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Abstract: In order to study the state of health (SOH) of unbalanced battery packs in real life, a 
thorough analysis is carried out using only data available and standard charging material. The 
possible relationships between the different parameters and how they affect aging are studied, 
leading to the identification of five key parameters to indicate aging, as well as parameters 
influencing aging. Based on the measurement results, a simple black box model using evolutionary 
genetic algorithm is presented, which is used as end-of-life prediction model of the battery pack, 
successfully providing an approximate estimation of aging. This approach might thus be used for 
the supervision of battery systems during real-life use. 
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1. Introduction 
Lithium-ion batteries are key enablers for the sustainable use of energy. One 

important open question is to analyze the aging of batteries in real use. Numerous works 
are conducted in laboratory conditions based on isolated battery cells in order to 
understand the aging [1], and subsequently, models which are capable of predicting aging 
based on analytical [2], black box [3], or hybrid are proposed [4]. These might be valid for 
single cell applications such as cell phones in well-defined conditions. However, for most 
applications, battery packs with multiple cells in series and parallel supervised by a 
battery management system (BMS) are used. For these kinds of applications, the aging 
might be more difficult to track due to the influence of BMS, and therefore fewer studies 
are known [5]. Still, there are quite a few applications using small unsupervised battery 
modules of some cells in series without supervision by a BMS. This kind of application 
can be found not only in model aircrafts, as in the presented study, but also in small 
mobility solutions such as scooters [6]. 

This project conducts a simplified study of the aging of lithium-ion batteries from a 
database taken from the real use of nine Hacker Topfuel Eco-x batteries packs of 5000 mAh 
and 10 lithium cells [7] used in aeromodeling of aircrafts during the years 2016 to 2021. 
The objective of the first part of the analysis is to discuss the relationships between the 
data obtained and to provide an explanation about the performance evolution of these 
batteries. The aim is to determine which of the parameters analyzed are most decisive in 
aging. A nondimensional representation is chosen to harmonize influence of parameters. 

Subsequently, different evolution algorithms used to make black box battery models 
are compared. The implementation of the chosen model is presented, as well as a battery 
life prediction model design, using a genetic algorithm (GA) in MATLAB. The purpose of 
the project is to explain a procedure for studying and modeling the performance of small 

 



unsupervised battery packs. Based on this kind of model, it would be possible to provide 
a robust prediction or remaining useful life (RUL) in real time using limited amount of 
memory, so that it might be integrated in a VCU (vehicle control unit). Although the data 
show trends conforming to the theory, the results still must be discussed carefully, as the 
measurements are performed in real use and not in laboratory conditions. 

In the next section, the experimental setup is presented. A thorough analysis of 
measurement results with the goal to identify parameters indicating cell aging is 
presented in Section 3. The black box model based on GA is presented in Section 4 and it 
is trained with various sets of data with the goal of predicting battery aging. The paper 
closes with conclusions in Section 5. 

2. Experimental Setup 
Firstly, a database including nine Hacker Topfuel Eco-x batteries [7] of 10 lithium 

cells each, 5000 mAh of factory capacity, 3.7 V of nominal voltage, and 4.2 V of charge 
voltage per cell is created. These cells were used in the racing of aeromodeling aircrafts 
during the last five years, from 2016 to 2021. Some values are recorded on the cell level, 
others on a pack level. 

The data collected for each battery cell include the following: 
 Number of charging processes. 
 Dates of charging processes. 
 Initial voltage of each battery cell in the charging processes. 
 Final voltage of each battery cell in the charging processes. 

The data collected for each battery pack include the following: 
 Charge capacity stored during each charging process, measured in mAh. 
 Measurements of the internal resistance at the end of the charging processes. 
 Estimations of relaxation voltage drop. 
 Estimated ambient temperature in flight. 
 Differentiation between flight types between “training flight” and “competition 

flight”. 
To obtain the data related to the charging processes, an intelligent charger, model 

“icharger 4010 duo” [8], was used (Figure 1). This charger can charge two batteries in 
parallel with a maximum power of 2000 W (max 1400 W per channel) and has some 
integrated options, such as the measurement of the voltage with a precision of 1 mV and 
the internal resistance with a precision of 0.1 Ω. All values can be saved on a micro SD 
card. 

 
Figure 1. icharger 4010 duo [8]. 

Since the purpose of data collection was not initially to conduct a further academic 
study on them, the measurement conditions such as ambient temperature and rest times 



between use and charging were not predesigned, so full homogeneity cannot be expected. 
Still, this presents the kind of data that can be obtained for real-life applications. 

The charge profile used for these batteries was the same in all cycles performed, 
except for the initial voltage of each lithium cell, which depended on the previous use. A 
linear loading ramp was made at 3.8 A (0.8 C) until reaching 4.05 V; then the C-rate was 
halved, and another linear load ramp was made at 1.9 A up to 4.15 V; at that point, the 
charger automatically gradually reduced the current to 1/10 until about 4.17 V; finally, the 
battery finished charging at that final C-rate (0.19 A), reaching 4.2 V per cell. Therefore, 
the final voltage of each cell in all charging processes is 4.2 V (Figure 2). This charging 
profile was designed after multiple tests, looking to extend the life of the battery, but with 
an adequate charging time. 

