
Dual-function thermoelastic cloak based on coordinate transformation theory

Yu-Ze Tian,1 Yan-Feng Wang,1, ∗ Gan-Yun Huang,1, † Vincent Laude,2 and Yue-Sheng Wang1, 3

1School of Mechanical Engineering, Tianjin University, 300350 Tianjin, China
2Institut FEMTO-ST, Univ. Bourgogne Franche-Comté, CNRS, Besançon, France
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In past years, various cloaks have attracted the attention of many scientists but they usually
remain confined to a single function. Cloaks combining multiple functions, however, are desirable.
In this paper, we design thermoelastic cloaks with dual functionality by the coordinate transforma-
tion technique. The transformation of the thermoelastic wave equations for cloaking and explicit
expressions for the required material parameters are established. Symmetrization of the elastic ten-
sor is applied using Norris’ gauge matrix to emphasize the feasibility of the designs. Two different
operating conditions, transient elastic wave propagation and steady heat transfer, are adopted in
numerical calculations for the designed cloaks. It is shown that, on one hand, from the perspective
of observer, whether the cloak is symmetrized or not, its external response is identical and invisi-
bility is reliable. On the other hand, it is destined that the symmetrization of the cloak would be
accompanied by the increase of internal displacement, which may need to be paid attention to in the
actual design. In addition, the temperature effects of both cloaks are consistent. The work in this
paper may pave a way toward the realization of thermoelastic cloaks, thus broadening the research
scope for metamaterials.
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I. INTRODUCTION

Since the concept of metamaterials was proposed, a
large number of devices with abnormal properties have
been designed1. As a popular application, the invisibility
of objects has been widely discussed in different physi-
cal fields. Theories including wavefront regulation based
on the generalized Snell’s law2 and active cloaks based
on scattering extinction3,4 have been widely reported.
Among them, the transformation cloak has achieved wide
recognition due to its flexibility and adaptability to var-
ious conditions. This type of cloak is brought out by
expressing coordinate transformation invariance. Owing
to the simultaneous achievement of invariance in differ-
ent governing equations, objects may be made simulta-
neously invisible to multiphysical incident fields.

Transformation invariance was first found by Green-
leaf through analysis of Maxwell’s equations5. Building
on this idea, Pendry et al.6 and Leonhardt7 both pro-
posed an electromagnetic transformation cloak. A pro-
tected vacuum space would be created in the surround-
ing electromagnetic field, where internal objects could
not be perceived externally and thus would remain hid-
den. Using the analogy between transverse-electric elec-
tromagnetic waves and acoustic waves in inviscid fluids,
a 2D acoustic cloak was further designed by Cummer8.
After that, Chen et al.9 extended the result to the 3D
case and a series solution for acoustic waves was given.
Considering the symmetry of the biharmonic equation, a
layered transformation cloak for thin plates was designed
by Farhat et al.10 with the help of effective medium the-
ory. For a rigorous physical interpretation, Zareei et
al.11 discussed the correlation between the transformed
flexural wave equation and the anisotropic plate model.
Recently, Golgoon et al.12 established a compatibility
equation giving a comprehensive explanation of bend-

ing wave invisibility. On the experimental side, cloaks
for electromagnetic waves13, acoustic waves14 and bend-
ing waves have been successfully demonstrated15. These
results suggest a wider application of effective media the-
ory. Based on transformation theory, cloaks have been
extensively developed as well for heat flows16, diffusion17,
water waves18, and matter waves19.

A difficulty is that transformation theory is not di-
rectly applicable to the Lamé-Navier equations describ-
ing elastic waves in general. The coupling of longitudi-
nal and transverse waves makes the manipulation even
more difficult. Milton et al.20 provided an improvement
for the coordinate transformation of the elastodynamic
equation. The transformed elastic constitutive relations
are highly consistent with the Willis equations proposed
in 198121. Acknowledging this fact, the designed cloak is
known as a Willis-cloak. Discarding the symmetry of the
elastic tensor, the transformation was further simplified
by Brun et al.22. Nassar et al.23 gave a solution to asym-
metric constitutive relation with degenerate polar lattice.
Then, based on microcontinuum theory, a static cloak
has been successfully demonstrated experimentally with
Cosserat materials by Xu et al24. Subsequently, Norris
et al.25 summarized these two types of cloaks and es-
tablished a common framework. Interestingly, the above
designs can be simplified if mixed modes can be sepa-
rated. The proposal of pentamode metamaterials made
this concept possible26 and also provided a new pathway
for the design of acoustic metasurfaces27–29.

