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A domain wall separating two different topological phases of the same crystal can support the prop-
agation of backscattering-immune guided waves. In valley-Hall and quantum-Hall crystal waveg-
uides, this property stems from symmetry protection and results from a topological transition at a
Dirac point. Since an initially closed band gap has to open, the guidance bandwidth remains limited
compared to that of wide band gap crystals. When a glide-symmetric dislocation is introduced in
a 2D crystal, we show that a pair of wide-bandwidth, single-mode, and symmetry-protected guided
waves appear in the bulk band gap. The 2D Zak phase changes by π on either side of the interface,
providing a topological invariant protected by glide-reflection symmetry at the X point of the Bril-
louin zone. A demonstration experiment is performed with acoustic waves in water, at ultrasonic
frequencies, and shows the continuous tuning of transmission as a function of the glide parameter.
The concept further extends to other types of waves, including the case of elastic waves in solids,
but also of optical and electromagnetic waves.

INTRODUCTION

Topological phononics promises unprecedented wave
properties inspired by the concepts of topological insu-
lators [1–6]. One promising direction is the achievement
of uni-directional and backscattering-free guided wave
propagation along a boundary of a crystal or a domain
wall between two crystal phases. Passive topological
waveguides, for instance of the valley-Hall [7, 8] and the
quantum-Hall type [9–11], lead to symmetry-protected,
single-mode guided waves along a domain wall separating
two phases of the same crystal with different topological
invariants. The topological properties of the waveguide
are inherited from those of the two-dimensional (2D) bulk
crystal according to the bulk-boundary correspondence
principle [12]. The one-dimensional (1D) domain wall
hetero-structure is formed without breaking the period-
icity of the 2D lattice, by tuning a continuous geometrical
parameter that controls a topological transition [13, 14].
For instance, in valley-Hall crystals, a triangular inclu-
sion is rotated continuously to reduce the symmetry of
a 2D crystal possessing a band structure with a Dirac
point at the K point of the first Brillouin zone, causing
a gap to open there [7, 15, 16]. In quantum-Hall crys-
tals with C6v symmetry, a double Dirac at the Γ point
undergoes a topological transition under the continuous
tuning of the internal structure of the unit cell of the
crystal [9, 10, 17]. In both cases, however, the available
bandwidth for the dispersion of the guided wave is lim-
ited by the effective opening of the band gap that the
control parameter allows [18]. In contrast, artificial crys-
tals have long been designed to present very wide com-
plete band gaps [19–21] that the guided bands could in
principle cover. Phononic crystal waveguides formed by
coupling a sequence of crystal defects, however, lack topo-
logical protection and are generally multimodal, leading
to a competition of the guided bands inside the complete
band gap that can severely flatten the guided bands [18].

Can we obtain topological crystal waveguides that

make full use of a wide complete band gap crystal? We
propose in this Letter to start from a 2-periodic crys-
tal and to introduce a glide-reflection (GR) symmetric
dislocation running all along one of the periodicity axes.
The resulting structure loses one periodicity, along the
directional orthogonal to the glide operation, but gains a
glide-reflection symmetry that the initial 2-periodic crys-
tal did not possess. The 2D Zak phase of bulk bands,
measured along the interface direction, changes by π on
either side, providing a topological invariant protected
by GR symmetry. All pairs of bands at the boundary of
the first Brillouin zone (X point) are degenerate, leading
to the appearance of pairs of left- and right-propagating
guided waves in all Bragg band gaps of the crystal. The
pairs of guided Bloch waves are protected by GR sym-
metry at the X point and their smooth dispersion covers
most of the band gap of the bulk crystal.

The Letter is organized as follows. We first discuss the
topology of the band structure of a square-lattice crys-
tal and its transformation under a glide dislocation. We
show how the dispersion of waves guided along the glide
dislocation closes the complete band gap exactly for a
half-lattice glide dislocation. Tuning the glide parameter,
the spectral transmission can be changed continuously
from no transmission at all to full transmission through
the phononic band gap. The glide-reflection symmetric
crystal waveguide offers wide bandwidth, single mode op-
eration, and symmetry-protected backscattering immu-
nity. An experiment performed with ultrasonic acous-
tic waves around 0.5 MHz and a crystal of steel rods in
water demonstrates the operation of the glide-reflection
symmetric phononic crystal waveguide.

