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Resonant structures supporting elastic waves attached to a substrate suffer from radiation loss. As
a result, instead of the normal modes of closed systems having purely real eigenfrequencies, open systems
possess quasi-normal modes (QNMs) characterized by complex valued eigenfrequencies and diverging
power at infinity. Because of the eigen-expansion theorem, that states that the response of a system to a
given excitation is a superposition of all eigenmodes, there is strong interest in obtaining all quasi-normal
modes.  Quasi-normal modes have been widely discussed in photonics [1,2],  but less for acoustic and
elastic waves [3]. Of special interest are the determination of complex eigenvalues and eigenmodes, and
the definition of an adequate modal volume and elastic equivalent of the Purcell effect [4].

Following Reference [1], we make use of the unconjugated form of the reciprocity relation for
elastic waves in order to obtain a relation between the solution to the time-harmonic elastodynamic wave
equation and the discrete set of quasi-normal modes. Of significance is the fact that the total energy of
QNMs is  unbounded,  so  that  usual  normalization  relations  for  normal  modes  can  not  be  employed.
Instead,  a multipole expansion with complex coefficients is  naturally obtained. In passing, a complex
modal volume is defined.

We  then  consider  a  practical  way  to  obtain  all  quasi-normal  modes  of  an  elastic  resonating
structure.  Our  technique  relies  on  the  stochastic  method  to  obtain  all  possible  resonances  from  the
response of the system to a random force [5] and extends it  to the quasi-normal mode problem. The
technique yields poles in the response that can be continued in the complex frequency plane. Starting from
an initial guess along the real frequency axis, a fast iterative algorithm based on the power method for
eigenvectors  is  implemented.  Once  the  quasi-normal  modes  have  been  obtained,  the  response  of  the
system to a given excitation can be computed efficiently from the expansion theorem,  by forming the
projection of the excitation on each quasi-normal mode as a function of frequency.

We implement an equivalent of the photonic techniques presented in [1] to phononic structures,
including perfectly matched layers to transform the semi-infinite domain to a finite, but complex-valued,
domain. We obtain numerically the modal volume of open elastic systems. As a test system, we consider a
nanopillar on a surface and then a pair of coupled nanopillars forming a kind of tuning fork, resonating in
the hundreds of MHz to a few GHz range. We obtain the quasi-normal modes in both cases and verify that
the response of the system to an excitation of the nanopillars is well accounted for by the superposition of
the first quasi-normal-modes.  The first  quasi-normal modes for the case of an isolated nano-pillar are
shown in Figure 1, together with a comparison of the time-harmonic response of the system with the
expansion over the first few quasi-normal modes.

As will be discussed, the same strategy can be followed to obtain quasi-normal modes for open
acoustic systems, as well as for coupled acoustic and elastic systems.
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Figure 1: Two-dimensional model of a nickel pillar on a silicon surface. Quasi-normal modes are obtained
including a viscoelastic loss model for both materials and taking into account radiation to the bottom of
the substrate. Radiation is implemented numerically as a frequency-dependent perfectly matched layer
(PML). The frequency response of the vibrating pillar can be estimated from the superposition of the first
few quasi-normal modes.
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