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Second-harmonic emission at a frequency that is twice the laser frequency is an important diagnostic for
nonlinear laser-plasma interaction. It is forbidden for centrosymmetric materials such as the bulk of sapphire.
The symmetry, however, can be broken by dielectric discontinuities as a result of plasma generation inside a
solid dielectric. In the present work, we explore the basic characteristics of experimentally observed second-
harmonic emission during focusing a femtosecond Bessel beam inside sapphire. We employ three-dimensional
particle-in-cell simulations and the Helmholtz wave equation for theoretical investigations. We analyze how
the efficiency of second-harmonic generation and its polarization depend on the plasma parameters. We find
that the second-harmonic is generated either due to the coalescence of two surface electromagnetic waves or
nonlinear interaction between the transverse electromagnetic wave and the longitudinal electron plasma wave
driven by linear mode conversion. Experimental results agree with the theoretical predictions and confirm
the existence of over-critical plasma inside the sapphire that is essential for the resonance of plasma waves or
excitation of surface plasmons.
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I. INTRODUCTION

Shaping femtosecond laser beams down to microme-
ter sizes allows generating so-called non-diffracting Bessel
beams.1 A Bessel beam is a solution of the Maxwell equa-
tions in which the amplitude of the beam is described
by the Bessel function of the first kind. They are use-
ful tools for optical traps,2,3 optical manipulation,4 laser
particle acceleration,5–7 light-sheet microscopy,8,9 nonlin-
ear optics ultrashort pulse filamentation,10–12 and laser-
material processing.13–18

Femtosecond Bessel beams have been used in single-
shot regime to create sub-wavelength voids inside trans-
parent materials such as sapphire and fused silica.13,15,19

It was shown that tightly focusing a microjoule femtosec-
ond Bessel beam inside sapphire and fused silica can cre-
ate a high aspect ratio channel with a diameter of about
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400 nm and a length of typically 20 µm. In the experi-
ments, an absorption of more than 50 percent of the laser
energy was observed. The absorbed energy is a few or-
ders of magnitude greater than the required energy for
creating a fully ionized plasma rod at the input laser crit-
ical density, εmnc = 5.3 × 1021 cm−3 for a λ0 = 800 nm
laser focused inside the sapphire with the permittivity
εm = 3.1. We have demonstrated in Ref.20 that, in the
energy regime where voids can be opened in sapphire in
single shot, over-critical plasma density is generated over
several tens of micrometers in length and potentially over
arbitrary distances thanks to the conical structure of the
Bessel beam.21 The plasma cross-section is elliptically
shaped, with the major axis perpendicular to the laser
polarization. The high absorption of typically 50 percent
was shown to be due to a collisionless mechanism. In
addition, second-harmonic generation could be detected
for the first time, to the best of our knowledge, from the
laser-plasma interaction within a transparent solid. We
recall that second-harmonic emission is in principle for-
bidden from the bulk of sapphire because this material
is centrosymmetric and, in the absence of plasma, has
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zero second-order susceptibility χ(2) = 0. The far-field
emission pattern of the second-harmonic emission signif-
icantly depends on the plasma shape and its orientation
with respect to the laser polarization.20

In the first paper of this series (Ardaneh et al.,22 Pa-
per I hereafter), we focused on the structure of the fields
and the absorption mechanisms considering two refer-
ence PIC simulations with Gaussian and step plasma
density profiles. We found that the absorption can be
either due to the resonance of the electrostatic plasma
waves for a transversally Gaussian density profile, or the
excitation of electromagnetic surface waves in a step pro-
file case. We also found that the particles were heated
during surfing the plasma waves and the absorption pro-
cess was mainly collisionless in both cases. The heated
electrons were accelerated both outward and inward the
plasma rod. In the outward propagation, electrostatic
ambipolar fields were developed at the plasma surface
due to the different mobilities for the electron and ion.
On the other hand, the inward propagation led to the
electron sound waves in the high-density region.

The current paper as the second in a series is focusing
on the study of the second-harmonic generation during
the interaction of an ultrafast Bessel beam pulse with
a plasma rod. Second-harmonic emission is convention-
ally an important diagnostic in the study of laser-plasma
interactions.

