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Abstract 

Conventional 2D cell cultures are widely used for the development of new anticancer drugs. 

However, their relevance as in vitro models is increasingly questioned as they are 

considered too simplistic compared to complex, three-dimensional in vivo tumors. 

Moreover, animal experiments are not only costly and time-consuming, but also raise 

ethical issues and their use for some applications has been restricted. Therefore, it becomes 

crucial to develop new experimental models that better capture the complexity and 

dynamic aspects of in vivo tumors. New approaches based on microfluidic technology are 

promising. This technology has indeed been used to create microphysiological systems 

called “organ-on-chip” (OOC) which simulate key structural and functional features of 

human tissues and organs. These devices have further been adapted to create cancer 

models giving rise to the “cancer-on-chip” (COC) concept. In this review, we will discuss the 

main COC models described so far for major cancer types including lung, prostate, breast, 

colorectal, pancreatic, and ovarian cancers. Then, we will highlight the challenges that this 

technology is facing and the possible research perspectives that can arise from them. 

Key words: Cancer-on-chip (COC), in vitro tumor models, microfluidic technology, 

nanomedicine. 

 

1. Introduction  

Cancer is a major public health issue all over the world. According to the International Agency 

of Research on Cancer (IARC), over 19.3 million new cancer cases were reported and about 10 

million people died of cancer in 20201. Moreover, cancer incidence is expected to highly 

increase during the next years especially in the developing countries2. Developing new 
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anticancer therapies that are more effective with less side effects is thus becoming an 

emergency. Many efforts are being undertaken in this field but the failure rate of new anti-

cancer molecules remains very high (about 90%)3. This is partly attributed to the lack of 

reliable preclinical models that can successfully reproduce in vivo drug responses4, complex 

tumor micro-environment and cancer related pathophysiological events5 such as cancer cell-

stroma interactions, angiogenesis and metastasis. Indeed, current cancer studies are largely 

based on the use of two-dimensional (2D) cell culture6. Although easy to set up and well 

standardized, 2D culture models are far from reflecting the in vivo complex system, where 

cells closely interact with each other and with the extracellular matrix (ECM)7. Important 

differences can thus be noticed between in vivo tumors and 2D culture models where cells 

experience unnatural growth kinetics8. Moreover, it has been reported that the cytoskeleton 

of cells in 2D cultures undergoes specific modifications in response to the mechanical 

constraints imposed by the solid growing surface9. This may lead to an unnatural cell 

polarization with altered gene expression and protein synthesis9. Another important issue of 

the current preclinical practices in new drug development is the systematic and intensive use 

of animal experiments. Although animal models have been found to be important for 

assessing drug efficiency and toxicity, they have several drawbacks. Besides being costly and 

time consuming, they have important anatomic, physiologic and genetic differences from the 

human body10. Ethical issues related to animal use have also to be considered. For 

circumventing these problems and having more reliable results in early stages drug 

development, researchers have been seeking to develop new preclinical models that can 

better simulate physiological and pathophysiological processes taking place in the human 

body. Three dimensional (3D) cell culture approaches seem to be promising tools to reach this 

goal, due to their ability to better simulate cell-cell and cell-ECM interactions than classical 2D 

models9. Thus, many 3D technology based models have been reported11 such as spheroids 

and organoids12. These structures mimic the oxygen and nutrient gradients in human tissues 

but do not simulate in vivo dynamic conditions such as blood flow or breathing motions. 

Another milestone was reached through the adaptation of microfluidic technology to create 

microphysiological systems reproducing key dynamic phenomena of the human body13. The 

so called organ-on-chip (OOC) systems have been adapted to simulate large variety of organs 

and diseases including cancer (leading to the rise of the “cancer-on-chip” (COC) concept14–18. 

Many applications of these innovative technologies have been described in the literature, but 
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several challenges still remain to be overcome before these models enter routine use for new 

drug development.  

The main purpose of this review is to highlight the potential of COC technology in cancer 

modeling and to show its ability to match the anatomic and pathophysiological features of 

different cancer types. We illustrate this through the analysis of COC application in the most 

frequent and lethal cancers1 (lung cancer, prostate cancer, breast cancer, colorectal cancer, 

pancreatic cancer, ovarian cancer, brain tumors and hepatic cancers). We will first discuss the 

emergence and development of the OOC approach, and then describe in more details its 

applications in the selected cancer types.  Finally, we will discuss the main challenges that 

arise from this technology and the resulting research opportunities. 

 

2. Microfluidics technology 

Microfluidics is defined as the science of systems that process or manipulate small quantities 

of fluids (10-9 to 10-18 L) using micrometer-sized channels19,20. Microfluidic technology is 

considered as an interdisciplinary research field combining several applications in chemistry, 

physics, biology, medicine and other disciplines21,18. In the early 1950’s, microfluidics gained 

momentum in microanalytical, gas chromatography (GPC), high pressure liquid 

chromatography (HPLC) and capillary electrophoresis (CE) methods19. Since the 1990’s, 

microfluidics has become one of the most dynamic technological areas22 with a revolutionary 

impact on a wide range of applications20 especially in biology. Indeed microfluidic platforms 

enable experiments to be performed at a small scale23 reducing the consumption of reagents 

and biological samples. This is particularly important when the study concerns, for example, 

new therapeutic molecules since they are synthesized in small and costly quantities in their 

early development stages. In addition, microfluidic platforms can be used to optimize 

biological studies by giving a more precise control over the experimental conditions such as 

pH, temperature, shear stress and chemical concentrations23–25. Recent manufacturing 

techniques based on the use of soft lithography can be employed to fabricate customized 

devices26 that can generate physiological-like conditions including oxygen and nutrient 

gradients, fluid flow phenomena and other biochemical and biomechanical processes taking 

place in the human body27. Besides providing precise control over experimental conditions, 
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microfluidic platforms also show high analytical performance28 with the integration of sensors 

in the microfluidic device29. Real-time analysis can thus be carried out. Microfluidic platforms 

are most commonly made from optically transparent materials such as polydimethylsiloxane 

(PDMS) or poly(methyl methacrylate) (PMMA), which allows performing real-time imaging 

procedures30. Moreover, research for new materials for use in developing OOC continues31,32, 

and smart materials with various properties such as memory33, responsiveness34, and 

electroconductivity35 represent attractive examples that can be employed for defined 

applications in future.  