The ambient room temperature and storage temperature were considered between 
21 and 22 °C. The temperature of the battery during charging is estimated to have evolved 
from room temperature to approximately 41 °C maximum. These values are considered 
common, and the effects of possible variations were not considered. 

 
Figure 2. Charge cycle design. 

To estimate the ambient temperature during the discharge of the battery in flight, the 
official data of AEMET [9] are taken knowing the dates and the location where the 
corresponding training and competitions took place. As AEMET only offers maximum 
and minimum temperature data, a relevant rough estimate was made, taking into account 
the training timetables. 

Due to the high variability in aircraft flights, it is difficult to establish a clear 
differentiation between them. However, it was considered interesting to separate between 
training and competition flights, since in this case there is a clear difference in the rate of 
discharge. On average, approximately 65 A of average discharge current were estimated 
in training flights and 80 A in competition flights. 

Due to the particularity of real data collection, the resulting analyses cannot be 
considered to be purely scientific in nature. However, the use of real data can help to 
analyze the process itself and highlight main trends that contribute to battery aging, which 
can be connected to existing theory. 

Moreover, as the analysis is based on real data, the variability of battery performance 
is included in the study. The use of real data also contrasts with conventional analysis 
processes performed in laboratories where conditions are preplanned, whereas in 
laboratory analysis, we usually try to eliminate parameters from the study by designing 
the conditions of experimentation in a certain way. In this case, all the available variables 
are evaluated, and an attempt is made to identify the parameters dominating the cell 
aging. These factors were later integrated in the model (Section 4). 



3. Data Analysis 
First, the evolution of the main parameters of each battery were analyzed 

individually; common parameters between them were identified and then subsequently 
linked to scientific explanation. A comparative analysis was then performed to identify 
which of these parameters most significantly affects battery performance [10]. 

The studied parameters include internal resistance, relaxation voltage drop, depth of 
discharge, voltage dispersion between cells, the ambient temperature during operation, 
storage time between uses, discharge rate, and loss of capacity through the relationship 
between charged mAh and variation of operating voltage experienced in the battery 
during each charge. The goal of this study is not only to identify parameters that influence 
aging, but also to identify parameters on which a model should be based. 

3.1. Internal Resistance 
The internal resistance is a fundamental parameter in the analysis of batteries since 

their increase is one of the most accepted indicators of aging [11]. It is one of the 
measurements that is conventionally used to indicate the end of life of batteries, along 
with the fall in capacity and the increase in relaxation voltage drop [10]. 

The internal resistance measurement was not foreseen initially due to the great 
variability of the values obtained and the low accuracy of the meter. However, they were 
noted at certain moments, only when they were consolidated changes in the values 
obtained, that is, when all the lithium cells were stabilized at a higher internal resistance 
value. Despite this, the number and accuracy of measurements are considered sufficient 
to study their evolution. The icharger [8] was used to take the measurements, as it allows 
to obtain the internal resistance value of each cell. The battery pack internal resistance was 
registered, as the sum of the cells’ values. 

Finally, the internal resistance will be the parameter on which the prediction models 
will be focused. To study its evolution, its percentage increase in reference to its factory 
value, 35 mΩh (100%) will be considered. 

Figure 3 presents the evolution of the internal resistance in the nine Hacker Topfuel 
Eco-x batteries that were studied. The points indicate the internal resistance 
measurements taken at different moments of battery life. The lines are connected by 
polynomial for easier reading. Three different groups of batteries can be distinguished: 
for batteries 1, 2, 5, and 6, the internal resistance stays practically constant at the beginning 
of life, preceding an exponentially increasing growth. The growth of internal resistance 
can be linked to a deep discharge, such as for battery 1 in cycle 64, where a 4905 mAh 
discharge resulted in a 23% increase in internal resistance. Generally, the increase of 
internal resistance is mainly caused by contact loss, including the binder decomposition, 
current collector corrosion, the oxidation of conductive agent, and eventual loss of ionic 
concentration in electrolytes [12]. Some batteries (B3 and B4) encounter even a slight 
decrease of internal resistance during the beginning of life. The internal resistance of 
battery 4 dropped to 91.5% and remained stable for several cycles; one explanation is the 
good use of the cells. These batteries also happened to have the longest lifetime. This 
phenomenon is called passive electrode effect and is linked to [13]. 

It is also interesting to study the case of battery 7, whose internal resistance began to 
grow considerably and early in use, presenting a different evolution from the rest. This 
was due to the poor use of this battery in the first few months and indicates poor battery 
health. This is the battery of the group with the shortest life (42 cycles) and it also ended 
up particularly swollen. 



 
Figure 3. Internal resistance evolution. 

