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The Statistics of the Cross-Spectrum and the
Spectrum Average: Generalization to Multiple

Instruments
Antoine Baudiquez, Éric Lantz, Enrico Rubiola, François Vernotte

Abstract—This article addresses the measurement of the power
spectrum of red noise processes at the lowest frequencies, where
the minimum acquisition time is so long that it is impossible
to average on a sequence of data record. Therefore, averaging
is possible only on simultaneous observation of multiple instru-
ments. This is the case of radio astronomy, which we take as the
paradigm, but examples may be found in other fields such as
climatology and geodesy.
We compare the Bayesian confidence interval of the red-noise
parameter using two estimators, the spectrum average and the
cross-spectrum. While the spectrum average is widely used, the
cross-spectrum using multiple instruments is rather uncommon.
With two instruments, the cross-spectrum estimator leads to the
Variance-Gamma distribution. A generalization to q devices is
provided, with the example of the observation of millisecond
pulsars with 5 radio telescopes.

Index Terms—Bayesian statistics, Monte Carlo simulation, con-
fidence interval, cross-spectrum, spectrum average, Karhunen-
Loève transform, QR decomposition, characteristic function,
probability density function.

I. INTRODUCTION

The term red noise refers to a variety of processes sharing
the property that the power spectral density (PSD) grows

at low frequency as 1/f2 (Brownian noise) or 1/fα, with
α > 2. We are interested in the estimation of the PSD of such
random signals out of the background noise of the instrument
in the specific case of very slow phenomena, which take too
long acquisition time for the average on a sequence of data
sets to be viable. Therefore, averaging out the background
is possible only by exploiting simultaneous measurements of
the same signal taken with multiple instruments, under the
obvious hypothesis that they are independent. The frequency
stability of the millisecond pulsars is the example we have
in mind. Such rapidly rotating neutron stars, emitting highly
stable periodic pulses out of the magnetic poles, rival the best
atomic clocks [1]–[4]. Among other fields, slow phenomena
are found in climatology [5] and geodesy, the latter nowadays
measured with Very Large Baseline Interferometry [6].
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With the purposes stated in mind, we compare the efficiency
of the spectrum average (s.a) and with the cross-spectrum (c-
s) measuring the signal with q instruments simultaneously.
The s.a estimator is the average of the q observed spectra
Si, weighted with the background noise σ2

N,i of the i-th
instrument. The c-s method is the average of the all com-
binatorial choices of the cross-spectrum Sj,i, i 6= j. The s.a
is the classical estimator used in these cases [7], while the
c-s is rather uncommon. Data are analyzed with the Bayesian
statistics, also known as the inverse problem, which consists of
estimating the most probable value of the signal (the slowest
spectral components) from the experimental outcomes and
their statistical properties. We take the 95% upper limit as the
efficiency criterion. Accordingly, the most efficient estimator
is the one that provides the most stringent upper limit with
the same data set.
Our previous article [8] shows that the Variance-Gamma (V Γ)
distribution is the exact solution for the probability density
function (PDF) of the cross-spectrum in the case of two
instruments. We generalize the result to the case of the cross
spectrum of q instruments, each with its own background noise
σ2
Ni

, assessing the confidence interval on the signal level σ2
R.

Of course, the PDF is no longer a V Γ, and can only be
calculated numerically. The case of equally noisy instruments
is simpler, and at first sight similar to that of q = 2, but it has
no analytical solution.
We run a simulation with up to five instruments, inspired to
the LEAP experiment [9]. Such experiment gathers the five
largest European radio telescopes (RTs) in order to increase
the sensitivity of high-precision pulsar timing. Interestingly,
Pulsar Timing Arrays seem a promising option to explore the
low-frequency gravity waves crossing our Galaxy [10], [11].
The simulation shows that the s.a is by a small amount more
efficient than the c-s, chiefly when the background exceeds
the signal. Indeed, this depends on the numerical values. In
the end, the use of both estimators may be a wise choice.

II. STATEMENT OF THE PROBLEM

A. Spectral Measurement
Let us consider a red noise r(t) which is measured by q

independent instruments as shown in Fig. 1. We assume that
each instrument adds a white noise ni(t) to the measurement
and that all these white noises are uncorrelated. The output of
each channel is then

xi = r + ni ↔ Xi = R+Ni (1)
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Fig. 1: Array of q instruments measuring the signal r(t).
Each RT adds a white noise to the output x(t) whose Fourier
transform is X(f). Then the estimate Ŝ is computed.
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Fig. 2: Periodogram of x (white noise plus red noise). The
PSD is the expectation of the periodogram.

where the subscript i corresponds to the i-th instrument, ↔
stands for the Fourier transform and inverse Fourier transform
pair, lower case is time domain, upper case is frequency
domain, and the variables t and f are implied. Let us remind
that the Fourier transform of a white noise is a white noise, at
least for sampled signals. Indeed even if continuous pure white
noise have an infinite power, the Fourier transform for discrete
simulation can be defined. A realistic white noise corresponds
to a Markov process of the first order, more details about
colored noise are given in [12].
On the other hand, a red noise can be described as a filtered
white noise. Its spectrum is then the product of a white
spectrum by a deterministic function; so the random part of a
red noise is uncorrelated for each frequency bin. Consequently
in term of random variable, working in the frequency domain
gives a precious advantage because the Fourier components
(frequency bins) are statistically independent unlike the time
data.
In the following we focus solely on one frequency bin, thanks
to energy equipartition it follows,

V [Ni] = 2V [< [Ni]] = 2V [= [Ni]] = σ2
N,i

V [R] = 2V [< [R]] = 2V [= [R]] = σ2
R

(2)

where V[·], <[·], =[·] respectively denote the variance, the real
and imaginary part of the quantity within the brackets.