Since different physical fields are often associated in
practice, cloaks with a single function may not pro-
vide the expected invisibility. For example, electric-
ity and heat flows, and traveling stresses always coexist
in computing devices. Temperature rise and unevenly
distributed stress on the substrate are often the main
reasons of damage. In the field of high-speed PCBs30
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or chips31, heat concentration32,33 and the excitation of
elastic waves34,35 have attracted much attention. Syvret
et al.36 analyzed the possible breaking of thermal invisi-
bility caused by coupling effect, illustrating the shortcom-
ings of existing single function cloaks in a coupled field.
Li et al.37 provided a design for a dual-function trans-
formation cloak with simultaneous heat flow and electric
field regulation. This design was further expanded by Ma
et al.38 and by Stedman et al.39. The physical coupling
effect, however, was still not considered. In the case of
thermo-mechanical coupling, an elastostatic cloak under
thermal gradients was designed by Alvarez et al.40. It
can ensure the independent response of the background
and the central hole. However, the cloak protection and
the invisibility in the temperature field are not achieved.
The design of dual-function thermoelastic cloaks includ-
ing physical coupling effects thus still needs further ex-
ploration.

In this paper, we develop transformation theory un-
der the frame of thermoelasticity. The transformed
thermoelastic equations, based on Biot’s thermoelastic-
ity theory41, are derived. Symmetrization of the trans-
formed elastic tensor by application of a gauge matrix
and the correct setting of boundary conditions is dis-
cussed. Both transformed thermoelastic equations are
verified by numerical evaluation of the resulting cloaks.
Their invisibility and isolation capabilities are compared.
It is expected that this work can lay a theoretical foun-
dation for transformation thermoelasticity.

II. TRANSFORMATION THEORY

The original space and the transformed space are de-
noted by Π and π, respectively. Particles in correspond-
ing spaces are described by vectors XI and xi, between
which a point-wise mapping F is determined. The trans-
formation matrix is defined as FiI = ∂xi/∂XI . The up-
percase and lowercase subscript correspond to the factors
in two spaces respectively. Furthermore, Norris’ gauge
matrix Aij

25 is introduced:

UI = AiIU
′

i (1)

where UI and U
′

i correspond to the displacement vector
fields in spaces Π and π, respectively. The summation
convention on repeated subscripts is assumed.

A. Transformation thermoelasticity theory

In any subspaces Ω ⊆ Π the thermoelastic dynamical
equations in the absence of source read:

(CIJKLUL,K + βIJ∆T ),J = ρÜJ , (2)

(κJLT,L),J = CvṪ + T0βKLU̇L,K , (3)

FIG. 1: Spatial configuration (a) before and (b) after coordi-
nate transformation.

where CIJKL is a fourth-order elasticity tensor satisfying
the full symmetry:

CIJKL = CJIKL = CIJLK , CIJKL = CKLIJ . (4)

ρ is the isotropic scalar mass density and Cv is the volu-
metric heat scalar capacity. βIJ and κKL are the second-
order thermal expansion tensor and thermal conductivity
tensor, respectively. Anisotropy of these two tensors is
allowed and their symmetry is generally guaranteed.

For simplicity, the boundary ∂Ω is set to satisfy the
zero-flux condition for both physical fields:

nI (CIJKLUL,K + βIJ∆T ) dS|∂Ω = 0, (5)

nJ (κJLT,L) dS|∂Ω = 0. (6)

The physical interpretations of these conditions are
traction-free and insulating boundary, respectively.
These boundary conditions actually have no effect on the
subsequent conclusions. We further define the stress ten-
sor by sIJ = CIJKLUL,K + βIJ∆T and the heat flux
vector by qJ = κJLT,L. The flux conservation relation
on the boundary of an arbitrary subdomain M ⊆ Ω ex-
presses as:

nIsIJdS|∂M,in = nIsIJdS|∂M,out , (7)

nJqJdS|∂M,in = nJqJdS|∂M,out , (8)

where the subscripts in and out are used to distinguish
the inside and the outside of the boundary, as shown in
Fig. 1(a).

A subdomain m ⊆ π can be obtained by application of
the mapping m = F(M). In general, the spatial topology
of m is only determined by the mapping F : M → m.
In this paper, its outer boundary is set to be attached
to the outside of ∂M as shown in Fig. 1(b). Such a
configuration ensures that the background field is not
affected by the coordinate transform.

