in stiffness and of 53% in
strength at a relative density of 0.1. Concurrently, the modulus and strength of the SC closed
tubular lattice reach respectively about 80% and 67% of their respective HS bound. These values
become closer to the HS bound as the relative density increases. When the relative density is
as large as 0.5, modulus and strength almost attain 92% and 81% of their respective HS bound.
The underlying reasons for the outstanding mechanical behavior of the SC closed tubular lattice
can be explained through a comparison with the open-form tubular lattice. As shown in Fig. S6,
the SC open-form tubular lattice is taken as a representative of both tubular lattices and shellular
lattices. First, under uniaxial compression, only the vertical strut of the open-form tubular lattice
supports loading, which is unreasonable from the design point of view. In contrast, the closed-
form tubular lattice makes better use of each component. Second, a larger radius always means
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Figure 10: Comparison of the mechanical properties of shellular and tubular lattices versus relative density. For a fair
comparison, the average normalized (A) Young’s modulus and (B) the yield strength of SC closed form tubular and other
typical counterparts [40, 47] are shown.

a larger moment of inertia and a higher resistance to bending moment and shearing stress. Those
are important reasons for the increase in both stiffness and strength. Third, there exist plenty of
voids around the nodal connections of tubular and shellular lattices. These inherent weaknesses
definitely weaken the mechanical performance, in terms of both stiffness and strength, and lead
to stress concentration around nodes. In contrast, voids are completely avoided in the closed
tubular lattice since three individual entire struts are directly combined. As a direct benefit of the
incredibly stable mechanical response of cylindrical tubes, the resistance of the closed tubular
lattice to buckling strength is further enhanced and recoverablity is foreseeable by further re-
ducing the thickness of the shell [51]. As a whole, the combination of limited loading direction
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dependence, high specific stiffness, strength and irregular stable post-yield response make the
closed tubular lattice a promising candidate for applications to hierarchical structures [52, 53],
load-bearing, as well as impact energy absorption.

6. Conclusion

Here, we have introduced a class of lightweight simple-cubic closed tubular lattice material
possessing high specific stiffness, high specific strength and stable nonlinear response. Com-
pared to the stiffest and strongest smooth shellular lattice and tubular lattice materials, for the
same relative density, the gain in average stiffness and strength is respectively 28% and 53%.
Experiments with samples fabricated by DLW optical lithography and simulations demonstrate
that the replacement of solid struts with closed tubes largely reduces the elastic and the yield
anisotropy of simple-cubic lattice materials. As a direct benefit of the incredibly stable mechan-
ical response of cylindrical tubes, the resistance of the closed tubular lattice to buckling strength
is further enhanced and recoverablity is foreseeable by further reducing the thickness of the shell.
This work provides a feasible pathway for applications in lightweight design, loading support,
and impact energy absorption.
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