B. Periodogram and Power Spectral Density

First, let us recall some basics of frequency analysis. Using
a data record of duration T sampled at a suitable frequency,
the periodogram is

Px(f) =
2

T
|X(f)|2, f > 0 (3)

where the factor “2” is needed for energy conservation after
deleting the negative frequencies. The expectation of the
periodogram is the Power Spectral Density (PSD),

Sx(f) = E
[

2

T
|X(f)|2

]
, f > 0. (4)

Figure 2 shows the periodogram and the PSD. We estimate
the PSD as the average periodogram, with the ultimate goal of
expecting the red noise parameters of r out of the measurement
noise n. Of course r is the same for all instruments, while the
ni are specific to the i-th instrument and its environnement.
The total duration of the experiment is the major problem, as
the lowest frequency of interest sets T . In turn, a long T goes
with a small number p of averages because the total duration
of the experiment is pT . In this paper we focus on the slowest
red noise phenomena, up to years, for which we have to set
p = 1. In other words, the phenomena of interest are so slow
that we cannot average on multiple acquisitions.

C. Estimators

We are now focusing on one bin of the periodogram
of a single simultaneous measurement with q instruments,
e.g. f0 as represented on Fig. 2. Let us emphasize on the
term periodogram which designates a unique realization of
the red noise since all instruments observe this red noise
realization at the same time. Nevertheless, taking into account
the uncorrelated white noises coming from the instruments,
we have to deal with the PSD S. One bin of S represents the
power in a given bandwidth, i.e. the 2-nd central moment, or
variance. Hereinafter, we work on a generic bin, thus S(f) at
that frequency is replaced with σ2.
Because the Ni are all different, it is appropriate to use a
weighted average, where the weights αi are to be found for
the optimum detection of R. We denote the estimates with a
“hat”, then

µ̂ =

∑q
i αiXi∑q
i αi

, (5)

where q is the number of instruments. The variance of the
estimate µ̂ is

V [µ̂] =

∑q
i α

2
i

(
σ2
N,i + σ2

R

)
[
∑q
i αi]

2 . (6)

An optimal choice is obtained by solving,

∂V [µ̂]

∂αi
= 0 (7)

which leads to the solution,
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αi =
1

σ2
N,i

. (8)

Therefore the inverse-variance weighted average, described in
[13] with applications examples, has the least variance among
all weighted averages. Then Eq. (6) becomes

σ2
µ = V [µ̂] =

(
q∑
i

1

σ2
N,i

)−1
. (9)

Let us define now the two estimators of interest: the spectrum
average weighted by the noise variance σ2

N,i and the cross-
spectrum,

Ŝsa =

{
<

[
σ2
µ

q∑
i

Xi

σ2
N,i

]}2

+

{
=

[
σ2
µ

q∑
i

Xi

σ2
N,i

]}2

Ŝcs = 〈<
[
Xi · X̃j

]
〉m with i 6= j.

(10)

Moreover σ2
µ corresponds to the noise weight normalization

factor defined in Eq. (9). Finally 〈·〉 stands for the m average

over the different combinations of instruments with m =

(
q

2

)
and ·̃ stands for the complex conjugate of the quantity which is
below. Furthermore we have omitted in Eq. (10) the measure-
ment time factor 2

T which is necessary to have the dimension
of a power per frequency for a better readability thereafter. In
addition, only the random part has a direct influence on the
probability density function. Denoting E[·] the mathematical
expectation of the quantity within the brackets,

E
[
Ŝsa

]
= σ2

R + σ2
µ

E
[
Ŝcs

]
= σ2

R

(11)

which means that the spectrum average estimator is biased.
Usually one removes the bias to have the s.a estimate average
over realizations which tends towards the sought signal level
σ2
R. This gives a clear advantage to the c-s estimator. However,

we will see that the computation of the confidence interval
over the signal level σ2

R requires an estimation of this bias σ2
µ

whatever the chosen estimator, s.a or c-s. Therefore we want
to estimate the PSD and we assume it follows a 1/fα power
law, then we only have to estimate a level and exponent of
the first frequency bins.
We now compare the estimator defined in Eq. (10) by de-
termining their variance. We can demonstrate provided that
∀i, σ2

N,i = σ2
N (see Annexe A),

V
[
Ŝcs

]
≈


V
[
Ŝsa

]
if σ2

R � σ2
N

q
q−1V

[
Ŝsa

]
if σ2

R � σ2
N .