For demonstration purposes, we consider in the follow-
ing a 2-periodic square-lattice phononic crystal of circular
inclusions, as shown in Figure 1. Numerical simulations
are performed in this Letter considering a phononic crys-
tal of steel rods in water, but the results extend naturally
to other material systems [22]. In the glide dislocation,
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FIG. 1. Principle of the glide-reflection symmetric topolog-
ical phononic crystal waveguide. (a) A 2-periodic square-
lattice phononic crystal is composed of steel rods in water
(lattice constant a, diameter d = 0.9a). For every frequency
within the complete band gap, transmission of incident acous-
tic waves is forbidden. (b) Two pieces of the same square-
lattice crystal are now glided along the x-axis. The glide
parameter g is periodic with period a. For a half-lattice glide
parameter (g = a/2), waves are guided along the glide dis-
location, for frequencies within the complete band gap. In
numerical simulations, P is the normalized pressure field, fre-
quency is taken at the center of the band gap, and waves are
incident from the left.

one half of the crystal is spatially shifted by an amount
g, along direction x. The glide operation creates an in-
terface between two crystal phases that remain identical
except for the spatial shift. The initial crystal (g = 0)
possesses a complete band gap within which transmission
decreases exponentially with crystal thickness. Fig. 1(a)
illustrates numerically, for a frequency at the center of
the complete band gap, that total reflection of incident
waves results. When g = a/2, guided waves appear along
the dislocation and transmission is obtained, as Fig. 1(b)
shows.

Let us analyze the topology of the band structure of
the phononic crystal structure and its change with the
glide parameter. Figure 2(a) shows a super-cell and the
phononic band structure for the 2-periodic crystal for
g = 0; Fig. 2(b) shows similar information for the glide-
reflection symmetric waveguide for g = a/2. The super-
cell is the numerical device used to obtain the dispersion
relation of crystal waveguides. Periodic boundary condi-
tions are applied on the vertical boundaries of the super-
cell while the horizontal boundaries are left free (Neu-
mann boundary condition). In the figure, we consider
N = 10 unit cells in the vertical direction and 1 unit cell
in the horizontal direction. The band structures account
for acousto-elastic coupling between pressure waves in
water and elastic waves in steel [23]. The band structure
for g = 0 in Fig. 2(a) shows the complete band gap sepa-
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FIG. 2. Band structure topology of the glide-reflection waveg-
uide, computed for a supercell made ofN = 10 unit cells of the
crystal. (a) For g = 0, the supercell simply repeats N times
vertically the primitive cell of the 2D square-lattice crystal
(d = 2 mm, a = 2.22 mm). The band structure of the waveg-
uide is obtained from the projected band structure of the 2D
crystal. (b) For g = a/2, the bands group by pairs of sym-
metric (S) / anti-symmetric (AS) Bloch waves, with respect
to the glide reflection symmetry. They are degenerate at the
Brillouin zone edge (the X point), causing a pair of guided
waves to appear inside the complete band gap. The modal
distributions of the S (red color band) and AS (yellow color
band) guided waves are shown on the left for kxa/π = 0.8.

rated by groups of bands. Counting the bands, there are
exactly N + 1 bands below the band gap. Those bands
are actually sampled from the original Brillouin zone as
(kya/π = n/N, kx) with n = 0, · · · , N [20]. Hence, when
n = N , the Bloch wavevector varies along the YM edge
of the first Brillouin zone (kya/π = 1).