Comparing the evolutions of all cells in the same battery, it can be seen that during 
much of the battery life, the resistances of the 10 evolve in approximately the same way. 
However, at the end of life, the cells that are located at the ends of the serial connections 
experience much greater rises than the cells located in the middle of the battery, because 
they are more in demand. Despite this phenomenon, no differences were identified in the 
performance of these cells compared to the others, although it is not ruled out that they 
exist. 

Finally, the comparison of the evolution of internal resistance in all batteries shows, 
despite the comparable evolution of resistance increases, a clear link between the early 
increase of internal resistance and battery life. Hence, the slope of the internal resistance 
will be one of the parameters that will be used to compare aging, together with the number 
of cycles. 



 
Figure 4. Relaxation voltage drop evolution. 

3.2. Relaxation Voltage Drop 
In the same way as internal resistance, relaxation voltage drop has been estimated at 

certain moments of the batteries’ life, usually at the same time that internal resistance 
measurements were taken. To achieve this, the battery voltage values were taken 2 h after 
the end of the charging process. Then, relaxation voltage drop was determined: 

VSD = V(t = 0) − V(t = 2 h) (1)

As in the internal resistance, the increase in relaxation voltage drop is one of the 
indicators of the aging of batteries [14]. As was performed with the internal resistance, to 
study the relaxation voltage drop evolution, its percentage increase, in reference to its first 
estimated value of approximately 0.005 V, which represents 100%, is taken into account. 

Results show that for batteries 1 to 6, the rate of growth of relaxation voltage drop is 
accelerating throughout the life, so that the evolution turns out to be exponential, to a 
greater or lesser extent. An exception is found in battery 7 whose evolution of relaxation 
voltage drop, similar to its evolution of internal resistance, presents quite a different 
profile from the rest, with a sharp increase from the beginning of life. It was observed that 
the evolution of relaxation voltage drop turns out to be linked to that of internal resistance, 
with which the growth rates of both parameters increase at the same time. 

Figure 5 underlines that the relationship of both parameters is practically linear, 
which supports the trend explained above that presupposes a direct relationship between 
the increase in internal resistance and an increase in relaxation voltage drop. 
Consequently, in the study of aging, only the increase in resistance will be used as a value 
to be contrasted with the rest of the parameters, although the same conclusions obtained 
from the analysis are valid with the value of relaxation voltage drop. The same occurs 
when creating the prediction model. 



 
Figure 5. Internal resistance vs. relaxation voltage drop. 

3.3. Depth of Discharge 
The discharge depth measures the discharged capacity in each use in mAh through 

the value of the capacity charged in each subsequent charging cycle. Over-discharges can 
be very harmful to battery performance, especially when performed at a high discharge 
rate, and their continued repetition can lead to shortening battery life [14]. 

In this case, the amount of discharged capacity depends on each individual use that 
was given to the battery, so this parameter will be studied comparatively, taking the 
average discharged capacity of each battery. 

As it can be seen in Figure 6 (excluding the case of battery 1), the relationship between 
average discharged depth and lifespan is direct, that is, the higher the average discharge 
capacity per use, the shorter the lifespan. It can also be observed how this relationship is 
linked to the growth of internal resistance (Figure 7); greater depth of discharge produces 
a more pronounced increase in internal resistance. The value of the depth of discharge of 
the figures appears in a dimensionless way based on the average value of depth of 
discharge of all battery packs. The same applies to the value of the ratio of the internal 
resistance, which will continue to appear in a dimensionless way in the rest of the 
comparisons made in this analysis. 



 
Figure 6. Depth of discharge vs. cycle life. 

 
Figure 7. Depth of discharge vs. internal resistance growth. 

The relationship of discharged capacity to lifespan and increased internal resistance 
is noticeably clear, so it is one of the parameters used to develop the modelization. 

3.4. Voltage Dispersion between Cells 



The voltage dispersion between cells measures the variation of discharge between 
the different battery cells. It is interesting, especially in batteries without BMS, as it can 
indicate battery malfunction that is not able to balance the discharge between the cells 
[16]. This indicator can also be used to compare the state of the different cells within the 
battery. 

To evaluate the variation of discharge in each cell, the difference between the end 
and start voltage is subtracted and compared to the difference between end and initial 
average voltage of all the cells in that charge cycle. As the final voltage is 4.2 V in all cases, 
the equation is 

VDisp = (4.2V − Vinput) − (4.2V − Vinput-avg) = Vinput-avg − Vinput (2)

Figure 8 represents the evolution of the voltage dispersion of each individual cell for 
battery 5. A high variability of the voltage between the cells can be observed, even though 
no trend can be seen. No correlation between these values and the individual internal 
resistance of each cell was identified, although it is not ruled out that it may exist. 

To study the evolution of this parameter over the life of the battery, the total 
dispersion of the 10 cells in each cycle is studied. The values are transformed to 
dimensionless numbers based on each pack average voltage dispersion. 