(12)

This is confirmed by Fig. 3 which exhibits the variance of
the estimates of both estimators applied to a signal composed
of a mixture of uncorrelated white noise of level 1 arbitrary
unit (a.u.) and a common f−4 noise of level 4096 a.u. for 2
instruments. Therefore the variance decreases in f−8 and Fig.
3 compares these variances to the square of the PDF. At f = 4

a.u., the signal PSD is 16 times higher than the white level
and therefore its square is 256 times higher. In this case, the
variances of both estimators coincide. On the other hand, for
frequencies higher than 16 a.u., the signal PSD is less than 16
times lower than the white level (256 for their squares) and
the variance of the c-s estimates is 2 times higher than the
variance of the s.a estimates. This seems to indicate a better
efficiency of the s.a estimator. Indeed the spectrum average
estimator is a sufficient estimator which means of minimal
variance.
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Fig. 3: Variance of the estimate with the signal variance which
is of the form (σ2

R/f
α)2, where σ2

R = 4096 a.u. is the signal
level and α = 4 the red noise exponent. The noise model is a
white noise of level σ2

N = 1 a.u. with 2 instruments.

However what about the pdf of the estimates knowing the
parameter σ2

R for a given frequency?

III. PROBABILITY DENSITY FUNCTION

A. Spectrum Average Method

The spectrum average estimator leads to the following χ2

distribution with 2 degrees of freedom resulting from the real
and imaginary part of the spectrum,

p(Ŝsa|σ2
R) =

e−
Ŝsa
2σ2

2σ2
(13)

where,
σ2 = 1

2

(
σ2
µ + σ2

R

)
. (14)

where σ2
µ is the weighted noise level according to Eq. (9) and

σ2
R the signal level of interest.

B. Karhunen-Loève Transform

The KLT method, denoting to the Karhunen-Loève trans-
form, has been developed in [14]. It uses the statistics of the
data themselves instead of the statistics of the estimates. This
method has the advantage to combine linearly independent
Gaussian estimates. Furthermore it also forms a sufficient
statistics like the s.a method. It is based on determining the
covariance matrix M associated to the real or imaginary part
of the measurement Xi obtained by the q instruments,
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Mii =

1

2

(
σ2
N,i + σ2

R

)
Mij =

1

2
σ2
R with i 6= j

(15)

where the extra factors 1/2 come from Eq (2). This covariance
matrix has to be diagonalized and we denote the eigenvalues
λi. Their associated normalized eigenvectors are Vi and the
pdf is then given by

p(ŜKLT|σ2
R) =

q∏
i=1

1

(2πλi)
ν/2

e

(
−
∑ν
j=1 w

2
ij

2λi

)
(16)

where j highlights the real and imaginary part obtained
through the Fourier transform therefore ν = 2. Let us
remind that X corresponds to the matrix containing the set
of Fourier transform of the measurements at the output of
each instrument. The numerator of the exponential argument
is then

w = X · V (17)

where V are the eigenvectors obtained from the diagonalized
covariance matrix.

C. Cross-spectrum

The cross-spectrum estimator leads to the variance-gamma
(VΓ) distribution for 2 instruments as described in Section
III in [8] but for more than 2 instruments it is no longer the
case. Having no exact solution known nowadays, we give an
approximation of it. The process is the same until the estab-
lishment of the χ2 linear combination. First we perform an
orthonormalization by using the Householder transformation
to define a basis of unit vectors that are orthogonal to each
other. We define W the matrix where each column contains
the standard deviation of the spectrum according to Eq. (1) as

W =
1√
2


σN,1 0 . . . . . . 0

0 σN,2 0 . . . 0
0 0 σN,3 . . . 0
...

...
...

. . . σN,q
σR σR σR . . . σR

 . (18)

All the measurement noises are independent, as assumed,
whereas the signal is common. Then W is projected onto the
orthogonal basis and we compute the eigenvalues λj of the
resulting components. This leads to a linear combination of
χ2 distribution as follows,

Ŝcs =

q∑
j

λjχ
2
k (19)

where k is the number of degrees of freedom corresponding
to each eigenvalue, e.g. equal to 2 for the real and imaginary
part without degeneration. We respectively used the DGEQRF
and DSYEV LAPACK subroutine to perform the orthonor-
malization and compute the eigenvalues. In the special case
of 2 instruments we obtain the subtraction of two χ2 random
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Fig. 4: Comparison of the empirical (red boxes) and theoretical
(green line) pdf of the c-s for 5 instruments where the
variances are σ2

R = 6 a.u. and σ2
N = 10 a.u.

variables with the same number of degrees of freedom. The
characteristic function of the χ2

k distribution is defined as

φj(t) = (1− 2iλjt)
−k/2 (20)

where i is the imaginary unit and we apply a variable change of
−t for the negative eigenvalues. The χ2 distributions according
to Eq. (19) being independent, the characteristic function of
the c-s becomes

φ(t) =

q∏
j

φj(t). (21)