Because of these advantages, microfluidic devices have been successfully used since the early 

1990’s for developing many important bio-analytical processes such as DNA analysis36, 

immunoassays37,38 and protein studies5,39. In the frame of cell culture and disease modelling, 

the use of microfluidics started to emerge in the early 2000’s. For example, in 2004, Leclerc et 

al. used a PDMS device for performing a large-scale culture of hepatocytes by associating 

many microfluidic culture chambers40. This device included oxygen supplying compartments 

which were shown to be crucial for a successful cell culture. In 2010, the emergence of the 

organ-on-chip (OOC) concept marked a major evolution in the use of microfluidics in the 

biological field. Indeed, by developing the first “lung-on-chip” device (described below), Huh 

et al.41 demonstrated that microfluidics could be used not only to culture cells in an efficient 

way, but also to reproduce the human physiological aspects at tissue and organ levels. From 

there, many research efforts have been made to fully exploit the benefits of this technology.  

In the following paragraphs, we will briefly describe the most important progress done in the 

OOC field, and we will discuss in more detail the adaptation of this technology to the modelling 

of cancerous pathologies. 

 

3. Microfluidics applications for studying cancer: cancer-on-chip (COC) concept 

Cancer is a very complex process that evolves over years or decades and it involves a variety 

of exogenous and endogenous factors42. Tumor behavior in the body depends partly on the 

genetic characteristics of the cancer cells43. However, these cancer cells interact also closely 

with other elements of the tumor microenvironment (TME) such as ECM molecules, stroma 

cells, tumor microvasculature, immune cells, and multiple signaling factors44. These 
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interactions between the tumor cells and their TME strongly influence cancer pathological 

processes such as angiogenesis45, metastasis44, and drug resistance46. It is thus crucial to take 

all these interactions into account to develop relevant in vitro models for cancer studying or 

anticancer drug testing. 

Compared to conventional 2D cell culture, the introduction of microfluidics technology for 

cancer modelling has allowed to reach a higher level of complexity in creating in vitro systems 

that better mimic the in vivo diversity of the tumor microenvironment. This technology makes 

it possible to associate different cell types in a unique device with a controlled 3D architecture. 

More importantly, microfluidic systems can be used to reproduce in vivo chemical and 

mechanical cues that can influence the tumor behavior including  

(i) oxygen and nutrient gradients,  

(ii) fluid flow,  

(iii) shear stress, and (iv) mechanical constraints related to physiological movements such as 

respiratory motions and digestive peristalsis.  

For example, Yi et al47. combined microfluidic technology and 3D bioprinting to develop a 

glioblastoma model for evaluating patient-specific cancer-cell responses to chemotherapy and 

radiations47. This model consisted of a compartmentalized cancer–stroma concentric-ring 

structure with a peripheric vascular compartment and a central cancer compartment. Through 

this configuration, the authors could simulate the oxygen gradient found in in vivo tumors and 

thus reproduce in vivo relevant drug responses47. Microfluidic platforms are indeed being 

increasingly used in oncology research48 and their applications can be divided into three main 

goals:  

- (i) improving our understanding of the pathophysiological processes involved in cancer 

and their possible therapeutic implications (cancer cell interactions with the tumor 

microenvironment elements49–51, tumor angiogenesis52–54, cancer cell invasion and 

metastases55–59, isolation and enrichment of cancer stem cells60). 

- (ii) performing anticancer drug screening61–63.  

- (iii) setting-up or improving diagnosis or prognosis applications such as the detection 

and isolation of circulating tumor cells (CTC)64–66, the analysis of tumor cell exosomes 
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or nucleic acids67 and the rapid performing of immunohistochemistry staining 

protocols68.  

In this section, we will describe the recent advances in microfluidic tumor modelling of the 

most common cancers to highlight the contribution of these new models to the development 

of cancer research and related therapeutics.  

 

3.1 Lung cancer 

Besides being the deadliest cancer1, lung cancer is probably one of the best examples to 

illustrate the interest of using microfluidic tumor-on-a-chip devices as they are particularly 

suitable for reproducing the lung’s complex environment. As we described before, microfluidic 

lung models (lung-on-a-chip) have allowed to effectively reproduce the essential structural 

and functional features of the alveolar-capillary membrane (ACM)41 and the small airways69. 

These models were further adapted to study a variety of pathophysiological aspects of lung 

cancer. For example, Hassel et al. used microfluidic models of pulmonary alveolus and small 

airways to study the growth and drug responses of non-small cell lung cancer (NSCLC)70. In 

this study, a human NSCLC cell line was injected into the alveolus and the small airways models 

(Fig. 1A). It was shown that cancer cell proliferation was more important in the alveolus 

microenvironment, which corresponds to the in vivo observations. More interestingly, this 

study demonstrated that the application of mechanical constraints through the hollow side 

channels of the microfluidic alveolus model affected the cancer cell behavior. These 

breathing-like motions reduced the cell growth and invasion ability and modified their 

sensitivity to tyrosine-kinase inhibitors (TKI). While one limit of this model could be the lack of 

immune cells that influence NSCLC responses to anticancer therapies71, this example clearly 

demonstrates the interest of using microfluidic models which open new research perspectives 

that remain inaccessible with classical 2D or 3D cell culture platforms. Besides creating 

orthotopic models, microfluidic devices are also increasingly being used to study lung cancer 

invasion and metastasis72 73, which are directly linked to its prognosis. Xu et al. developed a 

multi-organ microfluidic device to simulate lung cancer metastasis in different organs 

including brain, liver and bone74. The lung-like part of the device was composed of an upper 

air channel and a lower medium channel separated by a microporous PDMS membrane coated 
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with ECM molecules. Bronchial epithelial cells and A549 cancer cells were cultured on the 

upper membrane surface while stromal cells (microvascular endothelial cells, fibroblasts, 

macrophages) were cultured on the lower membrane surface. The use of two lateral vacuum 

chambers allowed the application of cyclic stretching of the tissue layers. Lung chamber was 

connected through side channels to three other distinct chambers containing astrocytes, 

hepatocytes or osteoblasts to mimic lung cancer metastasis to the brain, liver or bone. After 

forming a primary tumor mass in the lung chamber, A549 cancer cells performed an epithelial-

mesenchymal transition and spread to the secondary locations. However, one limit of this 

model was the absence of a functional endothelial barrier in the secondary sites making it 

impossible to reproduce cancer cell extravasation before creating secondary tumors. Liu et al. 

used a similar yet improved approach to investigate brain metastasis of non-small cell lung 

cancer75. In this study, the lung chamber was connected to a brain mimicking organ with a 

functional blood-brain barrier (BBB) structure (Fig. 1B). Different lung cancer cell 

subpopulations with variable metastatic potential were tested in this system. Authors 

demonstrated that cancer cells with high brain metastatic potential overexpressed Aldo-Keto 

Reductase family 1B10 protein (AKR 1B10). Moreover, silencing AKR 1B10 protein expression 

in these cells reduced their ability to cross the BBB and hence their metastatic potential. 

