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3D curvature-based tip load estimation for
continuum robots

Matyas A. Diezinger1, Brahim Tamadazte2, and Guillaume J. Laurent1

Abstract—This letter presents a method intended for the
estimation of external force and moment applied at the tip of
thin rods using vision-based shape measurements, with a view
to be applied on continuum robots. A versatile vision process
is developed that does not require any additional markers nor
sensors to provide an accurate tri-dimensional reconstruction
of the deformable rod shape. Then, the tip loads (i.e., forces
and moments) are directly deduced from the curvature along
this curve formed by deformed rod thanks to the resolution
of a linear system without requiring any iterative optimization.
The curvature is determined with a robust method that allows
filtering out measurement noise and artifacts. Simulations show
that this approach gives fast and precise results in both 2D
(planar forces estimation without torsion) and 3D (spatial forces
estimation). Experimental results on cantilever rods demonstrate
an accuracy of 2.2% and 2.7% of the applied forces and moments,
respectively.

Index Terms—Deformable rods, continuum robots, small-scale
robots, force and moment estimation, stereo-vision, 3D recon-
struction.

I. INTRODUCTION

CONTINUUM Robots (CRs) have the potential to be
used in a wide range applications, from medical to

industrial. Unlike standard robots, CRs are made of slender
flexible elements in place of rigid links. Numerous CRs
have been proposed in the past few years [1], [2]. There
is a common consensus that CRs offer several advantages
over conventional architectures, e.g., their slender shapes as
well as their potential to be miniaturized [3] allow them to
reach thinly accessible area inside human bodies [2] or inside
machines (turbine engines for instance). Indeed, the removal
of mechanical joints allows downing size all the structure and
to provide six Degrees of Freedom (DoF) with robots having
diameters of a few millimeters [4]. Additionally, the compliant
nature of CRs confers safer interactions with humans for
collaborative tasks in industry or for medical applications [5].

Conversely, the flexibility of CRs reduces the forces and
moments that can be obtained at their end-effector. The
payload of these robots is also much lower than their rigid
counterparts. The most serious limitation is to guarantee
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Fig. 1: Load estimation from shape (f , m, p, e are force,
moment, position and position error vectors, respectively).

the robot trajectory under different loads, i.e., under various
applied external forces and moments. Traditional models of
CRs are based on Cosserat rod theory [6], [7] and allows
calculating the actuators positions/angles to reach a desired
pose in the Cartesian space. However, in the case where
the external loads are not known, the models cannot predict
the end-effector position. Indeed, the pose of CRs is highly
dependent on unpredictable external interactions. This leads to
a load-dependent trajectory that limits the capabilities of the
robot. However, the compliant nature of CRs can also be used
as an advantage during the design of a control strategy. As
their deformations are the direct reflection of external forces,
their shapes can be used to estimate these interactions. This
approach has been investigated using different deformation
sensors as Bragg fibers [8], [9], [10] or cable tension sen-
sors [11].

Although the use of proprioceptive sensors can be the
solution in certain configurations or applications, their inte-
gration on a CR is not straightforward, especially at small
scale. Robots deformations are then more easily estimated by
exteroceptive sensors. Among these sensors, one can imag-
ine the use of magnetic sensors [12], cameras [13], X-ray
imaging [14], optical-coherence tomography [15] as well as
ultrasound imaging [16]. It is recognized that approaches
that utilize a vision system may be easier to implement,
more versatile, less constraining and more suitable for certain
applications.

Generally, vision-based force estimation methods require
first to estimate the deformation of the CR. Then, from
the measured shape, the two usual ways of estimating ex-
ternal loads are model-based and curvature-based methods
as depicted in Fig. 1. Model-based methods consist of the
use of the rod deformation models coupled with iterative
optimization procedures. The principle is to create a system-
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TABLE I: Accuracy comparison of tip force estimation on cantilever rods and catheters (single planar bending).