It leads to the moment generating function of the VΓ dis-
tribution for 2 instruments but it is no longer the case for
more instruments. When all the instruments have the same
level of intrinsic noise σ2

n, the diagonalization of the matrixW
defined by Eq. (18) leads to two eigenvalues. One is unique
and the second one has a degeneration of q − 1 with q the
number of instruments. Consequently, it leads to the difference
of two χ2 random variables with different degrees of freedom.
However even if it looks like the case with 2 instruments, the
difference in the degrees of freedom of the χ2 distributions
has no analytical solution. Therefore the probability density
function of the c-s for any noise level is defined as

p(Ŝcs|σ2
R) =

1

2π

∫
R

e−itŜcs φ(t)dt. (22)

We perform the integration by using the Simpson method only
on the positive side because the real part of this function
is even whereas the imaginary part is odd. Figure 4 shows
that the theoretical probability density function fits very well
the histogram obtained by 107 Monte Carlo simulations for
5 instruments. The variance of each white noise is the same
σ2
N = 10 a.u. whereas the signal level is σ2

R = 6 a.u.

D. Bayesian inference

1) A posteriori distribution: We seek to determine a con-
fidence interval on σ2

R, but Eq. (13), (16) and (22) define the
pdf of a set of measurement X given the sought parameter
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σ2
R. So we have to solve the inverse problem which means

to determine the pdf of σ2
R given a set of measurement X

called the posterior distribution. The Bayes theorem leads to
the following relation,{

p(σ2
R|X) ∝ p(X|σ2

R) · π(σ2
R)∫∞

0
p(σ2

R|X)dσ2
R = 1

(23)

where π(σ2
R) is the prior, i.e. the pdf before any measurement.

One of the main issue of Bayesian analysis concerns the choice
of this prior.

2) Choice of the prior: In order to be as general as possible,
we will assume a total ignorance of the signal level. In such
a case, it is generally considered that any order of magnitude
has the same probability which suggests a constant prior in a
logarithmic scale, i.e π

(
σ2
R

)
= 1/σ2

R. However, our perfect
knowledge of the noise level induces an implicit scale factor.
In other words, since we did not remove the ”bias” σ2

µ in Eq.
(11), the s.a estimator is shifted by σ2

µ. In a very similar case
[15], we decided that the true parameter should be the sum
of both levels θ = σ2

µ + σ2
R. Moreover according to Eq. (9)

higher noise will have lower weight and in our case, since the
mathematical expectation of the s.a estimator is σ2

µ + σ2
R, it

comes naturally that the true parameter should be:

θ = σ2
µ + σ2

R. (24)

From these considerations, we will choose π(θ) = 1/θ =
1

σ2
µ+σ

2
R

and then, our prior for the s.a estimator will be

π(σ2
R) ∝ 1

σ2
µ + σ2

R

. (25)

In order to be fair in the trial of c-s against s.a, the same prior
will be used for both estimators.
In the following we will compare the different methods,
starting with the spectrum average and KLT in Sec. IV.

IV. SPECTRUM AVERAGE AND KLT COMPARISON

A. A particular case: all the instruments have the same
variance

Let us define ∀i, σ2
N,i = σ2

N , i.e. all the q instruments have
the same noise level. At a first step we determine the s.a pdf,
in this case according to Eq. (9) and (2), the variance defined
by Eq. (14) leads to the following expression,

σ2 =
1

2

(
σ2
N

q
+ σ2

R

)
. (26)

From Eq. (10), the estimate Ŝsa now becomes

Ŝsa =

{
<

[
σ2
µ

q∑
i

Xi

σ2
N,i

]}2

+

{
=

[
σ2
µ

q∑
i

Xi

σ2
N,i

]}2

=
1

q2

{<[ q∑
i

Xi

]}2

+

{
=

[
q∑
i

Xi

]}2


(27)

According to Eq. (13), the s.a pdf is given by

p(Ŝsa|σ2
R) =

e

−
1
q2
{<[∑qi Xi]2+=[

∑q
i
Xi]

2}
σ2
N
q

+σ2
R

σ2
N

q + σ2
R

. (28)

In a second step let us define the KLT pdf. The eigenvalues
of the covariance matrix resulting from Eq. (15) are given by

λ1 = 1
2

(
σ2
N + qσ2

R

)
λi = 1

2σ
2
N with i ∈ {2, ..., q}

(29)

The first and highest eigenvalue being the only one to depend
of σ2

R, we solely define its associated eigenvector

V1 =
Jq,1√
q

(30)

where Jq,1 is the all-ones column vector. Then the numerator
in the exponential in Eq. (16) is∑ν

j ŵ
2
1,j =

∑ν
j [Xj · V1]

2

= 1
q

∑ν
j [Xj · Jq,1]

2

= 1
q

∑ν
j [
∑q
i Xij ]

2

= 1
q

{
< [
∑q
i Xi]

2
+ = [

∑q
i Xi]

2
}
.