Similar results were obtained in in vivo using nude mice models of brain metastatic lung 

cancer75. This suggested that microfluidic devices can be reliable alternatives to in vivo animal 

experiments for lung cancer metastasis studies notably for the metastasis phenomena.  
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Figure 1: Examples of microfluidic OOC applications for lung cancer studies.  

(A) Non-small cell lung cancer-on-a-chip: (1): Design of the chip. (2): Confocal fluorescence 

imaging of a cross-section in the chip showing the distribution of the different cell populations: 

lung cancer cells (green, anti-GFP); primary lung alveolar epithelial cells (white, antibodies 

against the tight junction protein ZO-1); primary lung microvascular endothelial cells (red, anti-

VE-cadherin) (scale bar: 200 µm). (3): immunofluorescence imaging of NSCLC cells (green, anti-

GFP) that showed slow growing rate over time when cultured in the airway mimicking chip 

(scale bar: 100 µm). (4): NSCLC cells (green, anti-GFP) showed different growing rates in the 

airway chip and the alveolus chip with and without breathing-like mechanical constraints 

(scale bar: 50 µm). Reproduced from 70, with permission from Cell Press. (B) Design of the 

microfluidic model developed by Liu et al.75 for assessing brain metastasis of lung cancer. The 

chip consisted of two PDMS layers and a microporous membrane. Reproduced from75, with 

permission from Elsevier. 

 

3.2 Prostate cancer 

Despite its epidemiological importance, there are few examples of prostate cancer-on-chip 

models compared to other cancer types. In 2019, Jiang et al. described a simple prostate-on-

chip model that reproduced the stroma-epithelial interface76. This device consisted of two 

superposed PDMS channels separated by a polyester microporous membrane. Primary human 

prostate basal epithelial cells (PrECs) were used to form an epithelium on the lower membrane 
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surface while benign human prostate stromal cells (BHPrS1s) were cultured on the upper 

membrane surface to form the stroma compartment. This configuration allowed paracrine 

communication between the cancer cells and the stroma cells while preventing direct contact 

between the two cell types in order to study biochemical signaling pathways in the epithelial-

stroma interface. Biochemical communication between epithelial, stromal and cancer cells is 

a key factor in prostate cancer pathophysiology. However, biomechanical cues in the TME also 

need to be considered77. For example, Ao et al. used a microfluidic chip to explore the impact 

of mechanical stress related to prostate cancer cell expansion on normal associated fibroblasts 

(NAFs)78. Their system was inspired by the alveolar-capillary membrane organ-on-OOC 

described by Huh et al.41 with two superposed channels separated by a PDMS membrane 

which can be stretched through vacuum application on two lateral channels. Prostate NAFs 

were cultured on the top surface of the PDMS membrane and subjected to a consistent strain. 

Ao et al. showed that this mechanical stimulus could induce noticeable changes in NAFs 

behavior giving them a cancer associated fibroblasts or CAF-like phenotype78. Compared to 

non-stretched NAFs, stretched NAFs produced more aligned fibronectin network and showed 

higher ability to direct cancer cell migration. These results suggested that mechanical stress in 

the tumor microenvironment associated to cancer mass expansion can play a role in activating 

NAFs to CAFs which may promote cancer cell migration. Again, this study78 could not have 

been carried out without using a microfluidic cancer model. However, this model has focused 

on a very specific aspect of prostate cancer pathophysiology. It can be improved by including 

other TME elements such as stroma cells and functional vasculature. 

 

3.3 Breast cancer  

Many pathophysiological and therapeutic aspects of breast cancer have been investigated 

using microfluidic systems in five main application fields: (1) Early stages of breast cancer 

initiation and development79; (2) Anticancer drug response evaluation80 or drug delivery 

systems (DDS) testing81 ; (3) Cancer cell-fibroblast interactions50; (4) Cell invasion82 and (5) the 

development of metastatic models58.  

Breast cancer development is a long-term and highly complex process. Typically, the 

development of the cancerous lesion is preceded by an overgrowth of epithelial cells lining 
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the mammary ducts to form a non-invasive lesion called ductal carcinoma in situ (DCIS)79. 

Depending on several intrinsic and extrinsic factors, this non-invasive DCIS can develop into 

an invasive form (invasive ductal carcinoma (IDC))83,84. It is therefore, crucial to understand 

this transition from a localized to an invasive form. In this respect, Choi et al. described a DCIS 

microfluidic model79, consisting of two superposed culture chambers (Fig. 2A). The upper 

chamber simulated the ductal lumen while the lower one mimicked stromal vascular capillary. 

The two chambers were separated by a thin vitrified collagen membrane that simulated 

basement membrane. On the upper membrane surface, epithelial mammary cells were first 

cultured to form an epithelium. Then, DCSI spheroids obtained from a 96-well hanging drop 

plate were seeded in this epithelial layer to mimic neoplastic masses. On the lower membrane 

surface, a fibroblast containing collagen gel was deposited to reproduce the stroma tissue in 

the mammary duct. This microfluidic model was then used to assess efficacy and toxicity of an 

anticancer drug (Paclitaxel) which was injected in the lower chamber to mimic intravenous 

administration. Although this model is a good representation of DCIS, it was only maintained 

in culture for one week. This is a very short time-window considering that DCIS can progress 

over years in vivo before potentially becoming a malignant tumor85. Devadas et al. described 

another microfluidic model of mammary gland to study complex interactions between 

epithelial and endothelial cells to better understand the evolution and propagation of 

cancerous lesions84. This model was composed of four microfluidic culture units in a 2X2 

disposition (Fig. 2B). Each unit was formed of two parallel microfluidic channels connected by 

three migration ports. A partially polymerized Matrigel and collagen hydrogel was injected 

into the microfluidic channels then gently aspirated to form cylindrical lumens for the 

simulation of vascular and ductal lumens. The endothelial mimicking lumen was lined with 

endothelial cells. In the epithelial mimicking channel, three kinds of breast epithelial cells were 

tested, a non-cancerous breast epithelial line (MCF-10A), a non-invasive cancerous line (MCF-

7) and a highly metastatic line (MDA-MB-231) (one cell type at a time in the culture unit). 