Related work Sensor Method Object dimensions (mm) Mean relative error
Back et al. [17] Vision Curvature-based L130 × Ø3 10% of applied magnitude
Hasanzadeh et al. [18] CMM machine Model-based L70 × xØ2.33 11.4% of average magnitude
Khan et al. [8] Bragg fibers Curvature-based L210 × Ø0.25 6.9% of applied magnitude
Aloi et al. [19] Vision Model-based L200 × Ø1.4 6.7% of average magnitude
Hooshiar et al. [14] Vision Curvature-based L40 × Ø6 7.5% of maximum magnitude
Al-Ahmad et al. [10] Bragg fibers Model-based L170 × Ø2.16 5.5% of applied magnitude
Xiao et al. [9] Bragg fibers Curvature-based L290 × Ø1.4 5.25% to 12.87% of applied magnitude
Proposed method Stereo-vision Curvature-based L150 × Ø1 2.2% of applied magnitude

like model that predicts deformations from desired external
forces, and to make them converge by reducing errors between
the predicted and the measured shapes. The model-based
methods are usually based on the Cosserat theory [19], [10], or
on simpler piece-wise constant curvature models [18] among
others. However, these approaches are often slow because
of model integration and challenging iterative optimization
process. They also have some difficulties to converge with 3D
and large deformations because the inverse problem is often
ill-conditioned [19].

On the contrary, curvature-based methods are not iterative
and do not require the integration of any differential equations.
They can provide more robust estimations with fast compu-
tation time. The concept is to find an estimator that links
the measured shape straight to internal forces and moments
(Fig. 1b). Then, the external loads are estimated by solving
the balance of forces and moments in several points of the
CR. Obviously, this method is perfectly adapted to CRs that
embed Bragg fibers as illustrated in the recent work [9].
However, some studies have also been performed with vision-
based shape estimation. For instance, in [17], the curvature-
based estimation is applied with a continuum robot constrained
in planar motion yielding an interesting result because the
obtained estimation error is approximately 10% of the applied
force. The same order of estimation error is reported in [14]
using real-time x-ray imaging and Bézier curve smoothing.

Both methods require a precise and robust shape measure-
ment method. Probably one of the most challenging tasks
in CRs force estimation methods is the handling of three
dimensional external forces. Most of the above-mentioned
works deal with planar deformations and loads, generally
yielding an external force estimation with error between 5%
and 10% of the applied magnitude as reported in Table I. Addi-
tional methods dealing with 2.5D configurations (i.e., slightly
extra-planar loads, however quasi-planar deformations) [8],
[9] reported similar performances in terms of accuracy and
robustness. In fact, the tri-dimensional deformations lead
to increased complexity in the force estimation for various
reasons including: the challenging accurate reconstruction of
the 3D deformations, the necessary estimation of the torsion,
the ill-conditioning issues, etc. One of the most advanced
works dealing with the estimation of 3D external forces is
probably the one reported in [10] yielding an accuracy of
approximately 5.5% using several Bragg fibers embedded
along the deformable rod.

In this letter, we set up an accurate and versatile 3D
reconstruction method suitable for all shapes and sizes of
thin rods without any additional visual markers nor embed-

ded sensors. Then, we develop a curvature-based approach
to estimate the 3D tip forces on a longitudinal deformable
structure based on direct measurement of its shape. The tip
external loads are estimated assuming a thin continuum rod
subject to no external distributed forces and that it is linearly
elastic, homogeneous, and isotropic. Also, the proposed force
estimation method is real-time and does not require any
simulations nor optimization procedures usually used for such
a problem whose performances depend directly on the proper
conditioning of the optimizer. The developed force estimation
method robustly filters out measurement noise and artifacts.
One of the main advantages of the proposed method is the
ability to work in 2D (planar forces estimation without torsion)
and 3D (spatial forces estimation) configurations. Finally, the
proposed method and material were successfully evaluated
both numerically and experimentally.