First, the continuity on the boundary ∂m needs to be
guaranteed. Using the chain rule and Nanson’s formula
on Eqs. (7) and (8), the flux relationship under the co-
ordinate transformation should be set as:

n′iJ
−1FiI (CIJKLUL,KFkK + βIJ∆T ) dS

∣∣
∂m,in

=

nIsIJdS|∂M,out , (9)
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n′jJ
−1FjJ (κJLT,lFlL) dS

∣∣
∂m,in

= nJqJdS|∂M,out ,

(10)

where J , det(F ) is the Jacobian determinant of matrix
F . Considering the transformed parameters:

C ′iJkL = J−1FiIFkKCIJKL, (11)

β′iJ = J−1FiIβIJ , (12)

κ′jl = J−1FjJFlLκJL, (13)

ρ′ = J−1ρ, (14)

C ′v = J−1Cv, (15)

and transformed variables:

U ′i = Ui, (16)

T ′ = T, (17)

the flux relationship Eqs. (9) and(10) can be expressed
as:

n′i
(
C ′iJkLU

′
L,k + β′iJ∆T ′

)
dS
∣∣
∂m,in

= nIsIJdS|∂M,out ,

(18)

n′j
(
κ′jlT

′
,l

)
dS
∣∣
∂m,in

= nJqJdS|∂M,out ,

(19)

while the governing equation in m under the transformed
coordinate can be also obtained:(

C ′iJkLU
′
L,k + β′iJ∆T ′

)
,i

= ρ′Ü ′J , (20)(
κ′jlT

′
,l

)
,j

= C ′vṪ
′ + T0β

′
klU̇
′
L,k. (21)

The transformed boundary conditions Eqs. (18) and (19)
can be noted to have the same forms as Eqs. (7) and (8)
while the transformed governing equations (20) and (21)
have the same forms with Eqs. (2) and (3), too. This
similarity makes it possible to give an interpret physi-
cally each term in the transformed equations. In partic-
ular, the transformed thermoelastic constitutive relation
reads:

σ′iJ = C ′iJkLU
′
L,k + β′iJ∆T ′. (22)

If matrix F is not symmetric, then the asymmetry of
the elastic tensor and of the thermal stress tensor results
from the absence of minor symmetries:

C ′iJkL 6= C ′JikL, C ′iJkL 6= C ′iJLk, β′iJ 6= β′iJ . (23)

To give an explicit physical interpretation, we define:

C ′EiJkL =
1

2
(C ′iJkL + C ′iJLk) , (24)

D′EiJkL =
1

2
(C ′iJkL − C ′iJLk) , (25)

ω′kL =
1

2

(
∂U ′k
∂x′L

− ∂U ′L
∂x′k

)
, (26)

β′iJ∆T ′ = C ′EiJkLα
′ε
kL∆T ′ +D′EiJkLα

′ω
kL∆T ′. (27)

Furthermore Eq.(22) can be written:

σ′iJ = C ′EiJkL
(
ε′EkL + α′εkL∆T ′

)
+D′EiJkL

(
ω′EkL + α′ωkL∆T ′

)
.

(28)
ω′EkL is the antisymmetric rotation tensor. The two ther-
mal related tensors α′εkL and α′ωkL are the strain tensor and
the rotation tensor per unit temperature, respectively.
The former is obviously consistent with the linear ther-
mal expansion tensor, the anisotropy of which is thus
allowed, while the latter is a case covered in42. In the
case that the stress σ′iJ is asymmetric, the couple stress
should be introduced:

m′iJ = B′EiJkL
(
ε′EkL + α′εkL∆T ′

)
+A′EiJkL

(
ωE
kL + α′ωkL∆T ′

)
,

(29)
where B′EiJkL = D′EkLJi. The constitutive relation given by
Eqs. (28) and (29) is known as micropolar theory43. One
can program these material parameters by artificially de-
signing chiral non-centrosymmetric unit cells44.

Eqs. (20) and (21) have similarities with Eqs. (68) and
(69) given in Ref. [36]. This does not imply the common-
ality of coordinate transformation theory and incremen-
tal theory, however, as both theories have obvious dif-
ferent physical meanings. Transformation theory is built
upon the mapping between different spaces Π and π from
which one obtains the material parameter distribution
that is required to achieve a desired function. Incremen-
tal theory builds a transformation between two different
reference configurations of the same physical body, with
the aim of solving problems in a unified form.

By adjusting the mapping F , different material param-
eter distributions can be obtained45. The subdomain m
would be designed as a wave-steering device with differ-
ent functions, such as a rotator, a lens or an invisibility
cloak. The invisibility cloak may be considered a spe-
cial case as one or more holes need to be introduced in
the domain represented in Fig. 1(b). Such changes in
topology lead to singularities, inevitably.

When thermoelastic coupling is negligible, the above
configurations will degenerate into a decoupled Cosserat-
type transformation elastic cloak and a decoupled trans-
formation heat cloak:(

C ′iJkLU
′
L,k

)
,i

= ρ′Ü ′J , in m, (30)(
κ′jlT

′
,l

)
,j

= C ′vṪ
′, in m, (31)

with boundary conditions:

n′iC
′
iJkLU

′
L,kdS

∣∣
∂m,in

= nICIJKLUL,KdS|∂M,out ,

(32)

n′jκ
′
jlT
′
,ldS

∣∣
∂m,in

= nJκJLT,LdS|∂M,out . (33)

B. Symmetrized transformation thermoelasticity
theory

The asymmetric constitutive relations defined by
Eqs.(28) and (29) may be achieved by materials contain-
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ing chiral structures, though its artificial design in this
case is always limited by non-centrosymmetry44. How-
ever, there are many reports on the artificially designed
arbitrary symmetric elastic constitutive relations46–52

and thermal expansion tensors53–55. Thus, one may hope
to seek an approach to make material tensors defining the
devices symmetrical, at the same time retaining the per-
formance of the design to a permissible level.