The guided waves for g ̸= 0 appearing inside the band
gap originate from the N -th and (N + 1)-th bands. Ac-
tually, as Fig. 2(b) shows for glide parameter g = a/2,
all bands are degenerate by pairs at the X point of the
first Brillouin zone. This essential property is obtained
only for a half-lattice glide; it is shown later to signal
a topological transition of the band structure occurring
at g = a/2. Since the N -th and the (N + 1)-th bands
were repelling and thus sitting on opposite sides on the
band gap for g = 0 and they are degenerate at the X
point for g = a/2, they have to move inside the band
gap as g is tuned continuously between those two values.
When g > a/2 and is tuned toward g = a, the gap closes
continuously and symmetrically from the case g < a/2.

Why the N -th and (N + 1)-th bands hold a pair a
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guided Bloch waves can be understood based upon the
transformation of the band structure under the continu-
ous change of glide parameter g from 0 to a/2. The dis-
persion of the guided wave extends inside the complete
band gap, with a real wavevector kx; along the y direc-
tion the guided wave is evanescent, i.e. its amplitude is
decreasing exponentially. Fig. 2(b) illustrates that prop-
erty for one particular value of kx. In contrast to the
case g = 0, the Bloch waves of the 2-periodic phononic
crystal do not translate directly into Bloch waves of the
waveguide structure for g ̸= 0. However, they can still
be used as a functional basis to express the 1-periodic
guided mode. Bloch waves of the 2-periodic crystal are
all evanescent for frequencies inside the complete band
gap. Hence their wavevector satisfies ℜ(ky)a/π = 1: the
real part of the Bloch wavevector is restricted to the top
edge of the 2D first Brillouin zone. Furthermore, the
imaginary part of the Bloch wavevector can only be di-
rected along the ky direction in reciprocal space, since
propagation is lossless along the x-axis. ℑ(ky) ̸= 0 hence
provides the necessary exponential decrease away from
the glide interface such that the guided wave is confined.
It can be check visually in the modal shapes of Fig. 2(b)
that the exponential decrease in amplitude along the y-
axis is accompanied by an alternation of the sign from
one unit cell to the next, in accordance with the condi-
tion ℜ(ky)a/π = 1.

Zak phase was originally introduced [24] for 1D crystals
as the integral of the Berry connection along the 1D Bril-
louin zone. The 2D Zak phase for 2D crystals [25, 26] is
a natural generalization where the integral of the Berry
connection is taken along a 1D contour, chosen as the
interface direction in reciprocal space [5]. Namely, Zak
phase for band n is

γn =

∫
C

dR · An(R), (1)

with R = kx at fixed ky and C = [−π/a;π/a]. The Berry
connection is

An(R) = i⟨un(R)|∇R|un(R)⟩, (2)

with un(R) a Bloch wave defined over the 2D unit cell
and ⟨.⟩ denoting the scalar product in real space defined
on this unit cell. Note that the integration contour cho-
sen, C, is different from the one used to define Chern
numbers, that is the boundary enclosing the first 2D
Brillouin zone. By construction, the bottom crystal B
is the glide-reflection (GR) image of crystal A. The glide
operation implies a phase change for every Bloch wave
ϕ(kx) = −gkx (a translation of the origin by g). Since
the Berry connection changes as An(R) → An(R)− ∂ϕ

∂kx

under any phase change, we have

γn(B) = γn(A) + 2πg/a. (3)

Hence there is a π change of the 2D Zak phase across
the interface for every band, for g = a/2 exactly. Since

the Zak phase is 2π-periodic, its value alternates by π
between both crystal images.
Why degenerescence of Bloch waves occurs specifically

for g = a/2 and at the X point of the first Brillouin
zone results from the combination of the space group
symmetry of the waveguide and of its periodicity along
the glide dislocation, as the Supplemental Material (SM)
details [22]. Let us consider here a compact demonstra-
tion based on operators of the 1D crystal interface. For
any glide parameter g, the composition Ga−g ◦Gg is the
translation by one lattice constant Ta in direct space. In
reciprocal space, this implies Ga−g(k)Gg(k) = exp(ika).
For g = a/2, we then have G2

g(k) = −1 at the X point of
the 1D Brillouin zone (ka = π). Hence the eigenvalues of
Gg(π/a) are ±i. Its eigenvectors form complex conjugate
pairs, since Gg(π/a)u = iu implies Gg(π/a)u

∗ = −iu∗.
Since the glide operator commutes with the dynami-
cal operator for the wave equation, they share common
eigenvectors. Hence Du = ω2u implies Du∗ = ω2u∗ since
the wave equation has real coefficients because of its time
reversal invariance (TRI). Summarizing, each complex
conjugate eigenvector pair shares a degenerate eigenvalue
at the X point.