The remainder of this paper is organized as follows. In
Section II, we introduce the stereo-vision-based framework for
3D reconstruction of unknown shape rods. Section III presents
the developed method for forces estimation on longitudinal
deformable structure. The numerical validation of the proposed
methods and materials is discussed in Section IV, when the
experimental validations are presented in Section V. Finally,
Section VI discusses the pros and cons of the proposed
methods and materials.

II. 3D SHAPE RECONSTRUCTION OF RODS BY
STEREOVISION

The first step of the proposed forces estimation approach
consists of the shape reconstruction of the CR. Thus, this
section deals with the tri-dimensional reconstruction of longi-
tudinal deformable structures (e.g., rods) using a stereovision
system and the epipolar geometry principles.

A. Epipolar Geometry

The stereovision system consists of a pair of standard
cameras placed remotely in a manner to visualize the de-
formable structure with a given angle of view for each camera
(approximately, 30◦) (Fig. 2). Therefore, the cameras provide
a pair of images of the rod to be reconstructed as a set of
n measured 3D positions p(si) for i = 1, ..., n at arc length
position si.

It can be noticed that most of continuum robots are made
of uniform and monochrome materials (e.g., Nitinol, certain
polymers, etc.) which raises the problem of the lack of visible
and recognizable visual features that can be easily and accu-
rately detected, matched and tracked over time. By the way,
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Fig. 2: Illustration of the built stereovision system used to
reconstruct the 3D shape of a rod.

although it is possible to consider adding artificial markers, it
is often difficult to integrate them on the continuum robot due
to the size and the incompatibility with numerous applications.
Hence, we investigated a method for 3D reconstruction that
does not require visual markers or a priori knowledge of the
viewed rod. This method is based on the use of the well-
established epipolar geometry principle [20] as well as image
processing methods easy to set up and sufficiently robust and
accurate.

1) Setup configuration and involved notations: Starting
with the introduction of the built stereovision system as well
as the notations involved in the 3D reconstruction algorithm.
Let us consider two cameras c

R
and c

L
with optical centers

o
R

and o
L

viewing a 3D point p = (x, y, z)⊤) which is
projected as 2D image points p

L
= (x

L
, y

L
)⊤ and p

R
=

(x
R
, y

R
)⊤, in image plans IR and IL, respectively. The line

(o
R

o
L

) between both the camera optical centers defines the
stereovision system baseline. The intersections of the baseline
with the image planes give the so-called epipolar points (or
epipoles) e

L
and e

R
, when the lines (e

R
p

R
) and (e

L
p

L
)

are known as epipolar lines. Therefore, each 2D point p
L

in
the left image is mathematically related to the epipolar line
(e

R
p

R
) in the right image and vice-versa.

The intrinsic parameters of both the c
R

and c
L

are de-
fined with the matrices KR and KL, respectively, when the
extrinsic parameters that represents the pose of cameras in a
common reference frame is defined as the 3D transformation
R

T
L

between the poses of camera c
R

and camera c
L

. This
transformation includes a 3 × 3 rotation matrix

R

R
L

and a
3× 1 translation vector RtL.

2) Epipolar projection model: The relations between a
world point p and its two projections on the left and right
images pi i ∈ [R,L] can be expressed as follows for both the
right and left cameras, respectively:

[p̃
L
]× KL [I3×3 | 03×1] p̃ = 0 (1)

[p̃
R
]× KR [I3×3 | 03×1]

RTL p̃ = 0 (2)

where I3×3 is a 3 × 3 identity matrix, 03×1 a 3 × 1 null-
matrix, p̃i = (pi, 1)

⊤ and p̃ = (p, 1)⊤ are the homogeneous
coordinates of pi and p, respectively, and [ ]× is a 3 × 3
skew-symmetric matrix representing a vector cross-product.

Fig. 3: Correlation process on rectified images of a rod.

Furthermore, note that both the camera intrinsic and extrin-
sic parameters are obtained one time and offline using a well-
known camera calibration toolbox such as the one reported
in [21].