Using this device, it was possible to establish the migratory profile of the three breast cell lines 

and to show that the migration ability of MDA-MB-231 cells is potentiated when co-cultured 

with endothelial cells. While in this model no stroma compartment was taken into account, a 

complementary study was conducted by Nagaraju et al.86 They focused on cancer cell 

intravasation into the blood stream and invasion of the surrounding stroma through the use 

a three layer concentric microfluidic model86. This model comprised an inner tumor region, an 
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intermediate stroma region, and a peripheral vascular region where endothelial cells 

embedded in a fibrin gel were allowed to spontaneously form an in vivo like capillary network 

(Fig. 2C). In both tumor and stroma regions, collagen was used to mimic the ECM while fibrin 

hydrogel was chosen to support capillary growth and organization in the vascular area. As for 

the previous example, it has been shown that the number of MDA-MB-231 cells migrating into 

the stroma was significantly increased in systems with endothelial cells capillary networks in 

comparison with control systems (without endothelial cells). Moreover, in the capillary 

network containing system, MDA-MB-231 cells were able to reach the fibrin matrix region and 

to penetrate inside the vascular network (intravasation phenomenon) while in control 

systems, they were incapable of reaching the peripheral fibrin matrix region. Using high 

resolution imaging techniques, it was possible to monitor real-time interactions between 

endothelial and cancerous cells, while the latter attached to the endothelial wall and crossed 

to the vascular lumen. Interestingly, it was demonstrated that cancer cell-endothelial cell 

interactions also take place in the other direction. Indeed, the authors showed that the 

vascular network grown in co-culture with MDA-MB-231 cells was highly permeable and 

smaller in diameter compared to that obtained in the control endothelial cell monoculture 

system. On the contrary, endothelial cell co-culture with MCF-7 (non-invasive breast cancer 

cell line) had no impact on the vascular network morphology or function. Here also, similar 

observations were made in in vivo animal models86,87. While Nagaraju et al. focused on the 

early stages of metastasis (intravasation)86, other works have investigated more advanced 

stages of this highly complex process. In one example, Mei et al. designed a microfluidic device 

to elucidate the osteocytes mechanical regulation of breast cancer metastasis to the bone88. 

To accomplish this, they used a two-parallel channels microfluidic device. One channel had an 

endothelial cell coated lumen to mimic the vascular compartment. In the other channel, MLO-

Y4 osteocyte cells were seeded to create bone compartment. The two compartments were 

connected by lateral channels (Fig. 2D). MDA-MB-231 breast cancer cells were introduced in 

the vascular-like channel. Their extravasation and migration through the side channels were 

then monitored in different conditions. In the control group, the observation was carried out 

under static conditions while in the experimental group, a physiologically relevant oscillatory 

fluid flow (1Pa, 1Hz) was applied to MLO-Y4 cells in the bone channel to mimic shear stress 

conditions applied to the bone during physical activity. The results showed that mechanically 

stimulated osteocytes have significantly reduced extravasation potential of the breast cancer 
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cells (reduction in the extravasation distance and the percentage of invaded side channels). It 

can be seen here that the use of a microfluidic system helped to understand how physical 

activity could influence bone metastasis of breast cancer through the ability to reproduce 

physiologically relevant dynamic conditions. In breast cancer research, microfluidic devices 

are also investigated as drug testing platforms. They can be used either for new drug 

development or for therapy optimization in personalized medicine. For new drug 

development, they are strongly thought to be more predictive than traditional 2D cultures. 

For therapy optimization, they offer a considerable time-effectiveness as compared to the use 

of patient derived xenografts (PDX) implanted in immunodeficient animals. To demonstrate 

this, Lanz et al. used a 96-microfluidic unit system to perform anticancer drug assays on cell 

lines and PDX-derived cancer cells. Cells cultured in 3D conditions under continuous flow 

showed high viability. Moreover, these 3D cultured cells showed higher drug resistance 

compared to these cultured in 2D conditions89. A more complex system was described by 

Predhan et al. who designed a vascularized perfused platform for assessing anticancer drug 

efficacy on non-invasive and invasive breast micro-tumor models90. In this platform, human 

breast tumor-associated endothelial cells (hBTECs) were first used to create a lumenized 

vascular network in microfluidic channels. This vascular structure ensured the perfusion of 

two superposed tumor chambers connected by a vertical channel (primary and secondary 

tumor chambers). For tumor formation, non-invasive MCF-7 or invasive MDA-MB-231 cells 

were suspended with fibroblasts in a poly(ethylene glycol)-fibrinogen hydrogel precursor. The 

cell containing suspension was then injected into the primary tumor chamber and photo-

crosslinked using visible light91 to form a “tumor-like structure”. The adaptation of the 

platform design made it possible to simulate two different perfusion levels (high perfusion 

and low perfusion level) to better capture the in vivo heterogeneity of different tumor regions. 

These platforms were then used for assessing anticancer efficacy and endothelial toxicity of 

two commonly used drugs (doxorubicin and paclitaxel)90. This demonstrates the possibility of 

using microfluidic devices for investigating both therapeutic and side effects of anticancer 

drugs. Moreover, this model shows numerous other advantages including the presence of a 

functional vascular network. The tumor structures could also be maintained in culture over a 

relatively long period of 28 days. Nevertheless, it remains far from reproducing all the 

complexity of an in vivo breast tumor, notably because of the absence of key TME actors such 

as adipocytes and immune cells92,93. 
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Figure 2: Application of COC technology for breast cancer modelling. 

(A) Early stage breast cancer model. Ductal adenocarcinoma in situ (DCIS) spheroids were 

grown in the epithelized upper surface of a membrane. A fibroblast containing extracellular 

matrix (ECM) hydrogel was applied in the bottom surface of the membrane to mimic the 

stromal compartment. Reproduced from94, with permission from Royal MDPI. (B) Device to 

study the interplay between cancer cells and endothelial cells in breast cancer. It was 

composed of 4 microfluidic units in a 2X2 configuration. Each unit comported 2 channels 

connected by 3 migration ports. Reproduced from84, with permission from AIP Publishing. 

(C) Three-compartment microfluidic chip to study breast cancer cell dissemination in the 

stroma and intravasation into the vascular stream. Reproduced from95, with permission from 

Elsevier. (D) Mei et al.88 used a microfluidic device to simulate bone metastasis of breast 

cancer and the regulating role of osteocytes. The device they developed comprised 6 units. 

Each unit was composed of one vascular compartment and one osteocyte compartment. The 

two compartments were connected by side channels. 