In an inhomogeneous plasma with density n & nc,
several mechanisms can lead to second-harmonic emis-
sion: the coalescence of two plasma waves, merging a
plasma wave and an electromagnetic wave, or coales-
cence of two transverse waves.23–27 The plasma waves
oscillate at roughly the laser frequency ω0 (resonance
condition) and are generated either by linear mode con-
version or parametric decay instability.28–30 The second-
harmonic originated from the linear mode conversion is
mainly polarized parallel to the laser polarization and the
spectrum is a slightly blue-shifted single peaked narrow
line.24,31–33 The parametric decay instability, however,
leads to second-harmonic emission polarized perpendic-
ular to the incident laser and the emission line is red-
shifted and broadened.24,26,33,34 In contrast to the blue-
shifted narrow spectrum of linear mode conversion, the
appearance of the red-shifted component has a thresh-
old for the laser intensity & 1014 W/cm2.26,33,34 The
generated second-harmonic around the critical surface
propagates in both directions. It is reflected from the
high-density region implying the presence of the second-
harmonic in the reflected signal.

Our paper is organized as follows. In Sec. II, we first
recall our experimental results and show the far-field flu-
ence distribution of the second-harmonic, analyzed using
a polarizer. We report in Sec. III the results of Particle-
In-Cell (PIC) simulations using two limiting plasma den-
sity profiles, as discussed in Paper I. Then, in Sec. IV,
we perform an analysis using the Helmholtz equation in a
two-dimensional model of laser interaction with a plasma
density gradient. The results from the Helmholtz equa-

tion show a good agreement with our experiments and
PIC simulations, in terms of the polarization and con-
version efficiency, and sheds light on the mechanisms of
second-harmonic generation at play.

II. EXPERIMENTS

We spatially shaped 120 fs laser pulses at a central
wavelength of 800 nm. Using a spatial light modulator
combined with a 2f-2f telecentric arrangement to produce
a horizontally-polarized Bessel beam with cone angle 25◦

in air. The pulse duration of typically 120 fs has been
characterized at the sample position. After the interac-
tion, the pulse is collected with a ×50 microscope ob-
jective (Olympus MPLFLN) in a 2f-2f arrangement to
image the pulse on a camera (Stingray F146B, 14 bits).
The imaging system, with a numerical aperture of 0.8 is
placed on an independent translation stage. The far-field
images were recorded on a camera using an accumulation
over 500 shots when the sample is continuously translated
to separate the laser impacts by 5 µm. A notch filter al-
lows for integrating on the camera the signal in a range
400 ± 20 nm. The emission could be analyzed using a
polarizing cube placed at 0 or 90 degrees with respect to
the pump polarization direction. A simplified schematic
of the experimental setup is illustrated in Fig. 1.

The measurement has been performed with the Bessel
beam fully inside the bulk of sapphire. We remark that
the second-harmonic signal disappears when the input
pulse is stretched to the ps pulse duration. Stretch-
ing the input pulse is equivalent to reducing its inten-
sity considering fixed pulse energy. Reducing the inten-
sity weakens the nonlinear current source [Eq. (3)], and
subsequently, reduces the radiated power for the second-
harmonic. The signal is also reduced when part of the
beam crosses one of the air-dielectric interfaces since the
plasma length is reduced.

Figure (2) shows our experimental results. Figure (2a)
shows two distinct signals: first, a low-intensity, nearly
uniform background that we have attributed to the black-
body emission of the generated hot plasma (the temper-
ature of 10-15 eV).20 This signal shows a disk limited
by the numerical aperture of the system. The second-
harmonic signal also shows two narrow lobes at kr ≈ 2k0

r ,
where k0

r is the radial component of the pump wavevec-
tor. This indicates that second-harmonic emission occurs
at an angle nearly identical to the reflection of the laser.
We note that a slight black mark in the range kx ≈ 0
and ky < 0 is a measurement artifact. It is due to the
fact that part of the emission is blocked by the material
modification produced by the previous laser shot. This is
why, in the polar representation in Fig. (2d), the far-field
distributions have been symmetrized.

The second-harmonic in our experiments has a domi-
nant component polarized as the input laser pulse with a
dipole-shaped emission pattern, Fig. (2b) and (2d). This
component is filtered with a horizontal polarizer (HPol).
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FIG. 1. Schematic of the experimental setup for femtosecond Bessel beam shaping and imaging of propagation in sapphire.
Beam scanning allows reconstructing the fluence distribution inside the sample in three dimensions. Far-field scanning is
achievable by changing lens f2 to image the Back focal plane of the second microscope objective onto the CCD. Using a
bandpass filter around 400 ± 20 nm, we select the second-harmonic component of the radiation spectrum. SLM: spatial light
modulators, MO: microscope objective, BPF: bandpass filter, CCD: charge-coupled device.