3) Rectification: In order to simplify the problem of match-
ing left and right image points, it is useful to perform a
rectification procedure of the images in order to make the
epipolar lines, in both the right and left images, perfectly
horizontal with respect to the images frames. This means that
both e

R
and e

L
are located at infinity. Therefore, each image

point in the right image has its match in the left image along
the same horizontal epipolar line, which makes the matching
process much easier (Fig. 3).

4) Correlation: Once the rectification is done, it becomes
trivial to determine and match the rod points between the
right and left images. Both functions are performed using a
conventional zero-mean normalized cross correlation (ZNCC)
method [22]. With x, y defining an image reference frame in
pixels, the correlation error is computed at fixed line x as
following:

ϵ(x0, x) = min
α,β

∑
y
|αILc(x, y − β)ILc(x0, y)|2∑

y
|ILc(x0, y)|2

(3)

where x0 is the index of the first line crossing the rod, x is
the current line index, α is the correlation coefficient and β is
the transverse offset from which the disparity is computed.

Indeed, for each point piL (i = 1, · · · , n) in the left rectified
image ILc, we search the corresponding point piR in the right
rectified image IRc along the corresponding horizontal epipolar
line to which the point belongs. Consequently, we obtain two
coherent 2D curves representing the deformable rod in each
image as depicted in Fig. 3.

B. Triangulation

Now, we have all the ingredients to reconstruct the rod
geometry. The previous steps have led to two set of matched
image-points piL and piR (i = 1, · · · , n), and an off-line
estimation of both the intrinsic and the extrinsic parameters.
Using these elements, the complete shape of the rod can be
reconstructed using equations (1) rewritten as A1 p̃ = 0 and
equation (2) rewritten as A2 p̃ = 0 combined as a unique

equations system A p̃ = 0 with A =

[
A1

A2

]
.

As reported in [20], the resolution of this system can be
tackled by computing the eigenvectors of the built system
of equations. The solution is found using a singular value
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Fig. 4: Illustration of the balance between external force and
moment.

decomposition (SVD) of matrix A, giving a good estimation
of the 3D point p.

Each pair of matched points leads to a new spatial position
with increasing y coordinate. At the end of the process, n
points p(si) at arc length position si are estimated, describing
the complete 3D shape of the rod.

III. LOAD ESTIMATION FROM RODS SHAPES

With a view to the initial objective of estimating external
loads at the tip of a rod by measuring the induced deformation,
the following section deals with the setting up of the curvature-
based method.

A. Problem Statement

We consider continuum rod subject to large deformations
with proper mechanical properties. These properties as well
as the initial straight configuration are supposed to be known.
We assume that no distributed forces or moments are applied
along the rod except its own weight. Punctual force and
moment localized at rod tip are responsible for large shape
deformations. The section dimension is small compared to
length so that the rod is considered uni-dimensional (beam
length to thickness ratio of the order 20 or more). The shearing
forces are then negligible compared to bending and twisting
moments. Moreover, the material of the rod is assumed linearly
elastic, homogeneous, and isotropic.

Let us consider a rod whose 3D shape is defined as a set of n
measured 3D positions p(si) for i = 1..n at arc length position
si. Its proximal and distal ends are located at arc length 0
and l (Fig. 4), respectively. The rod is at static equilibrium,
therefore the pose of each point of the rod is the image of the
local moment due to external load forces.