(31)

The KLT pdf defined by Eq. (16) is given by

p(ŜKLT|σ2
R) = C

e
−

1
q{<[∑qi Xi]2+=[

∑q
i
Xi]

2}
σ2
N

+qσ2
R

π (σ2
N + qσ2

R)
(32)

where C is the Gaussian remaining product with a variance
depending only on the measurement noise level. However what
we want to characterize is not the estimates but the parameter
σ2
R. According to Eq. (23), the pdf of the true parameter σ2

R

is proportional to the prior π(σ2
R) multiplied respectively by

Eq. (28) and (32) for the s.a and KLT estimates. The Bayes
theorem leads then to

p(σ2
R|Ŝsa) ∝ π(σ2

R)
e
−

1
q{<[∑qi Xi]2+=[

∑q
i
Xi]

2}
σ2
N

+qσ2
R

σ2
N + qσ2

R
(33)

and

p(σ2
R|ŜKLT) ∝ π(σ2

R)
e
−

1
q{<[∑qi Xi]2+=[

∑q
i
Xi]

2}
σ2
N

+qσ2
R

σ2
N + qσ2

R

. (34)

Multiplying respectively Eq. (33) and (34) by a factor 1/q and
π does not change the pdf since it is normalized. It is exactly
the same for Eq. (34) where C does not depend on σ2

R and
vanish through the normalization. Therefore both expressions
are exactly the same. It should also be noted that the noise level
σ2
N is necessary in both cases and the bias does not influence

the sought parameter density whereas it does regarding the
estimates. This implies a very interesting consequence: both
pdf for the s.a and KLT leads to the exact same confidence
interval for the same noise level.
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TABLE I: Upper limit average of the parameter σ2
R taking into

account 2 to 5 RTs. These data were obtained from a set of
1 000 simulated spectra. The signal and noise level used for
the computation are σ2

R = 1 and σ2
N,i = i where i is the index

of the RT.

Spectrum average / KLT 95% upper limit
RTs number Mean Median Std Min Max

2 17.44 12.88 3.10 6.30 115.32
3 16.32 11.78 2.39 5.16 91.78
4 15.66 11.10 2.95 4.54 108.82
5 14.84 10.67 2.28 4.14 86.99

B. General case

In this part any number of instruments and different noise
level for each of them can be considered. In Section IV-A,
we showed analytically that both methods lead to the same
pdf of the signal level knowing the estimates in the event
that all noise levels are the same. However when each noise
level is different Eq. (29) giving the relation between the
eigenvalues and the signal becomes much more complicated
without degeneration. In this case, let us consider a number of
instruments solely up to 5, refering as instance to the number
of radio telescopes (RTs) part of the LEAP project. Then we
make several empirical comparisons by computing the upper
limit at 95% for the spectrum average and KLT methods. It
should be noticed that the 5% lower bound has no interest
since we are more particularly interested in the case where
the signal is weaker than the noise level. This bound then
greatly depends on the prior and is very close to zero.
Table I gives the average over 1 000 realizations of the 95%
upper bound for 2 to 5 RTs. The signal and noise levels are
respectively σ2

R = 1 a.u. and σ2
N,i = i a.u. where i is the i-th

RT. Then the 2-nd and 3-rd RT are respectively 2 and 3 times
more noisy than the first one and so forth.
First, these comparisons show as expected that the 95% bounds
obtained by both estimators as in Sec. IV-A for the same noise
variance, are exactly the same.
Second, the mean and median are decreasing as the number
of RTs increases. As a consequence adding measuring instru-
ments or RTs always add information about the signal level
or in the worst case is useless but never worsen it. On the
other side the upper bound maximum values obtained depend
strongly on the stochastic behavior of the measurements.
Finally, it should be noticed that both methods require the
noise level knowledge for the expression of the probability
density function. The spectrum average method being the
fastest way to compute the confidence interval is then to
be privileged. Therefore we will only compare the spectrum
average method with the cross-spectrum in the next section.

V. 95% UPPER LIMIT: SPECTRUM AVERAGE VS
CROSS-SPECTRUM

We have set the direct problem, i.e. the statistics of the
s.a or c-s knowing the signal level and noise level (which
is assumed to be known), respectively in Sections III-A and
III-C. Now we tackle the inverse problem from the direct

problem, i.e. the statistics of the signal level knowing the s.a
or c-s estimate. The Bayes theorem enables us to establish this
link as described in section III-D. The posterior distribution
of the s.a and c-s are given by

p(σ2
R|Ŝsa) ∝ 1

(σ2
µ+σ

2
R)2

e
−Ŝsa
σ2µ+σ2

R (35)

and
p(σ2

R|Ŝcs) ∝ 1
2π(σ2

µ+σ
2
R)

∫
R e−itŜcs φ(t)dt (36)

where σ2
µ is the noise variance weighting according to Eq. (9).

Let us describe our simulation algorithm in order to assess the
95% upper limit.
First simulation (S1 to S3): simulate a set of real data from
q instruments, assuming the red noise level is known (as well
as, of course, the measurement noise levels).
S1: Assign the number of RTs, the noise variance of each

one and the sought true signal level.
S2: Generate a set of spectral measurement according to Eq.