Technically, the remaining two capital subscripts in
space Π in Eq. (20) need to be transformed into space π
to ensure the symmetry of subscript pairs (i, j) and (k, l).
In this section, the gauge transformation defined by Eq.
(1) is introduced, similar to Milton et al20 and Norris
et al25, to test the mechanism of this method under the
transformation thermoelastic frame. We select AiI = FiI

in order to symmetrize the elastic and thermal expansion
tensors, which leads to new governing equations. To dis-
tinguish notations from the previous section, U

′′

i is used
here to represent the displacement after gauge transfor-
mation (the domain here is named differently m′):[

J−1FiICIJKLFkK (AlLU
′′
l ),k + J−1FiIβIJ∆T

]
,i

=

J−1ρ
(
AiJ Ü

′′
i

)
, in m′, (34)

[
J−1FiI (κIJFjJT,j)

]
i

= J−1CVṪ + J−1FiIβIJ
(
AjJU

′′
j

)
,i
,

in m′, (35)

with boundary conditions:

n′iJ
−1FiI

(
CIJKLFkK (AlLU

′′
l ),k + βIJ∆T

)
dS
∣∣∣
∂m′,in

=

nIsIJdS|∂M,out , (36)

n′iJ
−1FiI (κIJFjJT,j) dS

∣∣
∂m′,in

= nIqIdS|∂M,out ,

(37)
and implicit continuity conditions:

AiIU
′′
i |∂m′,in = UI |∂M,out , (38)

After these processes, the physical meaning of the terms
in Eq.(34) is still unclear. The mass density is effectively
not only anisotropic but also asymmetric. The coupling
terms in Eq. (34) and Eq. (35) do not match as well.
Gauge freedom can be invoked again: gauge matrix AiI

can be multiplied with the free index I on both sides of
Eq. (34). Mathematically, it means only considering a
linear combination of the system of equations, which is
equivalent to the initial system of equation if A is non
singular. For the same reason, boundary condition Eq.
(36) is preserved. The distribution of displacement would
not be changed due to the uniqueness of the solution of
the wave equation:

AjJ

[
J−1FiICIJKLFkK (AlLU

′′
l ),k + J−1FiIβIJ∆T

]
,i

=

J−1AjJρ
(
AiJ Ü

′′
i

)
, in m′. (39)

Because the gauge matrix only rearranges the distribu-
tion of the displacement Ui inside subdomain m, the ex-
ternal environment is not influenced, and the same solu-
tion as in Eq. (20) can be obtained. Still, it is difficult
to explain the physical meaning of the equation clearly.
Using the identity:

(PijQjk),i = (Pij),iQjk + Pij (Qjk),i , (40)

Eq. (39) can be transformed into a new governing equa-
tion:(

C ′′ijklU
′′
l,k + S′′ijlU

′′
l + β′′ij∆T

)
,i

=

ρ′′ijÜ
′′
i +D′′jklU

′′
k,l + E′′jlU

′′
l + γ′′j ∆T, in m′, (41)

with:

C ′′ijkl = J−1FiIAjJFkKAlLCIJKL, (42)

S′′ijl = J−1FiIAjJAlL,KCIJKL, (43)

D′′jkl = J−1AjJ,IFkKAlLCIJKL, (44)

E′′jl = J−1AjJ,IAlL,KCIJKL, (45)

ρ′′ij = J−1AiIAjJρ, (46)

β′′ij = J−1FiIAjJβIJ , (47)

γ′′j = J−1AjJ,IβIJ . (48)

Due to the limitation of Eq.(38) , the degradation condi-
tion needs to be introduced on the boundary:

AiI |∂m′,in = IiI |∂m′,in . (49)

where IiI is the identity matrix. Therefore a more general
continuity condition can be obtained:

U ′′I |∂m′,in = UI |∂M,out . (50)

with the stress equilibrium boundary condition:

n′i
(
C ′′ijklU

′′
l,k + S′′ijlU

′′
l + β′′ij∆T

)
dS
∣∣
∂m′,in

=

nIsIjdS|∂M,out . (51)