FIG. 2. Far-field emission at 2ω0 from the experiments: (a)
without polarizer (NoPol), (b) using a horizontal polarizer
(HPol), and (c) using a vertical polarizer (VPol). The axes
are normalized to k0r = k0 sin θ. The angular distribution for
each distribution is shown in panel (d), blue solid for NoPol,
red dashed for HPol, and green dashed-dotted for VPol.

On the other hand, there is also a faint component that is
polarized perpendicular to the input laser pulse (VPol)
with a quadrupole-shape pattern, Fig. (2c) and (2d).
The average power of the second-harmonic in the exper-
iments is calculated as 〈I2ω0〉 = 1/2π

∫
dφI(2ω0, φ). The

average power of the second-harmonic with the horizon-
tal and vertical polarizations are respectively 80 and 20
percent of the 〈I2ω0〉. In the following section, we will re-
trieve our experimental results using numerical PIC sim-
ulations.

III. PIC SIMULATIONS

We have performed self-consistent PIC simulations us-
ing the three-dimensional massively parallel electromag-
netic code EPOCH.35 The simulations setups and numer-
ical scheme are described in detail in Paper I. In brief,
we used the fully ionized plasmas composed of electrons
and ions at temperature of 1 eV. We considered Gaussian
and step density profiles for the plasma as two limiting
cases for the transition between volumetric plasma waves
to surface waves, that can explain the characteristic high
energy absorption in our experiments (see Paper I). For
the Gaussian density profile, the high absorption is due
to the resonance of the volumetric plasma waves, that
are excited due to the linear mode conversion. For the
step density profile, the high absorption is due to surface
plasmon excitation.

In our PIC simulations, we have used the characteris-
tic plasma scales that could reproduce our multiple ex-
perimental diagnostics (far-field, near-field, absorption),
as shown in Paper I. In the step density profile, the
plasma in xy−plane is an ellipse with uniform density
nmax = 5nc and minor axis 2Rx = 380 nm along the
x−direction, and major axis 2Ry = 900 nm along the
y− direction. For the Gaussian profile, the plasma den-
sity distribution is n = nmax exp(−x2/w2

x) exp(−y2/w2
y),

where wx:y is the width along the x− or y−direction
with critical radius Rx:y. We injected from the zmin

boundary a linearly x−polarized Gaussian pulse prop-
agating in the positive z−direction. We applied a phase
φ(r) = −k0r sin θ to the Gaussian beam to create a
Bessel-Gauss beam.36 The peak intensity in the Bessel
zone is 6 × 1014 W/cm2 in the absence of plasma (pulse
energy 1.2 µJ). There are 32 particles per cell per species.
We used standard FDTD schemes and triangular particle
weight profiles.

In simulations, we calculated the far-field intensity for
the second-harmonic as follows. After recording the fields
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FIG. 3. Far-field emission at 2ω0 from the PIC simulations for the Gaussian density profile (left column), and step density
profile (right column). The 2ω0 emission patterns are shown: (a) and (d) for mixed polarization (NoPol), (b) and (e) for
horizontal polarization [HPol, (Ex, Ey, By) light], (c) and (f) for vertical polarization [VPol, (Ey, Bx, Bz) light]. The axes are
normalized to k0r = k0 sin θ of the Bessel beam. The color-bars are normalized by the average power of input pulse. The angular
distributions are shown in panel (g) for NoPol, (h) for HPol, and (i) for VPol, blue solid for Gaussian density profile, red dashed
for step density profile, and black dotted with empty circles for the experiment.

at a fixed propagation distance of z = 20 µm, in a spa-
tial window for |x| 6 5 µm and |y| 6 5 µm, we cal-
culated the intensity spectrum I(ω, kx, ky) by perform-
ing a discrete Fourier transform on each component of
the magnetic field, Bx:y:z(t, x, y). We then obtained the
second-harmonic emission spectra by filtering the inten-
sity spectrum at the frequency 2ω0.

The second-harmonic emissions from the PIC simu-
lations are shown in Fig. (3), for the Gaussian den-
sity profile (left side), and the step density profile case
(right side). Similar to the experiments, we decompose
the second-harmonic emission into horizontal and verti-
cal polarizations relative to the x−polarized input laser
pulse, By for a horizontally polarized light and (Bx, Bz)
for a vertically polarized light. The emission patterns
are in good agreement with our experiments. One can
see that the component with the horizontal polarization
dominates the emission pattern. Moreover, the emission
angle of the second-harmonic is θ2ω0 = θ and therefore
k2ω0

x:y = 2k0 sin θ. The angular distributions for different
polarizations are shown in Figs. (3g)-(3i). We have also
included the experiment angular distributions to better
visualize the agreement between simulations and exper-
iments. The angular distribution for the Gaussian and
step density profiles are the same because of the similar
nonlinear current sources. For both cases, the current of
heated electrons is distributed along the plasma rod and
mainly parallel to the x−direction (see Sec. VB in Paper
I).