(1)
S3: Compute the s.a and c-s estimates, as stated in Eq. (10),

which are now fixed as parameters.
Second simulation: we no longer modify the data (these are
acquired measurement results) and we look for a confidence
interval on the red noise, assuming the level of the measure-
ment noise is known.
S4: Define any basis and perform an orthogonalization and

normalization of it by using the DGEQRF subroutine
from LAPACK

S5: Establish, from Eq. (18), one W matrix for each signal
level varying from 0 to an upper limit for which Eq.
(35) and (36) are close enough to zero according to the
required precision.

S6: Peform S7 to S11 for each σ2
R value.

S7: Project the W matrix onto the orthogonal basis.
S8: Compute the c-s denoted Z from the result of S6.
S9: Determine the eigenvalues of Z by using the DSYEV

subroutine from LAPACK which has now the form of
Eq. (19).

S10: Define the product of each characteristic function defined
by Eq. (20).

S11: Compute the posterior distribution respectively of the s.a
and c-s estimates according to Eq. (35) and (36). For
the c-s, we perform a numerical integration of one signal
value by using the Simpson method.

S12: Normalize the s.a and c-s posterior pdf.
S13: Determine the cumulative distribution function (cdf) by

integrating the s.a and c-s posterior pdf and find the 95%
upper limit corresponding onto the cdf value associated
to the signal level.

The loops for the different values of the signal are computed
in parallel in order to save computing time. Let us give an
example of such a process. We set the number of RTs to
5 and the variances of the signal and noise are respectively
σ2
R = 6 a.u., σ2

n = 10 a.u. Then we produce 2 sets of random
measurement with these parameters, shown in Table II. The
first measurement set gives respectively Ŝsa,1 = 14.886 a.u.
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TABLE II: Measurement set for the outputs of each RT (5 in
total) where σ2

R = 6 a.u. and σ2
N = 10 a.u.

measurement set 1 measurement set 2
Real part Imaginary part Real part Imaginary part

X1 -3.8947 -1.7994 -0.1494 8.9456
X2 -5.0950 -3.9125 -0.5275 4.4659
X3 -2.5133 -5.5431 0.2176 5.7742
X4 0.6433 -1.9566 1.6044 3.2146
X5 -0.2294 -2.5738 -0.5284 0.3563

and Ŝcs,1 = 13.226 a.u. for the s.a and c-s estimates whereas
the second one gives Ŝsa,2 = 20.730 a.u. and Ŝcs,2 = 18.564
a.u. It leads for the first set to the 95% upper limit on the
signal σ2

R following value, 125.8 for the s.a and 127.3 for the
c-s. Furthermore the second set gives us 167.1 for the s.a and
164.8 for the c-s. These results show that either the c-s or the
s.a can be the most efficient even with the same parameters,
then it only depends on the measurement set. However, the
difference between the 95% upper limit for both methods is
relatively low.

Let us now compare the s.a and c-s 95% upper limit over
100 simulations as shown in Table III for the sought signal
level set to 6 a.u. and a noise level equal to 10 a.u. for each
RT. The 95% upper limit is given respectively for, from the top
of the Table to the bottom, the spectrum average, the cross-
spectrum and the ratio of the 95% bound of s.a over c-s. The
mean and median are decreasing when the number of RTs is
increasing. However for 4 RTs the results are much more lower
but it is just an artefact of “luck”. Indeed the maximum value
is 1.4 times lower than for 5 RTs and the standard deviation
(std) is also very much more lower. The sample size can have
a significant effect on the values obtained but is necessary to
have a good precision with a reasonable computation time.
However, the minimum value of the 95% bound obtained
for both methods permits to override this randomness. Indeed
when the cross-spectrum estimate is negative or the spectrum
average estimate tends towards zero it leads to the smallest
95% bound. Whereas the maximum 95% bound obtainable
for a reasonable amount of simulations can “wriggle” a lot
as the tail of the posterior pdf is very long especially with
higher noise level than signal level which is of interest. The
minimum value shows as expected an improvement with the
increase in number of RTs. It seems that the s.a method gives
the most stringent confidence interval.
Figure 5 shows the histogram of the 95% limit with 5 RTs
for 10 000 realizations, σ2

R = 6 a.u. and σ2
N = 10 a.u. Both

histograms exhibit a similar distribution which extend up to
high values. However the first bin corresponding to the lowest
95% bound shows a high number of realizations for the c-s
method. This can be explained by a negative estimate for the
cross-spectrum which may corresponds to a spectrum average
estimate having a not so small value and so a higher 95%
bound. Figure 6 shows the comparison of the 95% upper limit
for the s.a and c-s methods for a window of hundred data
among the same set of realizations. The 6 620-th realization
framed by a blue rectangle highlights the fact that the c-s
can sometimes be much more stringent than the s.a method.

TABLE III: 95% upper limit statistics for the s.a (top), c-s
(middle) and the ratio of the s.a by the c-s over 100 simulations
where σ2

R = 6 a.u. and σ2
N = 10 a.u. Each rows respectively

from the left to the right corresponds to the number of RTs,
the mean, median, standard deviation, minimun and maximum
value of the 95% upper bound.