We now turn to the experimental demonstration of the
glide-reflection symmetric phononic crystal waveguide.
The phononic crystal of steel rods in water is depicted in
Figure 3(a). A total of 24 × 16 parallel rods are aligned
using perforated parallel plates [22]. The rod diameter
is d = 2 mm and the lattice constant is a = 2.22 mm
(d/a = 0.9). Fig. 3(b) shows the numerical transmis-
sion as a function of frequency. The experimental trans-
mission of Fig. 3(c) is obtained based on the ultrasonic
pulse-echo technique described for instance in Ref. [27].
The complete band gap extends from 0.28 MHz to 0.46
MHz whereas the guided mode transmission covers the
range from 0.28 MHz to 0.43 MHz, in accordance with
theory.
For other glide parameter values, transmission is ob-

served as well inside the complete band gap but within a
reduced frequency range. Actually, for g ̸= a/2 the left
and right propagating guided Bloch waves interfere and
form an anti-crossing and thus a mini band gap at the X
point, as Fig. 4(a) shows. The experiments reported in
Fig. 4(b) clearly show the mini band gap opening when
g = a/4 and g = 3a/8 and the corresponding reduction
of the transmission range. Furthermore, Fig. 4(c) shows
the variation with g of the N -th and the (N+1)-th band
intersection with the X point. The phononic band gap
is completely opened for g = 0 and g = a, closes mid-
way for g = a/2, and varies continuously and symmetri-
cally between these points. Since the gap is fully opened
for g = 0 and closed for g = a/2, and the glide pa-
rameter can be continuously tuned with periodicity a, a
continously-tunable transmission filter is obtained. Note
that symmetry protection against backscattering of the
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FIG. 3. Glide-reflection symmetric topological phononic crys-
tal waveguide experiment. (a) Two pieces of the same square-
lattice crystal of steel rods in water (diameter d = 2 mm; lat-
tice constant a = 2.22 mm) are glided. The transmission of
acoustic waves guided along the dislocation is probed using
an ultrasonic emitter (E) of short pulses that are detected by
an ultrasonic receiver (R). For a half-lattice glide parameter
(g = a/2), the (b) numerical and (c) experimental acoustic
wave transmission covers most of the complete phononic band
gap (highlighted with the grey color). The reference for trans-
mission is the measurement in the absence of the phononic
crystal waveguide.

guided waves is only achieved when the glide parameter
g = a/2.

Summarizing the results above, the interface waves are
protected by a class of topology relying on spatial sym-
metries and thus belong to crystalline topological insula-
tors [28]. Whereas crystalline topological phases gener-
ally induce interface waves that have a gapped spectrum,
because the interface breaks the corresponding spatial
symmetries, the glide symmetry of the interface ensures
a gapless Dirac point at the X point of the Brillouin zone.

The importance of glide-reflection symmetry is fur-
ther verified in the SM [22] by considering the oblique
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FIG. 4. Gap opening as a function of the glide parameter.
(a) For g ̸= a/2, a mini-gap for guided waves opens in the
phononic band structure at the X point of the Brillouin zone.
(b) Experiment confirms the opening of the mini-gap, for g =
a/4 and g = 3a/8. (c) The eigenfrequencies of the two guided
waves at the X point vary with the glide parameter (blue
line: S waves; red line: AS waves). For exactly g = a/2, the
waveguide is glide-reflection symmetric and the guided wave
gap closes. This gap opens symmetrically on either side of
that value.

lattice instead of the square lattice. It is specifically
found that inversion symmetry [29] combined with the
glide operation leads to a gapped spectrum, unlike GRS.
We note that glide-reflection symmetric waveguides have
been considered before, e.g. for microwaves [30] or acous-
tic waves [31], but that waveguiding is in this case en-
sured by structural boundaries rather than by a phononic
band gap. The existence of a complete band gap without
glide (g = 0) is indeed essential to our result. Defect pho-
tonic crystal waveguides possessing glide-reflection sym-
metry have also been discussed in terms of symmetry [32]
or low group velocity [33], but without consideration of
their topological properties.