The average power of the second-harmonic
in the simulation is calculated from 〈I2ω0〉 =
1/∆kx∆ky

∫
d2kI(2ω0, kx, ky). The conversion effi-

ciency, i.e., the average power of second-harmonic to
the average power of input pulse 〈I2ω0〉/I0, is 6 × 10−6

for the Gaussian density profile, and 1.5 × 10−5 for
step one. The intensity of the second-harmonic is
therefore on the order of 〈I2ω0〉 ∼ 109 − 1010 W/cm2.
The second-harmonic generation is more efficient in the
step density profile by a factor of 2.5. We interpret
this difference in efficiency as follows. The surface waves
have a larger amplitude than volumetric waves because
a two-dimensional system has fewer degrees of freedom
for the motion of particles. The particles are then more
easily trapped and waves saturate at a larger amplitude.

For the Gaussian density profile, the spatially-
integrated power of the second-harmonic for the horizon-
tal and vertical components are respectively 80 and 20
percent of the 〈I2ω0〉. These ratios are 77 and 23 percent
for the step density profile. The ratio of the vertically
polarized component to the horizontally polarized one is
≈ 1

4 which is in very good agreement with the experi-
ments in Fig. 2.

IV. THEORY OF SECOND-HARMONIC GENERATION

In this section, we analyze the second-harmonic gen-
eration using a simple two-dimensional model. We start
with the Helmholtz equation for the second-order mag-
netic field B(2) [See Eq. (A7) in Appendix A]:
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∇2B(2)+
4ω2

0

c2
ε(2)B(2) +

1

ε(2)
∇ε(2) ×

(
∇×B(2)

)
=

4π

c

(
−∇× J(2ω0) +

1

ε(2)
∇ε(2) × J(2ω0)

)
= F(2ω0)

(1)

here ε(2) = ε(2ω0) is the plasma permittivity at the
second-harmonic frequency. We used the Drude model
for the plasma permittivity ε. Hence

ε(ω) = 1−
ω2

pe/ω
2

1 + jνeff/ω
(2)

where ωpe = (4πne2/m)1/2 is the electron plasma fre-
quency, and νeff is the effective damping frequency in the
plasma. Here, we have chosen to model a plasma placed
in vacuum as in the EPOCH simulations (in sapphire, ε
and ωpe would be modified because of the permittivity
of the solid dielectric).

The term F(2ω0) in Eq. (1) is the nonlinear source
of the second-harmonic. One can obtain the associated
second-order current density from the equation of motion
and continuity equation for electrons coupled with the
Maxwell equations.37 It reads:

J(2ω0) = − jne3

4m2ω3
0

[
4
∇ lnn ·E

ε
E + ∇(E ·E)

]
(3)

The polarization of the second-harmonic ∂P(2ω0)/∂t =
J(2ω0) is given by:

P(2ω0) = χ
(2)
fe

[
2
∇ lnn.E

ε
E +

1

2
∇(E ·E)

]
(4)

where χ
(2)
fe = ne3/4m2ω4

0 is the second-order suscepti-
bility for free electrons.32 For a radial density profile,
the polarization of the second-harmonic coming from
the first term is P(2ω0) ∝ E(r.E). Therefore, in the
case of a linearly polarized laser, the emission at the
second-harmonic will have parallel polarization relative
to the input laser. This term vanishes for s−polarized
light because E is perpendicular to the density gradient
(r.E = 0). The emission pattern due to this term will
be two parallel lobes oriented along with the directions
±E of the input laser, following a cos2 φ in which φ is the
angle between r and E. The second term in the P(2ω0)

expression results in a p−polarized second-harmonic, ir-
respective of the polarization of the input laser. As a
result, the s−polarized second-harmonic is possible only
for an input laser with both s− and p− polarization.38

We now analyze more quantitatively the influence of
the plasma density gradient on the different terms in a
two-dimensional model. Let us consider a plasma slab

in the xy−plane and infinite in the z−direction. We
assume that the plasma density linearly increases with
the x−coordinate (n/nc = 1 + x/L, the origin of coor-
dinates is chosen so that with x > 0 ε(x) < 0, and with
x < 0 ε(x) > 0). A mixed polarized monochromatic
wave [(Ex, Ey, Bz) for p−polarization and (Ez, Bx, By)
for s−polarization] interacts with this plasma. The
wavevector is given by k0 = x̂k0 cos i + ŷk0 sin i where
i is the incident angle measured relative to the density
gradient. In this geometry, Ex is the component of the
electric field that drives electron plasma waves. For this
geometry, the second-order magnetic field components
are given by:

B
(2)
x

B
(2)
y

B
(2)
z

 =

B
(2)
x (x)

B
(2)
y (x)

B
(2)
z (x)

× exp [2j (−ω0t+ kyy)] (5)

One can obtain the source term components of F(2ω0)

analytically after some straightforward but lengthy alge-
bra, see for example Ref.23,25 It reads:

F (2ω0)
x =

j4πe3ε(2)

m2ω3
0c


2︷ ︸︸ ︷

2jkyExEz

εε(2)

∂n

∂x

 (6)

F (2ω0)
y =

j4πe3ε(2)

m2ω3
0c

−
2︷ ︸︸ ︷

∂

∂x

(
ExEz

εε(2)

∂n

∂x

)
 (7)

F (2ω0)
z =

j4πe3ε(2)

m2ω3
0c

−
1︷ ︸︸ ︷

2jkyE
2
x

εε(2)

∂n

∂x

+

2︷ ︸︸ ︷
∂

∂x

(
ExEy

εε(2)

∂n

∂x

)

+

3︷ ︸︸ ︷
jkyE

2

2

∂

∂x

( n

ε(2)

)


(8)

where E2 = (E2
x + E2

y + E2
z ). One notes that second-

harmonic source F(2ω0) is proportional to the density
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gradient and vanishes in homogeneous plasmas where
∇n = 0. By using the same terminology as Nazarenko
et al.,39 the second-harmonic generation is either due to
the nonlinear interaction of two electron plasma waves,

term 1 in Eq. (8), or an electron plasma wave with

an electromagnetic wave, term 2 in Eqs. (6)-(8), or
coalescence of two electromagnetic waves in an inhomo-

geneous plasma, term 3 in Eq. (8). The terms 1 and

2 arise from the first term of Eq. (3) in which electron
plasma waves are at resonance where ε = 0. The term

3 originates from the second term of Eq. (3) and is due

to the laser radiation force density fRF = (ε−1)/8π∇E2

which is faint at the considered intensity. In a homo-
geneous plasma, this term is purely irrotational because
∇×(∇E2) = 0 and can radiate just at boundaries where

∇n 6= 0.32 For a pure p−polarized laser, the F
(2ω0)
x

and F
(2ω0)
y components vanish while all three terms in

the F
(2ω0)
z will be present. In contrast, for the pure

s−polarized laser, the terms 1 and 2 in F
(2ω0)
z vanish.

The situation in the PIC simulations and experiments
is as follows. In the absence of plasma, the electric field
components of the Bessel beam are Ez ≈ 0.1Ex and
Ey ≈ 0.03Ex. However, in the presence of an ellipti-
cal plasma in the xy−plane, the Ex, Ey components are
significantly amplified and Ey ≈ 0.5Ex and Ez ≈ 0.2Ex.
Therefore, the dominant electric field components in the
presence of the plasma are Ex and Ey. This reduces
the physical situation more like a p−polarized light with
the dominant second-harmonic source given by Eq. (8).
This term generates the second-harmonic with the hor-
izontal polarization. The vertical polarization term can

be inferred from term 2 and the importance of the Ez

relative to Ey.
We solved the Helmholtz equations for the first-

harmonic to obtain the nonlinear source and then for
second-harmonic. We used an angle of incidence i = 65◦,
which corresponds to the same physical situation as in
the experiment (since the cone angle θ = π/2 − i is the
angle made with the optical axis). The solver is detailed
in the Appendix B and is limited to the p−polarized case.

In Fig. (4a) we show the absorption factor calculated
from the Helmholtz equation (red dashed with empty cir-
cles) versus the Denisov absorption curve (blue solid with
filled circles) as a reference for validation of our solver.40

The Denisov curve is accurate for slowly varying den-
sity and there is a very good agreement between the two
curves in the region Lk > 3. The deviation between the
two curves is in the region Lk < 2 where the Denisov
curve is less accurate. We show with the red rectangle
the range of plasma scale length where the absorption ex-
ceeds 0.5, which corresponds to our experimental regime,
as discussed in detail in Paper I.