 

3.4 Colorectal cancer 

For colorectal cancer (CRC) research, the potential of microfluidic approaches has been mainly 

exploited in the isolation, enrichment and analysis of circulating tumor cells for diagnosis and 

prognosis purposes 96 97 98. Conversely, only few tumor99 and metastasis56 100 101 models have 

been reported so far. Nevertheless, microfluidic technology has already contributed to some 

of the recent advances in understanding CRC pathophysiology. In 2015, Vacchelli et al. 

conducted a complex study to investigate molecular mechanisms involved in cancer cell-
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immune cell interactions and their implications in the development of chemotherapy-induced 

antitumor immunity102. In one step of this work, a microfluidic device was used to confirm that 

formyl peptide receptor 1 (FPR1) plays an important role in allowing and stabilizing the 

interaction between dying cancer cells and human immune cells, a crucial step in the 

antitumor immunity development. Besides being used to highlight such molecular and 

biochemical signaling pathways in CRC, microfluidic instruments were used, here again, to 

investigate the biophysical and mechanical aspects related to this disease. Recently, 

Armistead et al.103 used microfluidic platforms for studying the impact of different shear stress 

levels in three different CRC cell lines, SW480, HT29 and SW620. A leukemia cell line HL60 was 

also used as a circulatory cell model for comparison with the CRC cell lines103. It was found 

that, under shear flow conditions, the metastatic cell line SW620 showed more deformation 

ability compared to the primary tumor-derived cell line SW480. This increased deformability 

has been shown to be related to an up-regulated expression of genes involved in cytoskeleton 

regulation103. The two examples cited above clearly illustrate the implication of microfluidics 

in CRC research but do not constitute tumor-on-chip models per se. In the framework of CRC 

modeling, one of the best works to be mentioned was published in 2016 by Sobrino et al. In 

this study, colorectal, breast, and melanoma cancer cells were used to create vascularized 

tumor models99. The tumor-on-a-chip design described in this work (Fig. 3A) consisted of three 

cell-culture chambers, delimited by two parallel microfluidic channels, with two media inlets 

and outlets. All these inlets and outlets were connected to a reservoir containing culture 

medium flowing across the microfluidic channels through the establishment of hydrostatic 

pressure gradient. To create a vascularized tumor model within this device, cancer cells (one 

type at a time), endothelial cells (Human endothelial colony forming cell-derived ECs (ECFC-

ECs)) and stromal cells (Normal human lung fibroblasts (NHLFs)) were suspended in a 

fibrinogen solution. Thrombin was then added before the mixture was quickly loaded into the 

culture chambers and allowed for gelation. Within five to seven days, endothelial cells 

organized into a functional vascular network that merged with the outer channels and 

supported physiological flow. Among the cancer cells involved in this study, three CRC cell 

lines were used (SW480, SW620 and HCT116). Cancer cells were able to proliferate and form 

small spherical aggregates often in close proximity with the newly formed micro-capillaries. 

Interestingly, this platform maintained the specific phenotypic characteristics of the different 

cancer cell types: the SW480 non-invasive cell line formed tight structures while the SW620 



15 
 

metastatic cell line conserved its invasive growing profile. This tumor-on-a-chip device was 

also used to perform anticancer drug tests on the developed tumor models. For example, a 

routinely used drug combination in CRC treatment (5-Fluorouracyl, leucovorin, oxaliplatin) 

was assessed. The results confirmed its cytocidal (rather than cytostatic) action on CRC cells 

and highlighted its low toxicity on the capillary network. In this model, one limitation could be 

the lack of mechanical constraints simulating digestive peristalsis. A complementary CRC-on-

chip model was reported in 2021 by Strelez et al104. It consisted of an epithelial-endothelial 

interface that could be submitted to peristaltic-like deformation. This device was used to study 

the early stages dissemination of CRC cancer cells namely intravasation. To investigate further 

CRC metastasis phases, one of the first microfluidic models was described by Skardal et al. in 

2016101. It consisted of two connected microfluidic culture chambers (Fig. 3B). In one chamber, 

human intestine epithelial cells and HCT116 CRC cells (ratio 10:1) were used to simulate a 

primary tumor site. In the other chamber, a liver-mimicking structure was created by using 

human hepatoma cells (HepG2). In both cases, cells were suspended in a hydrogel and 

introduced into the microfluidic device. The hydrogel was photocrosslinked using UV-light, 

and fluid flow was generated across the microfluidic chip using micro-peristaltic pumps. After 

proliferation in the primary tumor site, HCT116 cells disseminated into the circulating media 

flow and reached the liver site where they formed secondary tumor aggregates. For 

comparison, the same procedure was conducted with another CRC cell line (SW480) which 

has less invasive potential than HCT116 cells. In this case, cells could grow in the primary site 

but never left it to spread elsewhere. This system was also used to study the impact of 

microenvironment mechanical properties on the metastatic behavior of CRC cells and to 

perform anticancer drug assays. In 2019, the same research team described an improved 

version of this metastasis-on-chip platform. It comprised a multi-organ-on-a-chip for the study 

of metastatic affinity of CRC cells56. This device contained four metastasis units equidistant 

from a primary tumor site (Fig. 3C). To form the latter, HCT116 CRC cells were incorporated 

into hyaluronic acid-gelatin gel to create a tumor-like structure. The same hydrogel was used 

to create liver, lung, and endothelial-based structures in three different metastatic units. A 

cell-free structure was created in the fourth metastatic unit to serve as a control. In this 

platform, CRC cells were shown to have a higher metastatic preference for liver and lung 

constructs. One drawback of these promising systems is the lack of an in vivo-like endothelial 

barrier to study the intravasation and extravasation phenomena that are crucial steps in the 
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metastatic process. Overall, the analysis of the previous examples shows the difficulty of 

combining different metastasis steps in a single model. Creating a complete metastasis device 

with a primary and a secondary sites each comprising a functional endothelial barrier remains 

challenging.  

 

Figure 3: Cancer-on-chip (COC) technology applications for colorectal cancer. 

(A) (1): Schematic of the microdevice used to grow vascularized micro-tumors. This device 

was composed of two perfusion channels and three culture chambers. (2): Confocal 

microscopy imaging of the vascular network formed by endothelial cells (Lentivirally-

transduced ECFC-EC, red) after 7 days of culture. This network could connect to the two 

microfluidic channels. (Scale bar: 200µm). Reproduced from99, with permission from Nature 

Publishing Group. (B) Overview of the experimental setup used as metastatic model of 

colorectal cancer (1). Photography (top) and schematic (bottom) of this metastasis model 

(2). It included two chambers (G for gut and LI for liver). Blue arrows show the sense of 

culture medium flow; Red arrow show the sense of potential migration of cancer cells from 

the primary tumor site to the metastatic site101. (C) Multi-organ metastasis device including a 

primary tumor site (C for colon) which is equidistant from 4 metastatic sites: E for 

endothelial; Lu for lung; Li for liver and a control site (cell-free chamber). Reproduced from94, 

with permission from MDPI. 

 

3.5 Pancreatic cancer  

Pancreas is a vital organ that performs a double role, an exocrine function through the 

secretion of digestive enzymes, and an endocrine function through the secretion of hormones 



17 
 

such as insulin and glucagon for blood sugar regulation105. These two functions are related to 

different histological structures. Exocrine function is held by conical-shaped cells disposed 

around central lumens forming cell clusters named acini, separated by vascularized connective 

tissue105. The exocrine part constitutes the largest part of the pancreatic parenchyma105. It is 

also the birthplace of pancreatic ductal adenocarcinoma (PDAC), the most frequent tumor of 

the pancreas106. This cancer has focused most of the researchers’ attention on microfluidic 

modelling of pancreatic tumors.  