The SM [22] further explores the resilience of the in-
terface waves to disorder, a direct check of symmetry
protection. It is observed numerically that they survive
a position disorder of at least 5% of the lattice constant
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and an inclusion diameter disorder of 10%.
The discussion so far has been limited to the scalar

case of acoustic waves and to a square lattice crystal of
steel rods in water. It is obvious, however, that the sym-
metry principles involved extend the existence of glide-
reflection symmetric crystal waveguides to other material
systems and lattices. The SM specifically illustrates the
cases of acoustic waves in a fluid with rigid inclusions
and of vector elastic waves in a solid perforated with
cylindrical holes or containing solid inclusions [22]. By
virtue of the well-established analogies between acous-
tic/elastic waves and optical/electromagnetic waves [34],
the transposition to photonic crystals is straightforward.
Other wave systems such as plasmonic crystals, gravity-
capillary waves at the surface of water [35], or solutions
of the Schrödinger equation are likely to present similar
properties too. Indeed, one can start from any wide band
gap artificial crystal and produce a glide-reflection sym-
metric interface within it. Then, when the glide param-
eter is exactly one half of the lattice constant, a gapless
spectrum is obtained whereas the non-glided crystal has
a completely gapped spectrum. Hence, any efficient ar-
tificial crystal that has been designed in the past, from
seismic waves at the meter scale [36] to phononic crys-
tals for thermal transport control at the nanometer scale
[37], can be used as a starting basis to design a com-
pletely new topological glided structure supporting sym-
metry protected edge states.

On the practical side, the glide operation offers the
opportunity to design a continuously varying transmis-
sion that can be changed from no transmission (for
g = 0) to full transmission through the phononic band
gap (for g = a/2). As a waveguide for transmission of in-
formation, the glide-reflection symmetric crystal waveg-
uide offers wide bandwidth, single mode operation, and
symmetry-protected backscattering immunity.
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laume Dupont, Sébastien Guenneau, Muamer Kadic,
and Mehul P Makwana, “Acoustic topological circuitry
in square and rectangular phononic crystals,” Phys. Rev.
Appl. 15, 054056 (2021).

[24] J Zak, “Berry’s phase for energy bands in solids,” Phys.
Rev. Lett. 62, 2747 (1989).

[25] Feng Liu and Katsunori Wakabayashi, “Novel topological
phase with a zero Berry curvature,” Phys. Rev. Lett. 118,
076803 (2017).

[26] Feng Liu, Hai-Yao Deng, and Katsunori Wakabayashi,
“Topological photonic crystals with zero Berry curva-
ture,” Phys. Rev. B 97, 035442 (2018).

[27] A. Khelif, A. Choujaa, B. Djafari-Rouhani, M. Wilm,
S. Ballandras, and V. Laude, “Trapping and guiding of
acoustic waves by defect modes in a full-band-gap ultra-
sonic crystal,” Phys. Rev. B 68, 214301 (2003).

[28] Emil Prodan and Hermann Schulz-Baldes, Bulk and
Boundary Invariants for Complex Topological Insulators
(Springer, 2016).

[29] Zheng-wei Li, Xin-sheng Fang, Bin Liang, Yong Li,
and Jian-chun Cheng, “Topological interface states in
the low-frequency band gap of one-dimensional phononic
crystals,” Phys. Rev. Appl. 14, 054028 (2020).

[30] Oscar Quevedo-Teruel, Qiao Chen, Francisco Mesa, Nel-
son JG Fonseca, and Guido Valerio, “On the benefits of
glide symmetries for microwave devices,” IEEE Journal

of Microwaves 1, 457–469 (2021).
[31] Nikolina Janković and Andrea Alù, “Glide-symmetric
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