Since the gauge matrix is only a local transformation of
the dependent variable, the normal vector n′i in Eq.(51)
would not be changed. The adjustment from Eq.(39) to
Eq.(41) does accompany the change of flux/stress rela-
tionship, but the displacement field U ′′i is not affected.
One can choose an arbitrary subdomain Φ within m′,
on whose boundary ∂Φ the flux condition derived from
Eq.(39) reads:

n′iJ
−1FiI

(
CIJKLFkK (AlLU

′′
l ),k + βIJ∆T

)
dS
∣∣∣
∂Φ,in

=

n′iJ
−1FiI

(
CIJKLFkK (AlLU

′′
l ),k + βIJ∆T

)
dS
∣∣∣
∂Φ,out

,

(52)

while the one derived from Eq.(41) reads:

n′i
(
C ′′ijklU

′′
l,k + S′′ijlU

′′
l + β′′ij∆T

)
dS
∣∣
∂Φ,in

=

n′i
(
C ′′ijklU

′′
l,k + S′′ijlU

′′
l + β′′ij∆T

)
dS
∣∣
∂Φ,out

. (53)
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Eqs.(52) and (53) are the specific expressions of Cauchy
formula with different definitions of stress given by
Eqs.(39) and (41), respectively. It is obvious that they
are inconsistent in physical meaning. After multiplying
both ends of Eq.(52) by AjJ , it would be noticed that the
two actually have the same constraint on U ′′i . In addition,
considering the degradation condition Eq.(49), Eq.(36) is
equivalent to Eq.(50) on ∂m′. Therefore, the conclusion
can be drawn that the above process would not make any
differences to the performance of our target.

Then, we represent the temperature in heat-
conduction equations (21) under transformed coordi-
nates:

T ′′ = T , (54)

with the parameters:

κ′′jl = J−1FjJFlLκJL, (55)

C ′′V = J−1CV, (56)

The symmetrized transformation thermoelastic govern-
ing equations and boundary conditions are given by:(

C ′′ijklU
′′
l,k + S′′ijlU

′′
l + β′′ij∆T

′′)
,i

=

ρ′′ijÜ
′′
i +D′′jklU

′′
k,l + E′′jlU

′′
l + γ′′j ∆T ′′, in m′,(

κ′′jlT
′′
,l

)
,j

= C ′′VṪ
′′ + β′′klT0U̇

′′
l,k + γ′′l T0U̇

′′
l , in m′,

n′i
(
C ′′ijklU

′′
l,k + S′′ijlU

′′
l + β′′ij∆T

′′)dS
∣∣
∂m′,in

=

nISIjdS|∂M,out ,

n′j
(
κ′′jlT

′′
,l

)
dS
∣∣
∂m′,in

= nIqIdS|∂M,out .

(57)
Interestingly, although the displacement field is changed
by both gauge matrix and coordinate transformation ma-
trix, the temperature field is only affected by the lat-
ter. Therefore, a same temperature distribution with
the asymmetric transformation thermoelasticity theory
would be obtained under the symmetrized one.

Similar to the previous discussion, when the thermoe-
lastic coupling effect is negligible, the above equations
will degenerate into a decoupled Willis-type transforma-
tion elastic cloak and a decoupled transformation heat
cloak:(
C ′′ijklU

′′
l,k + S′′ijlU

′′
l

)
,i

= ρ′′ijÜ
′′
i +D′′jklU

′′
k,l + E′′jlU

′′
l , in m′,

(58)

(
κ′′ijT

′′
,j

)
,i

= C ′′VṪ
′′ in m′, (59)

with boundary conditions:

n′i
(
C ′′ijklU

′′
l,k + S′′ijlU

′′
l

)
dS
∣∣
∂m′,in

=

nI (CIJKLUL,K) dS|∂M,out , (60)

n′j
(
κ′′jlT

′′
,l

)
dS
∣∣
∂m′,in

= nJqJdS|∂M,out . (61)

III. SIMULATION RESULTS

In this section, both transformation thermoelasticity
theories described in Sect. II.A and Sect. II.B are ex-
plored within the context of an invisibility cloak. For
convenience, they are designated as asymmetric and
symmetrized dual-function thermoelastic cloaks, respec-
tively. Their performance is evaluated through numeri-
cal simulation by comparing with the cases of a uniform
medium and of an unprotected hole. The partial differen-
tial equation (PDE) package of COMSOL multiphysics is
used for numerical calculations in this paper. Due to the
continuity condition of Eq.(49) that is introduced by the
symmetrization process, the linear affine mapping that
is generally considered in the literature is not applica-
ble. Instead, a nonlinear transformation F is adopted.
It reads in cylindrical coordinates:

r′ =
r1

r2
2

r2 +
r2 − 2r1

r2
r+ r1, θ′ = θ, z′ = z, r ∈M ,

(62)
with the monotonicity condition:

r2 ≥ 2r1, (63)

where r1 and r2 are the inner radius and outer radius
of the cloak. F satisfies r′(r2) = r2, r′(0) = r1, and
dr′/dr(r2) = 1. Matrix F reads in Cartesian coordinates:

F = R(θ′)

 dr′/dr 0 0
0 r′/r 0
0 0 1

R(−θ′) (64)

where

r (r′) =

√
(r2 − 2r1)

2
+ 4r1 (r′ − r1)− (r2 − 2r1)

2r1
r2

.