One of the first works in this context was published by Drifka et al. in 2013, who used a 

microfluidic device to investigate the complex interplay between cancer cells and stroma 

elements107. The model they described consisted of a microfluidic chamber with one outlet 

and three different inlets (one central and two side inlets) (Fig. 4A). PANC-1 pancreatic 

adenocarcinoma cells were suspended in an ECM-mimicking hydrogel (collagen-hyaluronic 

acid) and the suspension was introduced through the central inlet. Stromal cells (pancreatic 

stellate cells, PSC) were suspended in the same hydrogel and simultaneously introduced 

through the two side inlets. After hydrogel polymerization, a three-layered culture was 

obtained with a central tumor mass sandwiched between two stroma layers. This model was 

then used to assess the therapeutic response to the anticancer drug Paclitaxel. After exposure 

to Paclitaxel, cancer cells in the model showed reduced viability. Moreover, the specific 

structure of the stroma was disrupted. While this study focused on the interplay between 

cancer cells and stroma cells, endothelial cells have been included in other pancreatic cancer-

on-a-chip models. For example, a recent work published in 2019 highlighted an important 

phenomenon called "endothelial ablation”108 using a microfluidic device. This model consisted 

of a collagen matrix in which two parallel cylindrical channels were formed. One channel was 

lined with ECs to simulate a vascular capillary. The other channel mimicked a pancreatic duct 

and was seeded with primary mouse pancreatic cancer cells (PD7591) that formed an 

epithelial monolayer (Fig. 4B). A fetal bovine serum gradient in the vessel-like channel was 

then used to stimulate cancer cell migration through the collagen matrix. Under this 

stimulation, cancer cells were able to reach the vascular-like structure and penetrate its lumen 

after crossing the endothelial barrier. Moreover, it was shown that cancer cells do not just 

cross the vessel but partly occupy its lumen. In the vessel parts colonized by cancer cells, a 

high apoptotic tendency of endothelial cells, as well as the destruction of the collagen IV basal 
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membrane were observed. The authors used the term “endothelial ablation” to refer to this 

phenomenon. These findings were reproduced using other mouse and human pancreatic 

cancer cell lines and were also observable in in vivo PDAC models. Here, the use of a 

microfluidic device allowed to elucidate an important pathophysiological process. Endothelial 

ablation could indeed help explain why PDAC is highly invasive and at the same time poorly 

vascularized, which reduces its accessibility to systematically administrated chemotherapy108. 

Apart from endothelial ablation, other mechanisms involved in pancreatic cancer 

chemoresistance have been revealed through the use of microfluidic systems. In 2019, Kramer 

et al109. investigated the effects of intratumoral pressure on S2-028 pancreatic cancer cell 

responses to gemcitabine (a frequently used cytotoxic molecule in advanced stage pancreatic 

cancer110). They found these cells to be significantly more resistant to gemcitabine when 

exposed to intratumoral-like interstitial flow in comparison with cells cultured in 2D. This 

enhanced drug resistance was attributed to an increased expression and activity of multi-drug 

resistance proteins109. Along with other cancer types, pancreatic cancer  is characterized by 

genetic heterogeneity and instability associated with a complex tumor microenvironment111 

making it even more difficult to realize in vitro relevant experimental platforms.  Bradney et 

al. tried to capture part of this heterogeneity by incorporating murine PDAC cancer cells with 

different genomic subtypes into a microfluidic device111. In the same context, Haque et al112. 

designed a microfluidic platform to grow patient derived pancreas cancer organoids in the 

presence of key TME elements including stroma cells (pancreas stellate cells) and 

macrophages. This experimental platform was further used to highlight the stroma 

modulation of anticancer drug responses112. These works are interesting attempts to better 

capture the tumor heterogeneity and its impact on drug responses. They are also additional 

examples to illustrate the interest of microfluidics in pancreas cancer modelling. 
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Figure 4: Application of cancer-on-chip technology for pancreatic cancer modelling. 

(A) Microfluidic device used to study interactions between cancer cells (PANC-1) and stromal 

cells (PSC). An overall schematic of the device is shown in (1). The simultaneous introduction 

of cell-loaded hydrogels into the device is shown in (2): PANC-1 cell-loaded hydrogel (blue) 

was introduced through the middle inlet and PSC-loaded hydrogel (yellow) was introduced 

through the flanking inlets. As shown in (3), injection of culture medium (pink) through the 

flanking channels resulted in contraction of the three-layer cell construct. Cross section views 

of the process are shown in (4), (5) and (6). Reproduced from107, with permission from Royal 

Society of Chemistry. (B) The device used to reveal endothelial ablation in pancreatic cancer. 

(1): A cross-section view of the device. (2): A confocal imaging of a section of the endothelial-

lined channel showing its invasion by PD7591 cancer cells (i and ii). Endothelial cells (HUVECs) 

were marked with Anti-CD31 (red). PD7591 cells were labeled with FITC-conjugated anti-GFP 

(green fluorescent protein) antibody. Cell nuclei were stained with 4′,6-diamidino-2-

phenylindole (DAPI) (blue). Reproduced from108, with permission from American Association 

for the Advancement of Science. 

 

3.6 Ovarian cancer 

Ovary produces female gametes (ova) and female sex hormones (estrogens and 

progesterone). It consists of a cortical region, a central region (medulla) and a hilus113. The 

term ovarian cancer refers to several histologically and genetically distinct pathologies. High 
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grade serous ovarian cancer, also known as high grade serous carcinoma (HGSC)114, is the most 

common and severe form. It accounts for 70% to 80% of the mortality associated with all 

ovarian cancer subtypes115. This probably explains why HGSC focuses most efforts on terms of 

microfluidic modelling of ovarian cancer.  

Nowadays, it is hypothesized that premalignant lesions originating from the fallopian tubes 

may be involved in the genesis of HGSC116 114. To clarify this interplay, Fleszar et al. designed 

a microfluidic model of an ovarian cortical inclusion cyst (OCIC) to study its interactions with 

fallopian tube epithelial cells116. Before describing this OCIC model, we should remember that 

ovarian cortical inclusion cysts are cystic structures that form within the ovary when cells from 

the ovary surface epithelium (OSE) penetrate into the ovarian cortex after OSE rupture during 

ovulation114.  