B. Tip Force Estimation

The external force and moment are not measurable at a
single point on a CR. But the 3D shape of the robot gives
multiple images of the local moment due to external loads.
The static equilibrium of the moments is relied upon to deduce
these forces and moments. The static state of the rod implies
balanced forces and moments. Then, given a point of the rod
located at the arc length position s, the moments applied to
the portion [s, l] are balanced at s as follows:

m(l) + d(s, l)× f(l) +w(s)−m(s) = 0 (4)

where w(s) =
∫ l

s
d(s, u)×g ρa du is the moment contribution

induced by the mass of the rod portion [s, l] and:
• a is the section of the rod;
• d(s, l) is the formed vector from p(s) to p(l);
• f(s) is the external force located at s;
• g is the local acceleration of free fall;
• m(s) is the external moment located at s;
• ρ is the linear mass of the rod;

The unknown tip load is expressed in (4) by the rod-end mo-
ment m(l) = (mx,my,mz)

⊤ and force f(l) = (fx, fy, fz)
⊤

(Fig. 4). Note that each 3D reconstructed point p = (x, y, z)⊤

of the rod yields three equations (one per axis), then at least
two points are necessary to estimate the six unknowns of
the tip load. However, for better precision and robustness to
measurement errors, it is highly recommended to consider a
larger number of reconstructed 3D points.

Thereby, (4) can be rewritten as a redundant linear system
of equations in the form of Ax = y:

A︷ ︸︸ ︷ [d(s0, sk)]× I3×3

...
...

[d(sn, sk))]× I3×3

 .

x︷ ︸︸ ︷[
f(l)
m(l)

]
+

−y︷ ︸︸ ︷w(s0)
...

w(sn)

−

m(s0)
...

m(sn)

 = 0

(5)
To solve the system (5), a QR decomposition is used in

order to transform the matrix A, as product of an orthogonal
matrix Q and an upper triangular matrix R (i.e., A = QR).
Therefore, the problem can be tackled by a backwards substi-
tution technique.

Building the system (5) requires a set of position of 3D
points reconstructed using the proposed method, and a set of
local moments that can be estimated from these positions as
discussed below.

C. Local Moment Estimation

On a 3D curve, the local section orientation follows the
deformations. Let that orientation be given by the Frenet-Serret
frame formed at each position p(s) by the tangent unit vector
t(s), the normal unit vector n(s), and the binormal unit vector
b(s) obtained as the cross product of t(s) and n(s). The triplet
of vectors are obtained as follows:

t(s) =
p′(s)

∥p′(s)∥
(6)

n(s) =
t′(s)

∥t′(s)∥
(7)

b(s) = t(s)× n(s) (8)

The rod deformations are given by the curvature κ and the
torsion τ that represent the flexion and the twist, respectively.
The curvature is the deviation of the tangent from a straight
direction, locally following a circular arc. In other words,
the inverse radius of this arc is the curvature. The plane
containing this arc is named the osculating plane and contains
by definition the tangent vector t(s) and the normal vector
n(s). The torsion τ is the angular spatial velocity of the
osculating plane, i.e. the angular velocity of its normal b(s).
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The curvature and the torsion are defined, respectively, as
follows:

κ(s) = ∥t′(s)∥ (9)

τ(s) = ∥b′(s)∥ (10)

The deformations are directly related to the local moments
m(s) through stress-strain constitutive laws which are ex-
pressed as follows:

m(s) = EIκ(s)b(s) + GJτ(s)t(s) (11)

where E is the Young’s modulus, I is the quadratic moment
of area along radial direction, G is the shear modulus, and J
is the torsion constant (quadratic moment of area along axial
direction).

D. Discrete Curvature and Torsion Estimation

The computation of the local moment uses the estimation of
the tangent and binormal vectors as well as the curvature and
torsion. All these elements can be defined from the positions
p(s) and its three first derivatives [23]. However, although
the 3D reconstruction method is accurate, the deformation
estimation is sensitive to measurement noise, especially em-
phasized by the use of derivatives. Indeed, the evaluation of
discrete curvature and torsion from position is challenging
and has been addressed in several ways such as B-spline
smoothing [24] or weighted least-squares curve fitting [25].

To avoid the use of 3-order spatial derivatives, the curvature
and the torsion can alternatively be estimated from the oscu-
lating plane and its rotation rates around the tangent vector as
proposed by [26]. This method is more robust to measurement
noise and its implementation is available for MATLAB1.