Spectrum average 95% upper limit
RTs number Mean Median Std Min Max

2 112.99 79.45 32.93 48.50 440.60
3 98.41 72.60 35.66 31.70 453.20
4 78.00 51.50 18.30 23.80 260.10
5 90.11 67.95 28.47 19.00 373.40

Cross-spectrum 95% upper limit
RTs number Mean Median Std Min Max

2 116.49 83.00 27.38 67.90 388.90
3 99.74 79.65 34.54 41.00 443.40
4 76.37 54.10 18.03 28.50 255.80
5 91.87 65.35 28.98 22.20 380.20

s.a/c-s 95% upper limit
RTs number Mean Median Std Min Max

2 0.97 0.90 0.12 0.71 2.21
3 0.98 0.94 8.13 ×10−2 0.74 1.79
4 1.02 0.98 4.86 ×10−2 0.74 1.50
5 0.97 0.96 3.73 ×10−2 0.78 1.34
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Fig. 5: Histogram comparison of 95% upper bound between
the c-s and s.a for 10 000 realizations. The parameters are set
for 5 RTs, σ2

R = 6 a.u. and σ2
N = 10 a.u.

However in most of the other realizations we notice that the
95% limit is almost the same.
Figure 7 depict the 95% upper bound median among 1 000
simulations with 5 RTs, for the s.a over c-s ratio depending
on the signal-to-noise level ratio (with σ2

N = 1 a.u.). When
σ2
R � σ2

N then the s.a seems to be the most stringent most
of the time. However when the signal level becomes higher
than the noise level, both the s.a and the c-s methods give in
median the same 95% limit.
Considering all these observations it is wiser to compute both
estimators and use the most restrictive one. Even if most of the
time both estimators give a very close upper bound, sometimes
the gap is clearly significant.

VI. CONCLUSION

First, we demonstrated that the spectrum average variance
is q/(q − 1) lower than the cross-spectrum variance.
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Second, in order to assess the confidence interval of
the signal level we defined its probability density function
knowing the s.a and c-s estimates but also the noise of each
instruments (radio telescopes). In addition a method directly
using the statistics of the measurement (KLT) has also been
compared. It turns out that the KLT and the s.a methods
lead to the exact same pdf of the signal level σ2

R knowing
the estimates, so the precision is the same. Furthermore
whereas the exact density of the cross-spectrum leads to the
VΓ distribution for 2 instruments. it is no longer the case
for more instruments. We proposed a generalized method
which implies a numerical integration of the characteristic
function product. This method works very well according to
the Monte Carlo simulations.

Finally the efficiency of both estimators, the spectrum
average versus the cross-spectrum, is highlighted through the
comparison of the 95% Bayesian upper limit. We found a
slight advantage for the spectrum average estimator when the
noise level is higher than the signal level. However we showed

that sometimes the c-s gives the most stringent confidence
interval but above all a little more often than the s.a for the
lowest upper limit. Nevertheless it is the s.a method which
gives us the minimum 95% limit reachable. To conclude it is
wiser to compute both estimates and use the most stringent.
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APPENDIX

Glossary of symbols
q Number of instruments
r(t) Common signal measured by q RTs (red noise)
R(f) Fourier transform of r(t)
Sr(f) Power spectral density of r(t)
ni(t) Intrinsic white noise of the i-th RT
Ni(f) Fourier transform of ni(t)
Sn,i(f) Power spectral density of ni(t)
xi(t) xi(t) = r(t) + ni(t), received at the output of

the i-th RT
Xi(f) Fourier transform of xi(t)
Sx,i(f) Power spectral density of xi(t)̂ estimate as in Ŝ. Here we consider three estimators,
Ŝsa Spectrum average
ŜKLT Karhunen-Loève transform
Ŝcs Cross-spectrum
σ2
R Variance of R in a bandwidth, i.e. the power in

one bin of S(f). It takes three different flavors:
s.a, KLT or c-s

σ2
N,i Same as above, with the noise of the i-th RT
σ2
µ Noise weight factor, inverse of the sum of the

inverse of σ2
N,i

Variance of the estimators Ŝsa and Ŝcs

1) Measurements: Let us define q instruments measure-
ments X1, X2, . . . and Xq as

Xj = Nj + iN ′j +R+ iR′

where Nj , N
′
j are independent Gaussian centered random

variables of variance σ2
N/2 and S, S′ are independent Gaussian

centered random variables of variance σ2
R/2.

2) Estimators: The estimator Ŝcs is defined by Eq. 10 as

Ŝcs =
1(
q
2

) q−1∑
j=1

q∑
k=j+1

<[(Nj + iN ′j +R+ iR′)×

×(Nk − iN ′k +R− iR′)].