Figure 9 presents the evolution of the voltage dispersion of battery 5. A slight upward 
trend throughout life might be observed, but it is not precisely clear because the values 
are extremely variable between cycles. This same observation can be made for the rest of 
the battery packs under study. 

 
Figure 8. Voltage disperson per cell (battery 5). 



 
Figure 9. Voltage dispersion battery 5. 

To observe more clearly the trend of this evolution, a weighted correction of the 
values obtained was made, taking into account the three previous and subsequent values, 
so that the peaks in the graph are eliminated. For this purpose, Equation (3) is used: 

𝑉 =
( ) ( )   (3)

This weighted correction will continue to be used in this analysis. 
Figure 10 shows a clear upward trend in the voltage dispersion in the weighted 

description. Finally, a direct relationship can be obtained between the aging of the battery 
and the increase in voltage dispersion between cells. This makes sense, as one may observe 
that the aging of a battery could cause malfunctions that prevent the cells from balancing 
well during discharge. 

Figures 11 and 12 show the relationship of the average cell voltage dispersion of each 
battery to the number of cycles and the growth of internal resistance. It is observed that 
the relationship is concise, a greater dispersion of the voltage leads to the premature aging 
of the battery and, subsequently, to greater growth of its internal resistance. Due to this 
trend, voltage dispersion between cells is one of the parameters that will be considered in 
the final modelization. 

It also seems interesting to analyze whether there is a direct relationship between 
voltage dispersion and discharged capacity, since the greater the discharge depth, the 
more the battery is stressed, and malfunctions could occur that cause the cells to discharge 
asynchronously. 

Figure 13 presents the evolution of the comparison between both parameters for 
battery 5 during their service life; the weighted correction of the voltage dispersion was 
applied. In addition, both parameters are presented in a dimensionless way based on each 
battery average values. There does not seem to be a clear relationship between them. The 
same analysis can be made for the rest of the battery packs. 



 
Figure 10. Weighted voltage dispersion of battery 5. 

 
Figure 11. Voltage dispersion vs. cycle life. 



 
Figure 12. Voltage dispersion vs. internal resistance growth. 

 
Figure 13. Voltage dispersion (w.c.) vs. capacity discharged for battery 5. 

3.5. Temperature 
Battery cell temperature is one of the parameters that primarily affects the operation 

of the battery. Low temperatures can cause lower capacity, pronounced increases in 
internal resistance, and problems in the balance of discharged cells. On the other hand, 
elevated temperatures can overstress batteries during discharges and shorten service life 
[16,18]. 



Figure 14 shows the comparative evolution between the voltage dispersion (with the 
weighted correction applied) and the ambient temperature of use for battery 5. Both 
parameters are presented in a dimensionless way based on their respective average values 
in each pack. There is no clear correlation between them, and this can be seen in the rest 
of the batteries in the same way. 

 
Figure 14. Voltage dispersion (w.c.) vs. temperature for battery 5. 

It can be concluded that in this case, the temperature of use did not directly affect the 
operation of the batteries. This may be because temperature peaks are not extreme or 
continuous enough over time to cause negative effects. The average temperature was 22.5 
°C with peaks from 3.5 °C to 39 °C. Hence, in this study, the temperature will not be taken 
into account to perform the modeling. 

3.6. Storage Time 
The storage time of each charge/discharge cycle is understood as the number of days 

the battery has been unused between the previous charge and the new use. Long storage 
periods can be detrimental to batteries as they produce greater capacity losses in 
relaxation, in addition to irreversible capacity losses [19]. Unfortunately, it was not 
possible to study these phenomena directly with the available data. 

Regarding the relationship of this parameter with internal resistance, it was observed 
during measurements that prolonged periods of storage have served to consolidate 
increases in internal resistance. There is no evidence to indicate that storage time directly 
influences resistance, but it seems that longer storage time is linked to an increase of 
internal resistance by stabilizing all cells to an increased value at which they were tending. 

Figures 15 and 16 compare the average storage time values of each battery with the 
final number of cycles of use and with the increase in internal resistance. It is observed 
how there is a clear relationship between these parameters that supports the theory, that 
longer storage times lead to a reduction in cyclic battery life and more pronounced 
increases in internal resistance. 



 
Figure 15. Average storage time vs. cycle life. 

 
Figure 16. Average storage time vs. internal resistance growth. 

Because of this direct relationship, storage time will be one of the parameters 
considered in the model. 

3.7. Discharge Rate 
To study the effect of the discharge rate, we differentiated between two types of 

flight, training, and competition, the first (65 A average current, approximately) less 
demanding than the second (80 A approximately). This parameter is very important for 
the study of the behavior of the batteries, since high discharging rates can cause a decrease 
and loss of capacity, and therefore a shorter use life [20,21]. 