(65)
Consequently, the region r′ < r1 is removed from space
Ω so that anything placed there would be invisible. One
should mention that for a perfect cloak, F(X = O) may
not represent a single point in m. However, it will in-
evitably lead to infinite material parameters, so we re-
place it with a micropore near the point X = O which
would be called as inner-diameter defect in this paper.

Copper is taken as the background medium character-
ized by lamé constants λ = 95 GPa and µ = 40 GPa,
mass density ρ = 8960 kg/m3, isotropic thermal con-
ductivity κ = 397 W/(m · K), volumetric heat capacity
CV = 3.5 J/

(
m3

· K
)

and isotropic thermal expansion
coefficient β = 6MPa/K.

A. Transient elastic wave

High-frequency compressional waves excited by
thermal-electro-mechanical coupling are a major prob-
lem on microelectronic substrates. Energy transfers
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FIG. 2: Distribution of displacement ux under the excita-
tion of elastic waves in different systems: (a) a homogeneous
isotropic medium; (b) the same medium with a traction-free
hole; (c) the traction-free hole covered with the asymmet-
ric dual-function thermoelastic cloak; (d) the traction-free
hole covered with the symmetrized dual-function thermoe-
lastic cloak.

between different components in the form of temperature
(heat) and mechanical (elastic wave) fluctuations, and
finally concentrates at the holes. Thermoelastic energy
concentration is one of the main reasons for the reduc-
tion of the service life of components and equipments,
especially under heavy computational loads. Protective
cloaks possibly could reduce this phenomenon.

The numerical model in this section is set as follows.
A L = 20l0 long x-polarization line excitation source, lo-
cated to the left of the cloak a distance d = 10l0 from its
center, oscillates at frequency f0 = 150 kHz with an am-
plitude of A0 = 100 µm. The wavelength of the incident
longitudinal wave is l0 =

√
λ+ 2µ/ρ/f0 = 29.4 mm.

The inner and outer radius of the cloak is set to r1 = l0
and r2 = 3l0, respectively. To ensure convergence, the
maximum mesh element size is set to one twentieth of
the wavelength l0. Transient analysis is performed, since
the governing equation for temperature in (3) is a dif-
fusion equation without time-harmonic characteristics.
The background boundary is set as both traction-free and
thermally insulating, following Eqs. (5) and (6). The ex-
act boundary condition has no incidence on the results
as long as the background medium is chosen wide enough
to avoid reflections. The inner boundary of the cloak is
set as traction-free and thermally insulating as well.

The displacement along the x-direction shown in Fig. 2
is the primary physical variable under investigation. For
reference, Fig. 2(a) shows the unimpeded propagation of
thermoelastic waves. Due to the introduction of a hole,
as shown in Fig. 2(b), forward propagation of the wave is
partially blocked and scattering to the upper and lower

FIG. 3: Distribution of displacement uy under the excita-
tion of elastic waves in different systems: (a) a homogeneous
isotropic medium; (b) the same medium with a traction-free
hole; (c) the traction-free hole covered with the asymmet-
ric dual-function thermoelastic cloak; (d) the traction-free
hole covered with the symmetrized dual-function thermoe-
lastic cloak.

sides occurs. Scattering is well removed after covering
the hole with the asymmetric dual-function thermoelas-
tic cloak, as shown in Fig. 2(c). The hole is effectively
isolated from the background medium by the cloak and
has thus little influence on the displacement field. Things
are a little different when the symmetrized dual-function
thermoelastic cloak covers the hole, as shown in Fig.
2(d). Consistently with the analysis of Sect. II.B, the
displacement field outside the cloak region appears vi-
sually the same as in Fig. 2(c). However, the displace-
ments inside the cloak is significantly rearranged by the
gauge matrix. Since Eq. (1) does not define a norm pre-
serving mapping, the amplitude obviously changes. This
peculiarity does not affect invisibility but creates some
concentration of energy around the hole.