In order to tackle the induced measurement noise, the Frenet
frame estimation is performed on a sliding window centered
at each curvilinear abscissa si. The rod section considered in
the sliding window is centered on the origin to form the 3D
points set P defined as follows:

P(si) =
[
p(si−k)− p(si), · · · , p(si+k)− p(si)

]
(12)

where p(si) is the centroid of positions neighbouring p(si).
The eigenvectors of the matrix P(si) provide a frame

attached to the estimated set of points. These are estimated
with a singular value decomposition shown in (13). U(si) and
V(si) are the projective matrices and D(si) is the diagonal
matrix containing the eigenvalues. These eigenvectors are the
columns of U(si) and the tangent t(si) is given by the vector
with greatest eigenvalue, as in a usual line correlation. The
second greatest value gives the estimation of the normal n(si),
while the third that of the estimation of the binormal b(si).

P(si) = U(si)D(si)V(si)
⊤ (13)

The tangent and normal vectors t(si) and n(si) define the
osculating plane at si. The curvature κ(si) is then determined
as the inverse of the radius of the best fitted circle in the
osculating plane using Taubin’s method [27].

1https://de.mathworks.com/matlabcentral/fileexchange/47885-frenet
robust-zip

Fig. 5: Examples of simulated rods with given density
(2000kg.m−3), young modulus (81GPa), shear modulus
(32GPa), radius (0.5mm), length (260mm) and number of
points (50).

Concerning the torsion τ(si), it corresponds to the rotation
rate of the osculating plane.

As the rotation of the osculating plane is continuous,
the angle between consecutive normal vectors remains small
which can be either positive or negative. Therefore, the torsion
is computed using the normal and the binormal at the previous
position si−1 as follows:

τ(si) =
arcsin (b(si−1) · n(si))

si − si−1
(14)

The continuity of the normal and the binormal directions
is ensured by avoiding flips that can occur on parts of the
rod with zero curvature. Therefore, the normal vector does
not always points toward the center of the osculating circle,
which results in a negative curvature.

IV. NUMERICAL VALIDATION

The validation of the rod tip forces and moments estimation
method goes through the evaluation of various 3D rods. To do
this, it is necessary to numerically generate a data-set of dif-
ferent shaped rods. Also, the simulated rods allow evaluating
all the state variables, particularly the internal moments.

The generation of several theoretical rod shapes is carried
out with the robust finite element modeler available within
the open-source simulation framework SOFA dedicated to
modelling of deformable objects [28]. Several 3D rod shapes
are generated (Fig. 5) to cover different possible rod deflection
shapes.

Our force estimation method was then evaluated on the
different 3D obtained shapes depicted in Fig. 5. The estimated
forces and moments are compared to the theoretical ones as
can be seen in Fig. 6. As can be highlighted in this figure, the
estimated forces almost overlap the theoretical ones in most of
the configurations. From a numerical point of view, the force
estimation gives an average error of 0.062N (respectively,
a maximum error of 0.26N) within a range of 2.6N, while
the moment estimation gives an average error of 0.0044N.m
(respectively, a maximum error of 0.0068N.m) within a range
of 0.13N.m.
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Fig. 6: Comparison of estimated tip force and moment with
theoretical ground values for the ten simulated rods of Fig. 5.

Fig. 7: Vision setup with cantilever rod.

V. EXPERIMENTAL VALIDATION

A. Shape Reconstruction Validation

1) Vision setup: The used cameras to build the stere-
ovision system consist of two IDS cameras (version: UI-
3481LE-M-GL) providing 2560×1920 pixels at the rate of
15 frames/second. The cameras were mounted in such a way
to obtain an angle of about 30 degrees from one camera
to another (offering a good quality of triangulation for 3D
reconstruction), a baseline of 30cm and a working distance of
50cm from the observed scene (Fig. 7). In order to increase
the contrast between the rod and the background and thus
facilitate the image processing tasks (e.g., the correlation-
based matching method), a homogeneous light source illu-
minating in the axis of the cameras was used. Both the 3D
reconstruction algorithms and the force estimation approach
were implemented in Win PC equipped with an Intel Core i5
processor.