In Fig. (4b), one can see the conversion efficiency for
the second-harmonic considering different terms of the

nonlinear sources F
(2ω0)
z given in Eq. (8): the full source

expression, terms 1 + 2 , term 1 for the coalescence

FIG. 4. Solutions of the Helmholtz equation for the first,
and second-harmonic in the case of p−polarized light [non-
linear source given by Eq. (8)]: (a) absorption factor as a
function of plasma scale length from the Helmholtz equation
(red dashed with empty circles) versus the Denisov absorption
curve (blue solid with filled circles); (b) conversion efficiency
for the second-harmonic using the source term with full ex-
pression (solid blue with filled circles), the first and second
terms (red dashed with empty circles), the first term (green
dashed-dotted with filled squares), second term (purple dot-
ted with empty squares), and third term (orange solid with
filled triangles).

of two longitudinal plasma waves, term 2 forthe coa-
lescence of a longitudinal plasma wave with a transverse

electromagnetic wave, and term 3 for the coalescence
of two electromagnetic waves.

As shown in Figs. (4), there is an optimal plasma
scale length for the absorption and the second-harmonic
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generation. A scale length shorter than the optimum
shifts the maxima of absorption and second-harmonic
generation to higher incident angles. In this configura-
tion, the evanesce field is more confined near the turning
point, weakening the plasma wave’s excitation. Hence,
the matching between the two plasma waves or plasma
wave and transverse electromagnetic wave results in a
lower efficiency for the second-harmonic generation. The
plasma wave evolves into the surface wave at the limit
L → 0 which corresponds to the step-density profile. In
this case, the angle of incidence is the sensitive param-
eter for efficient surface plasmon excitation and second-
harmonic generation, in contrast with the Gaussian den-
sity profile where there is also an optimal scale length for
efficient matching.

This simple model allows us to explain several of our
simulations and experimental results. (i) We see that
in the range of plasma scale lengths corresponding to
our experimental case (red rectangle), the conversion ef-
ficiency of the input laser power into the second-harmonic
is ∼ 1× 10−5 as we obtained in the PIC simulations. We
also see that the conversion efficiency for step density
profile (limit case where L tends to 0) is almost twice
the inhomogeneous density profile. This is also in agree-
ment with the results from PIC simulation in Fig. (3)
where the ratio is 2.5. (ii) The ratio between the gen-

erated second-harmonic from the source term 2 (pur-
ple dotted with empty squares) and the full source term
(solid blue with filled circles) is always < 1

2 . Considering
that Ez/Ey ≈ 0.5, the ratio between the second-harmonic
generation with vertical polarization to the horizontal po-
larization is < 1

4 ; (iii) reducing the plasma scale length
reduces the probability of two plasma waves coalescence
(green line with filled squares) while it increases the prob-
abilities of a plasma wave merging with an electromag-
netic wave and merging of two electromagnetic waves (or-
ange line with filled triangles); (iv) In the range Lk . 1
(the corresponding range for experimental absorption),
the most likely process is plasma wave merging with an
electromagnetic wave (purple line with empty squares);
and (vi) for a step density profile, in the limit L → 0,
the total conversion efficiency of second-harmonic gen-
eration increases again (solid blue curve). In this limit
case, plasma waves evolve into surface waves and the ef-

ficiency of term 2 is now due to efficient coalescence of
two surface waves.

In the limit L→ 0, we can easily retrieve the direction
of emission of second-harmonic. From the conservation
of energy and momentum, we have

2~
ω0

c
[ε(ω0)]

1/2
sin i = ~

2ω0

c
[ε(2ω0)]

1/2
sin i2ω0

(9)

Therefore, the angle of emission for the second-harmonic
reads:

sin i2ω0
= [ε2(ω0)/ε(2ω0)]

1/2
sin i (10)

The second-harmonic emission by merging two surface

waves might not be exactly at the same angle as the
reflected pump. In PIC simulations, the emission angle
of the second-harmonic is i2ω0

= i and therefore k2ω0
x:y =

2k0 sin θ because [ε(ω0)/ε(2ω0)]
1/2

= 1 for vacuum. For
sapphire, the emission angle of the second-harmonic is

i2ω0 ≈ i because [ε(ω0)/ε(2ω0)]
1/2 ≈ 1.

In regards to the experiments and PIC simulations, the
component with horizontal polarization mainly originates
from the resonant first term in Eq. (3). As discussed be-
fore, the horizontally polarized second-harmonic might
therefore be due to the merging of two plasma waves,

term 1 , or merging of a plasma wave with an electro-

magnetic wave, term 2 . In the range of plasma scale
length for an absorption & 0.5 [Fig. (4)], the latter pro-
cess becomes more efficient as the plasma scale length
decreases. The faint component with vertical polariza-
tion comes from the second term in Eq. (3) and is due to

the coalescence of two electromagnetic waves, term 3 .