Before establishing their OCIC model, Fleszar et al.116 studied human ovarian sections and 

observed that a dense collagen band surrounds inclusion cysts with collagen fibers parallel to 

their boundaries. Then, they set up an in vitro OCIC experimental model consisting of a 

microfluidic cylindrical channel molded in a collagen-based hydrogel. This channel included a 

bottom large inlet, a top small inlet and two lateral inlets. Mouse fallopian tube epithelial cells 

(FTE) were then seeded in this OCIC model and formed a confluent monolayer over the 

channel surface. After this initial epithelialization phase, FTE cells spread into the collagen-

based hydrogel showing an invasive behavior. Interestingly, the number of invading cells and 

their migration distance were influenced by the collagen type and concentration in the ECM-

like hydrogel. The importance of ECM properties on cell behavior was thus demonstrated 

using a simple microfluidic device. While this study looks at early stages of HGSC development, 

other research teams have used microfluidic technology to develop metastatic models.  

Indeed HGSC is a rapidly proliferating malignancy and it invades the peritoneal cavity often 

shortly after the apparition of the primary lesion117. This explains its late diagnosis and poor 

prognosis114,117. Unlike most solid tumors, which usually spread by hematogenous or 

lymphatic routes118, ovarian cancer invades the abdominal cavity primarily through the 

peritoneal fluid. Cell aggregates (spheroids) derived from the primary lesion can circulate and 

further attach to secondary sites117. In an attempt to simulate this process, Li et al. used a 

microfluidic platform to reproduce the key structural and dynamic features of the 

peritoneum119. This “peritoneum-on-a-chip” device consisted of three parallel microfluidic 
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channels. Each channel was coated with fibronectin and seeded with primary human 

peritoneal mesothelial cells (HPMC) to form an epithelial monolayer on the bottom of its 

surface. SKOV-3 spheroids obtained in non-adherent 96-well plates were then introduced into 

the device. A syringe pump was used to apply physiologically relevant fluid flow across the 

microfluidic channels and cell spheroid behavior was observed over time. This simple model 

was far from capturing the in vivo complexity of the abdominal cavity but it already provided 

a good overview of microfluidics’ potential to study ovarian cancer dissemination. Authors 

suggested improvements of their platform by incorporating other cell types to make it a more 

relevant experimental model for fundamental studies or for the development of new 

therapeutic tools. Other research teams have already reported the use of microfluidic 

platforms in the development of innovative therapeutic strategies. In one example, 

Wimalachandra et al. used a microfluidic experimental model to assess the efficacy and 

toxicity of anti-cancer nanoparticles120. For discussing this example, we will first have to 

describe these nanoparticles. They were designed to amplify the anti-cancer immune 

response by specifically targeting tumor cells and increasing recruitment of immune cells into 

the tumor region. For this goal, silica core-shell nanoparticles (NPs) were conjugated with folic 

acid and loaded with CCL21 (a chemokine known to stimulate the migration of dendritic cells 

and cytotoxic T lymphocytes). To validate these NPs, the authors developed a microfluidic 

platform consisting of a central channel connected to two side channels. The central channel 

was filled with a fibrin hydrogel containing human ovarian carcinoma cells (OVCAR-3) to mimic 

a tumor compartment. The two side channels were coated with fibronectin and seeded with 

HUVECs to generate an endothelial barrier. CCL21 loaded or CCL21 free NPs were added in 

one of the side channels. In this same channel, immune cells were then introduced and their 

migration across the vascular compartment toward the tumor site was observed. In 

comparison with CCL21 free NPs, CCL21 loaded NPs significantly increased immune cell 

migration into the tumor-endothelial interface and the tumor compartment. Other 

experiments showed that these CCL21 loaded NPs had no hemolytic activity and no disturbing 

effect on the coagulation processes which allowed to consider an intravenous administration. 

One important advantage of this system was the presence of an endothelial-like barrier to 

study the trans-endothelial passage of nanoparticles. However, only cancer cells were used in 

the tumor area and other important actors in the TME such as fibroblasts were not 

represented in this model. 
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3.7. Brain cancers 

Among primary brain malignances, glioblastoma (GBM) is the most frequent and 

aggressive121. COC technology has been widely investigated in GBM modeling both for 

fundamental pathophysiological studies and for drug evaluation122. In 2022, Alves et al 

reviewed glioblastoma microfluidic models that have been used to evaluate GBM related 

therapeutic strategies over the past 10 years. This provided a good overview of the diversity 

and the evolution of the developed GBM-on-chip platforms. While lithography was the 

predominant manufacturing method and PDMS the most frequently used material, the 

designs of GBM-on-chip devices strongly varied from one study to the other depending on the 

model’s goals. Among GBM specificities, the presence of the Blood Brain Barrier (BBB) is of 

major importance as its precise role remains to be clarified123. Du to their ability to simulate 

biological interfaces, microfluidic devices are particularly suitable to model the BBB for better 

understanding its implication in GBM pathophysiology and therapeutic outcomes. In this 

context, one interesting approach was described in 2022 by Straehla et al.124. They described 

a GBM-on-chip model consisting of tumor spheroids cultured with vascular cells, astrocytes 

and pericytes that self-organized to form a functional BBB-like structure. This model was used 

to assess the transport of therapeutic nanoparticles through the BBB. In vivo studies were 

performed to validate the predictivity of this GBM-BBB microfluidic model124.  

 

3.8. Hepatic cancers 

While few primary liver tumor-on-chip models have been reported125,126, microfluidic 

technology has been widely exploited in the study of metastatic phenomena involving the 

liver55,127–129. Moreover, being a crucial metabolic center, the impact of hepatic metabolism 

on the efficacy and toxicity of chemotherapy has also been studied using multi-site or multi-

organ microfluidic models130. In this context, the ability of microfluidic systems to combine 

multiple sites while linking them through physiological-like circulatory systems is of crucial 

importance as it allows to take a step further in the global modeling of the human organism 

in vitro131.  
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4. Challenges and future perspectives in microfluidic preclinical models 

Although there has been a significant progress in the use of microfluidic technology for cancer 

modelling, further efforts should be undertaken not only to create more comprehensive 

models, but also to promote and accelerate their implementation at the industrial level. 

Though the analyses of the current state of the art, three main research areas can be 

indicated: (i) identifying and solving problems related to the fabrication and daily handling of 

microfluidic devices; (ii) addressing biological issues related to cancer-on-chip models; and (iii) 

accelerating the transfer from research to applications. 

 

4.1 Fabrication and handling issues 

Most OOC models are manufactured through soft photolithography process, which requires 

specific equipment, clean chambers, and qualified personnel. An interesting research 

perspective would be to develop alternative methods that are less restrictive and easier to 

implement while maintaining the precision and flexibility of photolithography. One recent 

attempt to address this problem was reported by Ferreira et al132. They described a rapid OOC 

manufacturing method based on xurography132. Xurography can be defined as the process in 

which the designed shape of each microfluidic channel is cut in a pre-cured thin PDMS layer. 