An attempt was made to find a relationship between a greater dispersion of voltage 
between cells coinciding with the competition flights, since it seems logical to think that 



with a higher discharge rate the battery will be more stressed, and malfunctions may occur 
that cause bad balancing between cells. If we compare the average voltage dispersion 
between the two types of flight, we observe how in the competition flights the value is 
slightly higher (0.038 V > 0.035 V). However, this trend is not sufficiently appreciable to 
affirm this phenomenon, although it is not out of the question either. 

Regarding the relationship with internal resistance, there is no evidence that high 
discharge rates cause instantaneous peaks in resistance. Observing the evolution of both 
parameters, this phenomenon does not occur. To study how this parameter affects aging, 
a comparative analysis is performed between all batteries. In this case, we will use the 
total percentage of competition flights performed as a measure of the average discharge 
rate. 

Figures 17 and 18 show the ratio of the average discharge rate of each battery 
compared to the total number of cycles and the growth of internal resistance. It is observed 
how a higher rate of discharge tends to cause a shortening in cyclical life, as well as a 
greater increase in internal resistance. This is consistent with the theory explained above 
[21]. In addition, it was observed how high discharge rates in the first uses of the battery 
led to a more marked deterioration of performance for the rest of the battery’s life. This 
may be because these initial surges prevent the battery from stabilizing properly in the 
first few cycles. 

 
Figure 17. Competition flight percentage vs. cycle life. 



 
Figure 18. Competition flight percentage vs. internal resistance growth. 

Due to the trends caused by the discharging rate on aging, it will be one of those 
included when performing the modelization. 

3.8. Loss of Capacity 
The loss of capacity is an important phenomenon in the study of batteries, since it is 

the fundamental parameter that is used to analyze aging [21]. 
To make estimations, the relationship between the discharged capacity in mAh and 

the difference between the initial and final voltage in the charge are used, resulting in 
ΔmAh/ΔV. 

Prior to further explanations, it is necessary to correctly define the concepts of the 
state of charge and the state of health of a battery. The state of health (SoH) [23] is a 
“measurement” that reflects the general condition of a battery and its ability to deliver the 
specified performance compared with a fresh battery. It takes into account factors such as 
charge acceptance, internal resistance, voltage, and self-discharge. It is a measure of the 
long-term capability of the battery and gives an “indication”, not an absolute 
measurement, of how much of the available “lifetime energy throughput” of the battery 
has been consumed, and how much is left. During the lifetime of a battery, its performance 
or “health” tends to deteriorate gradually due to irreversible physical and chemical 
changes which take place with usage and with age until, eventually, the battery is no 
longer usable or dead. Therefore, the SOH is an indication of the point that has been 
reached in the life cycle of the battery and a measure of its condition relative to a fresh 
battery. The state of charge (SoC) [21] is defined as the available capacity expressed as a 
percentage of some reference. Figure 19 shows an explanation chart about SoH and SoC: 

As a battery loses capacity, its SoH is reduced, while its operating voltages remain 
constant. In this case, the maximum capacity that the battery can store will be reduced 
with respect to its factory value (5000 mAh) throughout use, while the voltage values that 
define the SoC remain the same, so that voltage ranges of equal magnitude when charging 
will mean less mAh charged as the battery ages. The same approach is also used by the 
ICA (incremental capacity analysis method) even though this is normally performed in a 
specified voltage range. 



 
Figure 19. SoH and SoC. 

To analyze this phenomenon, the evolution of the parameter ΔmAh/ΔV in all battery 
packs throughout their useful life is obtained. To better visualize existing trends, the 
evolution of ΔmAh/ΔV after the application of weighted correction is presented in Figure 
20. As previously, the value of the parameter is presented as dimensionless based on the 
average value for each battery. 

 
Figure 20. ∆mAh/∆V charged (w.c.) for battery 5. 

The evolution of ΔmAh/ΔV in battery 5 with weighted correction (Figure 20) shows 
a decreasing trend, which supports the theory. The parameter numerator (mAh 
discharged) decreases with the time of use, while the denominator (ΔV) remains constant. 
However, this does not happen in all cases. In the cases of batteries 2 and 7, the evolution 
turns out to be increasing, which is not coherent with initial observations. This leads to 
the invalidity of the above reasoning in this case. 

Despite these estimates of capacity drop, this phenomenon cannot be studied 
correctly because data collection is not suitable for it. Therefore, it will not be a parameter 
that is used to make the subsequent prediction model. 

3.9. Resume 



This analysis accomplishes the initial objective, which was to choose which of the 
parameters under study had a real influence on the performance of these batteries and 
discard those that were irrelevant. The conclusions presented in Table 1 were drawn. 

Batteries are very complex devices, and it is very difficult to establish precisely which 
parameters affect their performance to a greater or lesser extent. Therefore, there is a 
possibility that the conclusions obtained through this analysis are not accurate enough, so 
that parameters that have been determined to be influential in the performance of the 
batteries may have not had a real effect or at least not enough importance, while other 
noninfluential parameters may have had an effect that was not correctly detected. Despite 
this, the parameters determined to be influential enough after this analysis are taken into 
account to design a model of aging of the batteries. 