V. CONCLUSIONS

In this paper, we extended our investigation of fem-
tosecond Bessel beam-induced plasmas inside the sap-
phire. A single-shot Bessel beam can create a high aspect
ratio over-critical plasmas inside the dielectric, a promis-
ing medium for the second-harmonic generation due to
the currents of the resonance driven hot electrons. This
is not feasible with Gaussian beam because the generated
plasma reflects the most energetic part of the beam and
the plasma stays sub-critical.20

Using the Helmholtz equation for the monochromatic
wave, we have studied the polarization and the conver-
sion efficiency of the second-harmonic considering differ-
ent possible nonlinear interactions. Our model repro-
duces correctly all main characteristics of the experi-
mental and PIC simulation results. We showed that
both linear mode conversion and resonance of the sur-
face wave generate a second-harmonic emission polarized
horizontal to the input laser. The conversion efficiency
from our simple model and PIC simulations is on the or-
der of 10−5. Under the linear mode conversion and the
plasma scale length corresponding to the measured ab-
sorption, the second-harmonic emission is mainly due to
the nonlinear interaction between the longitudinal elec-
tron plasma wave and transverse laser wave. On the
other hand, the coalescence of two surface waves leads
to the second-harmonic emission in the step density pro-
file with almost twice higher conversion efficiency than
the linear mode conversion scenario.

In this work, the pattern of the second-harmonic is a
mark that over-critical plasma density is reached within
sapphire. While it does not allow us to discriminate be-
tween homogeneous or inhomogeneous plasma profiles,
the second-harmonic diagnostic can still be useful to
gain insights into the parameters of the laser-generated
plasma and the absorption mechanism. From a more
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general point of view, the epsilon-near-zero surface as-
sociated with the critical surface of the plasma rod can
represent a new platform for nonlinear frequency conver-
sion within dielectrics.

The analysis presented in the current work can also
shed light on experiments in other centrosymmetric ma-
terials. The preliminary measurements for the fused sil-
ica showed some differences in the second-harmonic pat-
terns with the current work. The differences are likely
due to the regime of the nonlinear ionization and the
resulting density profile.
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Appendix A: Helmholtz equation for B(2)

The second-order current density is given by

J(2) = σ(2)E(2) + J(2ω0) (A1)

The first term is the linear response of the medium fol-
lowing the Ohm law, and the second term is the second-
harmonic nonlinear source. To develop wave equations
for the second-order magnetic fields, let us consider Fara-
day’s law and Ampere’s law, which become

∇×E(2) =j
2ω0

c
B(2) (A2a)

∇×B(2) =
4π

c
σ(2)E(2) − j 2ω0

c
E(2) +

4π

c
J(2ω0) (A2b)

Substituting for σ(2) = σ(2ω0) = jω2
pe/8πω0 into Eq.

(A2b) gives

∇×B(2) = −j 2ω0

c
ε(2)E(2) +

4π

c
J(2ω0) (A3)

where ε(2) = 1 − ω2
pe /4ω

2
0 defines the second-order di-

electric function of the plasma. Taking the curl of Eq.
(A3) gives

∇× (∇×B(2)) = −j 2ω0

c
∇× (ε(2)E(2)) +

4π

c
∇× J(2ω0)

(A4)
since

∇× ε(2)E(2) = ε(2)∇×E(2) + ∇ε(2) ×E(2) (A5)

Substituting from Eq. (A2a) and Eq. (A3) for the first
and second terms in right side of Eq. (A5), we obtain

−j 2ω0

c
∇× (ε(2)E(2)) =

4ω2
0

c2
ε(2)B(2)

+
1

ε(2)
∇ε(2) × (∇×B(2) − 4π

c
J(2ω0))

(A6)

Substituting Eq. (A6) into Eq. (A4), we obtain

∇2B(2) +
4ω2

0

c2
ε(2)B(2) +

1

ε(2)
∇ε(2) × (∇×B(2))

=
4π

c

(
−∇× J(2ω0) +

1

ε(2)
∇ε(2) × J(2ω0)

)
= F(2ω0)

(A7)

Appendix B: Helmholtz equation solver

For p-polarized light, it is simpler to solve the

Helmholtz equation for the magnetic field B
(n)
z first (n =

1 for first-harmonic and n = 2 for second-harmonic), and
then derive the electric fields from its solution. The solver
is developed based on the presentation in Ref.41 We use

the normalization b(n) = eB
(n)
z /mω0c (B

(n)
z in the Gaus-

sian units), and κ = xω0/c. The normalized wave equa-
tion for b(n) is:

∂2b(n)

∂κ2
− 1

ε(n)

∂ε(n)

∂κ
∂b(n)

∂κ
+ n2

(
ε(n) − sin2 i

)
b(n) = f (n)

(B1)
where f (n) is the source term, f (1) = 0 for first-harmonic
and f (2) for second-harmonic is the normalized form of
F(2ω0) in Eq. (A7). The finite difference form of this
equation is:

b
(n)
m+1 − 2b

(n)
m + b

(n)
m−1

∆κ2
−
ε
(n)
m+1 − ε

(n)
m−1

2∆κε(n)
m

(
b
(n)
m+1 − b

(n)
m−1

)
2∆κ

+n2
(
ε(n)
m − sin2 i

)
b(n)
m = f (n)

m

(B2)
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One can cast Eq. (B2) into tridiagonal form by grouping
together the terms at common grid points. It gives:

αn
mb

(n)
m−1 + βn

mb
(n)
m + γn

mb
(n)
m+1 = fn

m (B3)

where

αn
m = 1 +

∆ε
(n)
m

ε
(n)
m

(B4a)

βn
m = n2

(
ε(n)
m − sin2 i

)
∆κ2 − 2 (B4b)

γn
m = 1− ∆ε

(n)
m

ε
(n)
m

(B4c)

∆ε(n)
m =

ε
(n)
m+1 − ε

(n)
m−1

4
(B4d)

Equation (B3) represents a tridiagonal system of equa-
tions which can be easily solved by the Thomas Algo-
rithm or the Tridiagonal Matrix Algorithm (TDMA).
The boundary condition for the first-harmonic is applied
as below. We suppose that κ1 = ∆κ lies in vacuum re-
gion. For κ1 we can split the wave into forward (input
laser) and backward travelling waves with amplitudes A0

and R, respectively. Therefore, b
(1)
1 = A0 +R. Using Eq.

(B3), we have

α1
1b

(1)
0 + β1

1b
(1)
1 + γ1

1b
(1)
2 = 0 (B5)

If the waves are moving at an angle i relative to the
x−axis, direction of the density gradient, then the neigh-
boring grid point will see a phase either advanced or re-
ceded by an amount ∆φ = κ cos i. Using b(1) ∝ exp(jκ),
we have

b
(1)
0 = A0e

−j∆κ cos i +Rej∆κ cos i (B6a)

= b
(1)
1 ej∆κ cos i − 2jA0 sin(∆κ cos i) (B6b)

Eliminating b
(1)
0 in Eq. (B5) then gives

κ1
1b

(1)
1 + γ1

1b
(1)
2 = f1

1 (B7)

where

f1
1 = 2jA0 sin(∆κ cos i) (B8a)

κ1
1 = β1

1 + ej∆κ cos i (B8b)

This boundary condition can be also applied for the
second-harmonic considering that second-harmonic is
just in the reflected signal.
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4V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett,
and K. Dholakia, “Simultaneous micromanipulation in multiple
planes using a self-reconstructing light beam,” Nature 419, 145–
147 (2002).

5B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration
with Bessel beams,” Phys. Rev. E 55, 3539–3545 (1997).

6D. Li and K. Imasaki, “Vacuum laser-driven acceleration by a
slits-truncated Bessel beam,” Applied Physics Letters 86, 031110
(2005).

7S. Kumar, A. Parola, P. Di Trapani, and O. Jedrkiewicz, “Laser
plasma wakefield acceleration gain enhancement by means of ac-
celerating Bessel pulses,” Applied Physics B 123, 185 (2017).

8F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with
self-reconstructing beams,” Nature Photonics 4, 780–785 (2010).

9T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A.
Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-
dimensional isotropic imaging of living cells using Bessel beam
plane illumination,” Nature Methods 8, 417–423 (2011).

10E. Gaizauskas, E. Vanagas, V. Jarutis, S. Juodkazis, V. Mizeikis,
and H. Misawa, “Discrete damage traces from filamentation of
Gauss-Bessel pulses,” Opt. Lett. 31, 80–82 (2006).

11D. Roskey, M. Kolesik, J. Moloney, and E. Wright, “Self-action
and regularized self-guiding of pulsed Bessel-like beams in air,”
Opt. Express 15, 9893–9907 (2007).

12D. Faccio, E. Rubino, A. Lotti, A. Couairon, A. Dubietis,
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