2) Shape estimation: The 3D reconstruction process has
been tested on different single rods with various 3D shapes,
diameters of the rod (0.25mm to 2mm) and materials (steel,
glass and plastic). It has been demonstrated that the designed
stereo-vision setup as well as the reconstruction algorithms
are able to provide accurate three-dimensional information of
the observed rod. The only condition to fulfill is to ensure
that there is enough contrast between the observed rod and
the background to guarantee a good matching between the
information detected in both the left and the right images.

B. Model Validation

In order to verify the model, an experimental validation
process is conducted with a carbon fiber beam deformed to

Simulated rod

Rod shape estimated

from vision

Fig. 8: Rods simulated from real rod end poses.

four different shapes with known tip orientation and position.
The characteristic features of the rod as the length (L =
260mm) and the radius (R = 0.5mm) are measured using
caliper with an accuracy of 10µm, when the density (d =
3032kg.m−3) is obtained thanks a precision scale with an
accuracy of 0.01mg. Concerning, the Young modulus (E =
80GPa) and shear modulus (G = 32GPa) are provided by
the manufacturer but also confirmed by three-point bend tests
realized in our facility.

The shape is reconstructed by vision and compared to a
theoretical rod shape generated with SOFA from the same
parameters (Fig. 8). SOFA is a finite element-based software
dedicated to dynamic continuum mechanics simulation widely
used by the soft robotic community. Specifically, the SOFA
model allows validating the coherence and the reliability of
both the vision process and the measured rod parameters used
for the generated model. However, as can be seen in Fig. 8,
there is a very small shift between the reconstructed rods
and the simulated ones. Two potential origins of error are
envisaged: 1) the existence of an initial curvature/stress (not
considered in the model) when the rod is initially considered
perfectly straight , and 2) small lateral errors in the correlation
process on rectified images, due to the acquisition conditions
(blur, shadow). However, these shifts between 3D real shapes
and reconstructed ones remain insignificant to significantly
impact the accuracy of the proposed force estimation method.

C. Moments Estimation

In order to validate experimentally the proposed force
estimation method, we used a 150mm long steel cantilever rod
(as depicted in Fig. 7) whose 3D shape has been reconstructed
by the proposed vision method. As mentioned in Section III-D,
the efficiency and accuracy of the estimation of local curvature
and torsion and then the local moments depend directly on the
ability to handle noise in position measurements. To highlight
this, a comparison is made between Frenet bases estimated
1) from derivatives of positions after a B-Spline smoothing
procedure and 2) from the fitting of the osculating plane and
circle (Frenet robust).
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Fig. 9: Comparison of estimated internal moments magnitude
in a cantilever rod.

Fig. 10: a) Perspective view of the shape reconstruction of a
cantilever rod with estimated internal moments, and b) a top
view of the estimated internal moments.

The rod is weighted with a 0.24N load at its end so
that the deformations remain planar and there is no torsion
involved. The moments are then all pointing in the same
direction with a decreasing magnitude. As shown in Fig. 9,
the proposed method gives a more accurate estimation of the
moments with an average error of 0.54mN.m and a maximum
error of 0.99mN.m whereas the B-Spline smoothing method
gives an average error of 1.47mN.m and a maximum error
of 3.02mN.m. The local moments are represented on the
reconstructed rod shape illustrated in Fig. 10.

D. Load Estimation on Cantilever Rods

The previous experiment has been conducted on five can-
tilever rods loaded with several masses ranging from 12.8g to
35.48g in order to validate the accuracy of the method over a
large range of loads. The measured parameters are the density
(3032kg.m−3), the young modulus (60GPa), the shear modulus
(24GPa) and the radius (0.5mm). The vision process gives the
length of the rod (158mm).