Table 1. Analysis resume. 

 

4. Modeling and Prediction 
Based on the above-presented analysis, a model is designed that reproduces the 

behavior of the battery with respect to aging based on the evolution of internal resistance. 
For this purpose, a black box type model based on an evolutionary algorithm is used. 

Black box models rely exclusively on computing data to recreate the relationship 
between the input and output parameters of a problem. They do not require an 
understanding of the physics that explains the problem, they are simply able to solve it 
by processing large amounts of data made up by the experience of the problem [21]. 
Classically, black box models based on neural networks (ANN), support vector machine 
(SVM), fuzzy logic clustering (FLC), and Bayesian probable models (BPM), are 
implemented to estimate the variation of a battery’s parameters with its aging and state 
of charge [26]. 

Evolution algorithms are a family of metaheuristic methods for solving optimization 
problems, without the use of derivation. Their main characteristic is that they are based 
on natural behaviors that solve optimization problems such as finding the best way to 
find food or choosing which are the best genes for the conservation of a species. They are 

Parameter Influential Included in 
modelization 

Comments 

Internal resistance Yes Yes Indicator of battery aging. It will be used as 
center piece in the modelization. 

Self-discharge Yes No Indicator of battery aging. It will not be used in 
the model as the internal resistance will be used. 
However, it has been obtained a clear link 
between both parameters. 

Depth of discharge Yes Yes It causes a negative effect in aging. It will be 
used in the modelization.  

Voltage dispersion 
between cells 

Yes Yes Indicator of battery aging. It will be used in the 
modelization. 

Temperature of use No No No effect found in the battery performance. 
Therefore, it will not be used in the 
modelization. 

Storage time Yes Yes It causes a negative effect in aging. It will be 
used in the modelization. 

Discharge rate Yes Yes It causes a negative effect in aging. It will be 
used in the modelization. 

Capacity loss No No It may be an indicator of battery aging, but not 
accurate data to draw clear conclusions. 
Therefore, it will not be used in the 
modelization. 

 



usually systems with large populations where each individual tries to find the best 
possible solution to the problem and interacts with the rest to approach the optimal 
solution together [23]. 

Four of the most used evolution algorithms are particle swarm optimization (PSO), 
genetic algorithm (GA), ant colony optimization (ACO), and artificial bees algorithm 
(ABA). PSO is based on the interaction of some animals, such as birds, when they go in 
the swarm in search of a common goal, such as food sources [27,28]. GA is inspired by the 
biological evolution of species by genetic theory so that individuals continuously evolve 
adapting better to survive, which is the problem to be optimized [29]. ACO is based on 
the behaviors of ants when they seek the best ways to find food sources [29]. The ABA is 
inspired by the bees’ food search for a hive that tends to optimize the use of its members 
[31]. 

Among these optimization algorithms, the two most used in battery estimation are 
PSO and GA. Adaptation of PSO is observed in various works to estimate the state of 
charge and the state of health of batteries but it strongly depends on population size and 
quality of the data selected at the beginning, and its solution takes longer to converge and 
is voluminous to implement on a real-time basis [32] Hence, GA is chosen for this model, 
as its implementation for this problem is simpler and does not require long computation 
times. In addition, the PSO can become stuck in optimizations of multidimensional 
problems, by becoming blocked in a local optimum. 

Batteries 1, 2, and 3 are used to train the internal resistance evolution model that will 
serve as the basis. Subsequently, batteries 4, 5, 6, and 7 are used to validate this model and 
make some adaptations if necessary. Finally, for the prediction model, the previous seven 
batteries are used as a historical database and batteries 8 and 9 are used for the final 
testing. 

4.1. Evolution Model 
For the black box model of the evolution of battery performance, a GA [28] was used. 

In this case, the output of the algorithm is the evolution of the internal resistance of the 
battery, whose growth indicates aging, as seen in the analysis. 

After performing the previous data analysis, the following seven parameters that are 
used are (Figure 21) the following: 
 Number of cycles (i). 
 Training/competition flight (f). 
 Discharged capacity, based on historical average discharged capacity (c). 
 Voltage dispersion between cells (d). 
 Difference between input and output voltage in each charge (v). 
 Days of pre-storage (s). 
 Initial factory resistance (R0). 

 
Figure 21. Black box model flow chart. 

To recreate the evolution of internal resistance in each cycle of charge and discharge, 
the algorithm operates based on the increase in resistance in that cycle, using Equation (4). 



𝑅 = 𝑅 + ∆𝑅  

∆𝑅 = 𝐴 ∙ 𝑖 + 𝐵 ∙ 𝑓 + 𝐶 ∙ 𝑐 + 𝐷 ∙ 𝑑 + 𝐸 ∙ 𝑣 + 𝐹 ∙ 𝑠 + 𝐺 
(4)

The constants A, B, C, D, E, F, and G are the solution parameters to be optimized by 
the GA through creating, sorting, crossing, and mutation; and that will lead to the final 
solution to the problem (Figure 22). 