A cutting plotter was introduced to remove material from the PDMS layer to realize the 

desired shape. The layers were then bonded by plasma treatment for final assembly of the 

device. In contrast to soft lithography, this method does not require the prior fabrication of a 

mold. Nevertheless, PDMS layers with a minimum thickness of 200 µm should be used for a 

good manufacturing resolution132. In the same context, the use of 3D printing was also 

explored and may help to improve OOC manufacturing processes133. Another research 

prospect would be the identification of new materials for the fabrication of microfluidic 

platforms. Currently, PDMS is considered to be the "golden standard" material for OOC 

devices due to its interesting properties such as easy handling, gas permeability and optical 

transparency134. However, this material also has a high adsorption capacity for small 

hydrophobic molecules31. Therefore, it can bind therapeutic drugs, reduce their 

concentration, and affect their biological effect. In this context, Campbell et al. have recently 

reviewed materials that could be potential alternatives to PDMS for OOC production31. These 
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include elastomers, hydrogels, thermoplastic polymers, and inorganic materials31. Beyond 

manufacturing steps, the daily handling of microfluidic devices can also be challenging18 

because of the need of specific and cumbersome materials, such as peristaltic pumps or 

syringe pump units. Air bubbles remain another big issue to overcome while carrying out 

experiments on microfluidic devices13.  

 

4.2 Biological challenges 

To consider COC application for the development of new anticancer molecules, a trade-off 

should be made between (i) their biological complexity and (ii) their ability to test multiple 

therapeutic molecules and multiple drug concentrations simultaneously. Indeed, the 

observation of current models shows that the above two parameters often evolve in opposite 

directions. In High throughput microfluidic devices, the biological part (tumor-like part) often 

consists of simple cancer cell structures without vascular network and without TME 

components62,135,136. On the contrary, complex cancer-on-chip devices with vascularization 

and TME elements are often difficult to adapt for large-scale drug screening applications70,79. 

High throughput thus remains a major challenge in current COC systems. An interesting 

attempt to combine sufficient biological complexity and high-throughput screening capability 

in a single device was reported by Phan et al.137 They developed a microfluidic device 

comprising multiple tumor structures perfused by a functional vascular network. Cancer cells 

(HCT116) and stromal cells (human normal lung fibroblasts (NHLF)) were used to create the 

tumor structures. This platform was then used to assess efficacy and cancer cytotoxicity of 

multiple anticancer drugs including cytotoxic and anti-angiogenic molecules. While this 

system showed cell diversity (three cell categories) and large-scale drug screening 

applications, it was only used for short term assessment of drug effects (72 hours). Thus, an 

interesting research perspective would be to develop in vitro microphysiological systems that 

remain viable and functional over long term (several weeks to few months)13 to study the 

kinetics of drug impacts. The use of machine learning is also being investigated. Artificial 

intelligence (AI) technology can indeed be combined with the OOC devices to improve and 

optimize their high throughput screening ability138,139. When developing OOC models, it is also 

crucial to identify the most appropriate cell source for the considered application. Overall, 

three main cell sources can be identified including primary cells, stem cells, and immortalized 
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cell lines140. Primary cells are already differentiated and functional besides maintaining 

patient-specific cues. However, they are often available in limited number and difficult to be 

cultured ex vivo while keeping their specific phenotype141. Human induced pluripotent stem 

cells (HiPSC) can be generated from easily accessible dermal fibroblasts and can be 

differentiated into different cell-types141. They are thus interesting alternatives to primary 

cells when establishing patient-specific OOC based tumor models140. Both primary cells and 

HiPSC present inter-donor variability which can affect result reproducibility. Using 

immortalized cell lines present some advantageous including cost effectiveness and 

availability. They also allow better reproducibility compared to primary cells142. Finally, while 

culturing multiple cell types in a single device is important to reflect in vivo cell diversity, a 

supplementary challenge is to set the culture medium composition for ensuring optimal 

growth and function for all these cell types.  

 

4.3 Transfer acceleration from research to applications 

Although several microfluidic based models have been reported13 and used for testing drugs 

and therapeutic responses143,144, most of them remain at the proof-of-concept level and do 

not find tangible applications in pharmaceutical research and development industry. We 

believe that one of the best ways to accelerate the development of OOC technology is to 

intensify collaboration between research laboratories and pharmaceutical companies. To 

optimize R&D investments, pharmaceutical companies need to have clinically relevant 

information as early as possible while developing a new drug molecule.  This information must 

concern both the efficacy and the safety of the drug candidate for guiding the development 

decisions. In this context, OOCs have been shown to accurately reproduce clinically observed 

vascular145, hepatic146 and renal147 side effects of new molecules developed by pharmaceutical 

companies. A systematic use of OOCs will thus allow earlier detection of these major side 

effects. For that, reproducibility issues related to these OOC devices also need to be 

addressed. Many variability sources can affect OOCs including cell sources and manufacturing 

process140. Manual manufacturing processes such as PDMS replica molding are very 

interesting for the development phases as they are versatile and cost-effective. However, 

hand-made microfluidic devices show important user dependency and laboratory 

dependency140. Before considering large-scale use of OOCs, the automation of manufacturing 
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processes is therefore necessary. Beyond technical issues, the scientific community, in 

collaboration with industry and international organizations, should undertake the effort to 

standardize the OOC technology, i.e., identify models, manufacturing processes, and handling 

conditions that would be systematically used at the international level. Promising attempts in 

this sense have already been reported140. Finally, we also believe that stricter regulation of 

animal use in pharmaceutical industry would also be a good boost to the development of the 

OOC technology. Beyond industry, OOC technology finds interesting applications in the daily 

medical practice especially for personalized medicine purposes in cancer treatment. OOC 

made up with patient specific cancer cells can be useful to evaluate therapeutic protocols for 

optimizing their efficacy and reducing their side effects before administration to the 

patient148.  

 

5. Conclusion 

Innovative preclinical models based on 3D cell culture and microfluidic technology appear to 

be a relevant alternative to 2D cellular models whose reliability has been questioned by the 

high failure rate of new anticancer molecules. The aim of this work was to highlight the most 

important contributions in terms of cancer-on-chip (COC) models to provide the reader a 

global overview on the progress made recently, the current limitations of this technology and 

future research perspectives arising from them. Indeed, many research efforts are being 

undertaken for developing these models and it is sometimes difficult to find one's way 

considering the large number of works published each year and the lack of a clear and 

universal nomenclature. Therefore, more collaborative work is required in order to overcome 

the current technological challenges and accelerate larger-scale implementation of these new 

in vitro preclinical models. 
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