The forces due to the hanging weight are known and com-
pared to the estimated forces (Fig. 11). The difference between
the applied and estimated values of forces and moments are
about 2.2% (with a maximum error of 4.4%) and 2.7% (with
a maximum error of 5.1%) on average of the applied forces
and moments, respectively. It can be highlighted that the
proposed method outperforms the state-of-the-art approaches
summarized in Table I. Indeed, the more advanced method [9]
combines Bragg fibers as shape sensor and curvature-based
method as the force estimator provides an accuracy ranging
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Fig. 11: Tip force and moment estimation errors on cantilever
rods.

from 5.25% to 12.87% of the applied forces. On the other
hand, the most relevant approaches reported in the literature
using a vision method for the rod shape estimation and a
curvature-based estimator [14] gives an accuracy of 7.5% of
the applied forces.

E. Load Estimation from 3D Deformation

The proposed methods in this letter have been tested on a
rod deformed manually on both sides of its extremities. The
objective is to demonstrate the operation of the method in real
conditions of use. Fig. 12 shows different rod deformations
with the corresponding force and moment estimations in
overlays. These experiments can be much more appreciated
on the supplementary video file accompanying to this letter.
These experiments illustrate the robustness of the proposed
method to detect, to reconstruct and to estimate tip load in
real conditions and paves the way to the force sensing/control
of continuum robots. Note that the force estimation method
is implemented in Matlab running at 37Hz on a Win 64 PC
equipped with an Intel Core i5 processor and 16Go of RAM.

Fig. 12: Estimated forces and moments on ”C-shape” rod (first
row) and ”S-shape” rod (second row). Additional examples can
be seen in the attached multimedia materials.

VI. STRENGTHS AND SHORTCOMINGS

The purpose of this letter is to provide an accurate curvature-
based method for 3D tip load (forces and moments) estimation.
The main advantage of the method is to use curvature infor-
mation (obtained by vision) of a deformable rod to directly
and accurately estimate the tip external forces and moments



8

without any optimization procedure. Although the method has
demonstrated good performance in terms of accuracy and
robustness in particular to the rod shape measurement noise, it
suffers from certain weaknesses that can be addressed in future
work. Indeed, the force estimation method, relatively easy to
implement, requires a good knowledge of the 3D shape of
the rod resulting from the 3D reconstruction method using
stereo-vision principles. However, this method is prone to
the numerous uncertainties that characterize vision-based 3D
reconstruction methods: time-consuming without optimized
implementation (e.g., GPU), occlusion problems, blurred im-
ages, jerky motions, etc. To remedy this, it is possible to
consider using integrated depth-camera such as the recent one
from Intel (RealSense D405) instead of a custom stereo-vision
system. Moreover, some singular configurations (e.g., straight
rod) raise impossibilities in estimating the forces, namely when
the applied external force is perpendicular to the section of the
rod and when deformations are visible before the buckling.
Indeed, the elastic deformation due to the compression force
along the rod does not lead to visible deformations up to the
Euler load (as can be seen in the attached video file). This
compression phase before the buckling can be considered as a
dead zone for the curvature estimation task and consequently
for the forces estimation method. This singularity can be
detected by checking if the rod deflection is above a given
threshold in order to apply the proposed force estimation
method. This threshold has been fixed to 0.2% of whole length
for the previous experiments.

VII. CONCLUSION

In this letter, an accurate and fast method to estimate tip
loads on a continuum rod based on curvature calculation has
been presented. Magnitude and direction are estimated for both
external forces and moments from stereo images. Simulations
on various rods with large deformations showed a precision of
0.062N within a range of 2.6N in the force measurement and
experimental results on cantilever rods showed an accuracy of
2.2% of applied magnitude. The method can be applied to any
3D deformations of a rod without additional visual markers nor
embedded sensors. In future work, we aim to implement this
method for dynamic control of a parallel continuum robot and
to handle passive deformations occurring on the robot’s path.
This will require adding the inertial effects and thus tracking
the robot’s shape over time to estimate its acceleration at each
point.
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