(37)

On the other hand, Ŝsa is defined by Eq. 10 as

Ŝsa =

 q∑
j

Nj + qR

q

2

+

 q∑
j

N ′j + qR′

q

2

. (38)

3) Statistics reminder: If A and B are 2 independent
random variables of zero expectation

V[AB] = V[A]V[B] (39)

according to Eq. (a) from [16] where V[·] stands for the vari-
ance of the quantity within the brackets. Moreover according
to the Isserlis’ theorem [17],

V[A2] = E[A4]−
{
E[A2]

}2
= 3

{
E[A2]

}2 − {E[A2]
}2

= 2V2[A]
(40)

where E[·] stands for the mathematical expectation of the
quantity within the brackets. It is also useful to consider the

covariances. If A,B,C,D are 4 Gaussian centered random
variable

E[ABCD] = E[AB]·E[CD]+E[AC]·E[BD]+E[AD]·E[BC].
(41)

If A,B,C,D are 4 independent Gaussian centered random
variables, this can be derived to the following particular cases
(Isserlis’ theorem [17]):
• E[ABCD] = E[AB] ·E[CD]+E[AC] ·E[BD]+E[AD] ·
E[BC] = 0 since each mathematical expectation product
E[XY ] is null

• E[A2BC] = E[A2] · E[BC] + 2E[AB] · E[AC] = 0
since the only mathematical expectation which is not null,
E[A2], is multiplied by E[CD] = 0

• E[A3B] = 3E[A2] · E[BC] = 0 since E[BC] = 0

•
E[A2B2] = E[A2] · E[B2] + 2E2[AB]

= E[A2] · E[B2] 6= 0.

•
Cov[A2B2] = E[A2B2]− E[A2] · E[B2]

= E[A2] · E[B2]− E[A2] · E[B2] = 0.

4) Variance of Ŝcs: From (37), it comes

Ŝcs =
1(
q
2

)
q−1∑
j=1

q∑
k=j+1

(NjNk +N ′jN
′
k)×

×(q − 1)

q∑
j=1

(NjS +N ′jR
′)×

×
(
n

2

)
(R2 +R′2)

]
.

Then,

V[Ŝcs] =
1(
q
2

)2
q−1∑
j=1

q∑
k=j+1

(V[NjNk] + V[N ′jN
′
k])×

×(q − 1)2
q∑
j=1

(V[NjR] + V[N ′jR
′])×

×
(
q

2

)2

(V[R2] + V[R′2])

]
.

where all covariance terms are null thanks to Isserlis’theorem.
From the properties (39) and (40), it comes

V[Ŝcs] =
1(
q
2

)2
q−1∑
j=1

q∑
k=j+1

(V[Nj ]V[Nk] + V[N ′j ]V[N ′k])×

×(q − 1)2
q∑
j=1

(V[Nj ]V[R] + V[N ′j ]V[R′])×

×
(
q

2

)2

(2V2[R] + 2V2[R′])

]
.

Therefore,

V[Ŝcs] =
1(
q
2

)2
[

2

(
q

2

)
σ4
N

4
+ 2q(q − 1)2

σ2
Nσ

2
R

4
+ 4

(
q

2

)2
σ4
R

4

]
=

1

q(q − 1)
σ4
N +

2

q
σ2
Nσ

2
R + σ4

R.

(42)
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5) Variance of Ŝsa: From (38), it comes

Ŝsa =
1

q2

 q∑
j=1

(N2
j +N ′2j ) + q2(R2 +R′2)+

+ 2

q−1∑
j=1

q∑
k=j+1

(NjNk +N ′jN
′
k)+

+ 2q

q∑
j=1

(NjR+N ′jR
′)


Then,

V[Ŝsa] =
1

q4

 q∑
j=1

(V[N2
j ] + V[N ′2j ]) + q4(V[R2] + V[R′2])+

+ 4

q−1∑
j=1

q∑
k=j+1

(V[NjNk] + V[N ′jN
′
k])+

+ 4q2
q∑
j=1

(V[NjR] + V[N ′jR
′])


where all covariance terms are null thanks to Isserlis’theorem.
From the properties (39) and (40), it comes

V[Ŝsa] =
1

q4

 q∑
j=1

(2V2[Nj ] + 2V2[N ′j ]) + q4(2V2[R] + 2V2[R′])+

+ 4

q−1∑
j=1

q∑
k=j+1

(V[Nj ]V[Nk] + V[N ′j ]V[N ′k])+

+ 4q2
q∑
j=1

(V[Nj ]V[R] + V[N ′j ]V[R′])


Therefore,

V[Ŝsa] =
1

q4

[
4q
σ4
N

4
+ 4q4

σ4
R

4
+ 8

(
q

2

)
σ4
N

4
+ 8q3

σ2
Nσ

2
R

4

]
=

1

q2
σ4
N +

2

q
σ2
Nσ

2
R + σ4

R.

(43)
6) Variance ratios: Let us compare the cross-spectrum and

spectrum average estimates variances for limit signal to noise
ratio values.
If σ2

R � σ2
N ,

V[Ŝcs] ≈
1

q(q − 1)
σ4
N and V[Ŝsa] ≈ 1

q2
σ4
N .

Consequently,
V[Ŝcs] ≈

q

q − 1
V[Ŝsa].

If σ2
N � σ2

R,

V[Ŝcs] ≈ σ4
R and V[Ŝsa] ≈ σ4

R.

Consequently,
V[Ŝcs] ≈ V[Ŝsa].
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