To have a proper relationship between shorter computation time and greater model 
accuracy, a population of 1000 members was chosen. Considering that the seven batteries 
are evaluated, the computation time between iterations is approximately 0.2 s, using a 
computer with 8 GB RAM and an Intel Core i5-7200U processor. The time it takes the 
algorithm to find a suitable solution depends on its own evolution and is random. The 
average duration is estimated at around 2.6 min, with about 750 iterations. 

 
Figure 22. Genetic algorithm model flow chart. 

For the first population, a number n of random combinations of the constants of the 
problem are created. Each of these combinations is a possible solution. Each of these 
combinations is then evaluated with respect to the actual evolution of internal resistance. 
To achieve this, the evolution of the resistance of the battery resulting from the application 
of each possible solution is recreated and the difference with the real value in each cycle 
is obtained. The total sum of the differences in each cycle squared makes up the total 
evaluation of the solution, which will be better when lower (Equation (5)). 

𝐸𝑣𝑎𝑙 = (𝑅 − 𝑅 )  (5)

This process is carried out for all the batteries that are under study, and the total sum 
of the evaluations obtained by combination is the total evaluation of each proposed 
solution. In this way, solutions that present particularly good results in some batteries and 
unsatisfying results in others are eliminated. The process is repeated until the stop criteria 
are met. 

Batteries 1, 2, and 3 were used to train the initial model, because they correctly 
represented an example of a medium, short, and long-life battery, respectively. The results 
obtained are presented in Table 2 and Figure 23. 

Table 2. Solution parameters results of first model for batteries 1, 2, and 3. 



A B C D E F G 
0.00158 0.13230 0.76660 0.35946 0.05849 0.02055 −1.40986 

 
Figure 23. Results of first model for batteries 1, 2, and 3. 

The accuracy of the first model for batteries 1, 2, and 3 was remarkably high. The R2 
ratings for each battery were R2(B1) = 0.9653; R2(B2) = 0.9974; R2(B3) = 0.9644. 

However, when testing this first model with some batteries which were not used to 
train the algorithm, it was found that the results in these cases were not satisfactory 
(Figure 24). 

Due to these results, it was necessary to make certain corrections to the model, 
including batteries 4, 5, 6, and 7 as part of the data available to train the algorithm, 
although it continued to give more weight to batteries 1, 2, and 3 (Table 3 and Figure 25). 
Particularly, batteries 1, 2, and 3 weighted a value of 3, batteries 4 and 6 weighted 1.5, and, 
finally, batteries 5 and 7 had a 0.5 value. 



 
Figure 24. Results of first model applied on batteries 4, 5, 6, and 7. 

Table 3. Solution parameter results including batteries 1–7. 

A B C D E F G 
−0.00198 0.06902 −3.80387 15.85996 1.64249 0.06715 −4.31879 

This model has a lower accuracy in batteries 1, 2, and 3: R2(B1) = 0.8767; R2(B2) = 
0.9052; R2(B3) = 0.9088. However, it makes a more suitable approximation for the rest of 
the batteries: R2(B4) = 0.7205; R2(B5) = 0. 3101; R2(B6) = 0.8586; R2(B7) = 0.4138. The worst 
approximations occur in batteries 5 and 7, which is normal given that they have the most 
exceptional internal resistance evolution of all the batteries under study (Table 3). 

It can be inferred that the model draws very irregular internal resistance evolutions 
compared to the “real” results. This happens because of the simplicity of the equation 
used to develop the prediction model, in which complex corrections may be needed to 
increase its accuracy. Furthermore, the predictions in this model are made from data of 
six different parameters extracted from real use measurements. Therefore, the evolution 
of these parameters tends to be very anarchic in every cycle, causing these extreme 
fluctuations. For these reasons, in this case, the proximity of each result tendency to the 
real evolution should be considered rather than their actual shape comparison, also 
considering that the real behavior of the internal resistance is not as regular as these 
graphs show. 

It is important to understand that these types of black box models do not really 
understand the physics inside the battery [33]. This can be observed very clearly in the 
results obtained, where the constants that multiply the number of cycles and the 
discharged capacity are negative. This means that the internal resistance decreases as the 



battery ages or if the discharge depth increases, which is completely contrary to what was 
seen in the previous analysis. Therefore, although the model designed is accurate enough 
for primary predictions, it is important to understand the physical interpretation that 
causes this evolution of internal resistance. 

 
Figure 25. Results of final model including batteries 1–7. 

4.2. Prediction 
The goal is to understand how batteries work and be able to anticipate their possible 

ageing and malfunction, to further proactively conduct maintenance accordingly. 
Therefore, the development of prediction models on the performance of the batteries is 
essential so that the user can make better use of the battery, which can extend the life of 
the said battery. 

To design the prediction model, the model of the evolution of internal resistance 
previously created is used as the base. It is virtually impossible to estimate the lifespan of 
a battery before using it, as it depends directly on the quality of use given to it. It would 
be similar to trying to figure out how long a person is going to live before they are born. 