The contrast is more prominent considering the dis-
placement along the y direction, as shown in Fig. 3.
Compared with the displacement concentration at the
edge of the finite line source, the displacement caused
by scattering at the hole in Fig. 3(b) is dominant. The
asymmetric dual-function thermoelastic cloak shown in
Fig. 3(c) ensures that the external environment is almost
unaffected by the hole. The symmetrized cloak shown in
Fig. 3(d) also hides the hole in the far field, but some en-
ergy concentration occurs in its interior. The difference
between both cloaks may be explained from the perspec-
tive of the constitutive relations. The asymmetric cloak
adopts a constitutive relationship similar to that of chiral
materials, see Eqs. (28) and (29). The rotational stiff-
ness is thus the main factor in wave manipulation. In
contrast, the symmetrized cloak mainly depends on the
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FIG. 4: Distribution of the temperature variation ∆T un-
der the excitation of elastic waves in different systems: (a) a
homogeneous isotropic medium; (b) the same medium with
a traction-free hole; (c) the traction-free hole covered with
the asymmetric dual-function thermoelastic cloak; (d) the
traction-free hole covered with the symmetrized dual-function
thermoelastic cloak.

unique Willis coupling terms and on the anisotropic mass
of Willis materials. As a consequence, waves are redi-
rected by means of the coupling of vibrations along dif-
ferent directions. The difference in the regulation mech-
anisms may also provide a physical interpretation to the
differences in Fig. 2(c)(d). In addition, consistent invisi-
bility of external fields in Figs. 2(c)(d) and Figs. 3(c)(d)
is also observed for both regulation mechanisms. This
results from the fact that Willis materials share similar
characteristics with chiral materials56, even if coupling
is considered. However, for the practical application of
symmetrized cloaks based on Willis materials, more at-
tention should be paid to the dramatic increase in inter-
nal displacement fields.

Fig. 4 shows the thermal field accompanying high fre-
quency waves, which also implies the transfer of ther-
mal energy on the substrate. The temperature field is
mainly dominated by time-dependent terms in Eq. (3),
the volumetric heat capacity in Eqs. (15) and (56), and
the thermal expansion tensors in Eqs. (12), (47) and
(48). Fig. 4(b) shows the change in the temperature
field resulting from the introduction of a hole in the uni-
form medium. The temperature distribution is obviously
affected. Thermal concentration would lead energy to
accumulate at the hole over time, which is potentially
harmful to the inserts contained in it. Different from the
displacement fields, both cloaks (see Fig. 4(c,d)) mask
the presence of the hole and guide the heat flow smoothly
around it with the same signature. This observation is
consistent with the statement that the introduction of
the gauge matrix does not affect the temperature field.

FIG. 5: Power flow at distance r = 6l0 as a function of di-
rection. Considered are the homogeneous isotropic medium
(black solid curve), the traction-free hole (black dashed
curve), the traction-free hole covered with an asymmet-
ric dual-function thermoelastic cloak (blue solid curve), the
traction-free hole covered with a symmetrized dual-function
thermoelastic cloak (red solid curve).

Furthermore, under the same design strategy, the asym-
metric dual-function cloak using chiral materials and the
symmetrized cloak using Willis materials always share
the same thermal coupling characteristics. The symme-
try process is thus not affected by coupling.

For quantitative analysis, the disturbance caused by
the introduction of the hole and of the cloak must be
obtained. Under thermal coupling, the scattered-field
formulation may be no longer be applicable. Radiation
characteristics are here described by the time-averaged
power flow defined by

e (r, t0) =
1

T

∫ t0+T

t0

−n(r) · [σ(r, t) · u̇(r, t)+κ(r) ·∇T (r, t)]dt.

(66)
This formula combines both elastic and thermal radia-
tion. Fig. 5 shows power flow from the region r < 6l0
(abbreviated as ψ) as a function of direction, for dif-
ferent configurations. Negative e (r0, t0) < 0 indicates
that power flows into ψ at point r0, whereas positive
e (r0, t0) > 0 indicates power radiates from ψ at point
r0. Since the thermoelastic wave is incident from the
left, region ψ always receives power in angles in the range
[90◦, 270◦] and radiates power in other directions. The
homogeneous isotropic media is considered as a reference.
After introduction of the hole, scattering from its edge
causes a significant change in the power flow characteris-
tics, resulting in a low correlation of 93.15%. Changes are
most prominent around 0◦ and in the range [90◦, 270◦].
When the hole is covered with an asymmetric cloak or
a symmetrized cloak, the power flow distribution almost
coincides with the reference one. The correlation is re-
stored to 99.95% and 99.94%, respectively. Minor devia-
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FIG. 6: Distribution of displacement ux under heat flow for
different systems: (a) a homogeneous isotropic medium; (b)
the same medium with a traction-free hole; (c) the traction-
free hole covered with the asymmetric dual-function thermoe-
lastic cloak; (d) the traction-free hole covered with the sym-
metrized dual-function thermoelastic cloak.

tions, mainly caused by internal diameter defects, can be
noticed; though they may be unavoidable they remain in-
consequential. In addition, the high coincidence for both
cloaks (with a correlation of 99.99%) also shows the prac-
tical equivalence of the two transformation thermoelastic
theories with regards to radiation.

B. Steady heat transfer

The performance of both cloaks is now tested under the
application of a temperature gradient applied between
the left and right sides of the computation domain. The
numerical model is set as follows. A square with length L
is set as the substrate. Its center coincides with the center
of the cloak. The inside and outside radiuses of the cloak
are identical to Section 3.1. A temperature difference
∆T = 60K is applied between the left and the right
sides of the substrate. Both upper and lower boundaries,
and holes are set as traction-free and thermally insulating
boundaries. Steady state analysis is adopted here.

The displacements ux and uy caused by the temper-
ature difference are shown in Fig. 6 and Fig. 7. As
shown in Fig. 6(a), displacements are enhanced at the
free boundaries of the homogeneous substrate. After in-
troduction of the hole, as shown in Fig. 6(b), displace-
ments around the hole increase slightly. The asymmetric
cloak shown in Fig. 6(c) counters this increase while leav-
ing the substrate apparently unaffected by the hole. In

FIG. 7: Distribution of displacement uy under heat flow for
different systems: (a) a homogeneous isotropic medium; (b)
the same medium with a traction-free hole; (c) the traction-
free hole covered with the asymmetric dual-function thermoe-
lastic cloak; (d) the traction-free hole covered with the sym-
metrized dual-function thermoelastic cloak.

the case of the symmetrized cloak (Fig. 6(d)), invisibil-
ity is still guaranteed. However, the Willis material used
in the cloak under steady state shows obvious flexibil-
ity, which results in significant displacement variations
inside the cloak. Although it has no effect on the back-
ground medium, this concentration may lead to compres-
sion of inserts placed the hole. Similar features are ob-
served are Fig. 7. The concentration introduced by the
symmetrization process is contrary to expectations and
may need further improvements. In summary, on the one
hand, both dual-function cloaks under heat flow provide
invisibility; on the other hand, the symmetrization pro-
cess may destroy the elastic isolation of the hole from the
background media.

The temperature field shown in Fig. 8 is governed only
by the steady-state heat conduction equation:

(κIJT,J),I = 0. (67)

The direction of heat flow in both cloaks is determined
by the transformed thermal conductivity (Eq.13) with
the governing equation:(

κ′ijT
′
,j

)
,i

= 0, (68)

which is the same as the traditional heat cloak16. Ob-
viously, the temperature field is decoupled in the steady
state. Therefore, relevant conclusions are consistent with
the previous literature on the heat cloak.
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FIG. 8: Distribution of the temperature variation ∆T under
heat flow for different systems: (a) a homogeneous isotropic
medium; (b) the same medium with a traction-free hole;
(c) the traction-free hole covered with the asymmetric dual-
function thermoelastic cloak; (d) the traction-free hole cov-
ered with the symmetrized dual-function thermoelastic cloak.

IV. DISCUSSION AND CONCLUSION

In this paper, transformation theory has been extended
to the framework of thermoelasticity. The governing
equations for transformation thermoelasticy are derived.
Two transformation strategies, involving either asym-
metric or symmetrized elastic tensors, are given. The
influence of the symmetrization process on boundary con-
ditions is included. Degenerate conditions are proposed
to ensure its feasibility. Numerical simulations are con-
ducted to analyze the regulation mechanisms of both the-
ories within the context of a dual-function thermoelastic
invisibility cloak designed from a nonlinear coordinate
transformation. Two operation conditions are consid-

ered.

Under transient elastic wave excitation, both cloaks en-
sure invisibility and isolation of the hole from the outside
field. The identity of the two transformation thermoelas-
ticity theories has been verified. Very similar tempera-
ture fields are obtained for both theories under the same
design strategy. Mathematical and physical interpreta-
tions are given for the differences in the displacement
fields resulting from the symmetrization process. A time-
averaged power flow is proposed to verify quantitatively
the performance of the cloaks.

Under steady heat transfer, it is still found that in-
visibility is maintained for both displacement and tem-
perature fields. However, the Willis material used in the
symmetrized cloak shows obvious softness in the steady
state, with large displacements around the holes. This
characteristic may result in compression of inserts in the
hole.

Our work attempts to advance transformation the-
ory to the thermoelastic framework. It is still worth
noting that the asymmetric thermal expansion tensor
and the newly introduced physical quantities resulting
from symmetrization still need further exploration. From
the perspective of transformation thermoelasticity, the
cloak concept appears to be valuable, owing to the fact
that the terms of displacement coupling and displace-
ment gradient coupling are in similar positions with the
temperature-dependent terms in Eq. (54). Further work
to be carried out include finding an approximate solution
for the structure of the cloak with the help of effective
medium theory, and performing experimental demonstra-
tions.
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