The objective is to create a range of end-of-life possibilities among which the actual 
end of life of the battery is expected to be found. For this, the model will be based on the 
historical data of batteries 1, 2, 3, 4, 5, 6, and 7 and the data obtained from the previous 
use of the battery under study. The model elaborates two possible evolutions of internal 
resistance that will correspond to the upper and lower limit between which reality is 
found. This provides a broader provision of battery performance which includes both the 
good use and the bad use. 

Figure 26 presents the prediction model flow chart including the structure of this 
prediction model. 



 
Figure 26. Prediction model flow chart. 

First, the values of discharged capacity, previous storage time, and flight type of the 
new cycle are randomly created. For this, the historical data and the previous experience 
of the battery are considered, giving more weight to one or the other, depending on the 
number of cycles prior to the prediction, so that more importance is given to the 
experience the greater it is. 

The values of the voltage dispersion between cells and the difference between input 
and output voltage in the charge are then randomly created. To achieve this, the model is 
based on the historical relationship of these parameters with the previously created 
discharged capacity and the cycle number. 

Once all these values have been obtained for a new cycle, the evolution model of the 
previous section is used to obtain a new internal resistance value. If this value does not 
exceed the end-of-life value, the process repeats, starting a new cycle. 

This structure is repeated to create both the upper and lower limit, including, in each 
case, variations based on the study of the data, so that in one case the probabilities of good 
use of the battery are increased and in the other, the opposite occurs. The values created 
to draw the possible evolution of the resistance are random, but these small variations are 
used in each case, to ensure that there is a certain trend. 

To ensure that the boundaries are adequate, a population of possible solutions is 
created. In each case, a solution is chosen based on a high safety factor, so that the crossing 
of the boundaries is avoided, as well as extreme values that are completely unrealistic. 

One of the specific aspects of this prediction model is that the range of possibilities is 
limited with greater previous use of the battery. In this way, the model clarifies where the 
end of life will be found as it is used. 

This can be clearly seen when taking the example of battery 1 and a prediction is 
made with 20, 50, and 80 cycles (Figure 27). As can be seen, the limits narrow when we 
make predictions closer to the end of battery life: 53–163 with 20 cycles, 83–138 with 50 
cycles, and 87–110 with 80 cycles. 



 
(a) 

 
(b) 



 
(c) 

Figure 27. Results of prediction of battery 1: (a) 20 cycles; (b) 50 cycles; (c) 80 cycles. 

Finally, the results of the prediction model are applied to batteries 8 and 9, which had 
not been used for the construction of the model and were still in use (Figure 28). At the 
end of life, a level of approximately 230% of the internal resistance had been used, which 
is the average between the studied batteries. 

To obtain these results, a population of 500 solutions was used for each limit, to 
achieve acceptable accuracy in a short time. The computation time for each iteration of 
creating an upper and lower bound pair depends on the length of these solutions. 
However, it is not estimated to be greater than 0.001 s. On the other hand, the total 
computation time of the model is approximately 3 s. 

The presented black box model thus showed that a rather simple model can give a 
good prediction of the remaining useful life (RUL) of a battery, integrating the changes 
throughout the battery life. Moreover, this model needs a limited amount of memory and 
can still run in real time. It would be interesting to integrate such a model in the charger 
or vehicle software. 



 
(a) 

 
(b) 

Figure 28. Prediction of life for batteries in use: (a) cell 8; (b) cell 9. 

5. Conclusions 
The project is based on data acquired during the real use of battery packs in model 

aircraft. Thus, the simplicity of both the method of analyzing this data and the modeling 
must be highlighted. The goal was to use basic and available tools that are in line with real 
applications. This is creating a valuable contribution for realistic performance analysis, 
building the bridge between scientific studies and application. 



Still, despite this simplicity, it is shown that it is possible to visualize clear trends in 
battery performance, explainable based on the observation of some easily accessible key 
parameters. Therefore, this type of analysis can be very interesting to assimilate the aging 
of small, unbalanced battery packs in the field before using more complex methods that 
often require observation in the laboratory. 

The same is true in modeling: it was shown that it is possible to create simple models 
capable of making approximate predictions of battery performance that might, on a 
battery charger or vehicle software, show a prediction of RUL integrating measurement 
throughout battery life. 

This is complementary with most research approaches, where precise analyses and 
models based on the real use of these batteries are necessary. This requires larger 
databases and more complex tools for analysis design and more accurate models to help 
new users to use batteries correctly. 

Therefore, the presented method to study battery aging providing both an approach 
using easily accessible data and a black box model to predict future aging provides a 
different point of view of battery analysis. In the future, the presented approach to identify 
the aging or batteries bases on internal resistance and/or relaxation voltage drop should 
be applied to bigger datasets for both batteries with and without BMS to see if it is possible 
to estimate SOH via those simple-to-measure parameters and integrate an RUL estimation 
in user software. 
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