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Abstract. As IoT is becoming pervasive, the need for securing its weakest nodes, thin nodes operating in 

untrusted environments, is becoming critical. The evolution of lightweight IDS has been achieved to provide an 

acceptable level of security for such types of nodes, but a key component is still missing. IDS is step two of a 

two-step process starting with sampling the traffic into a well-representing sample before being utilized by the 

IDS for attack detection. The literature is still missing lightweight sampling algorithms to work hand-in-hand 

with lightweight IDS for achieving the security level intended for thin IoT nodes with minimal stress on their 

already limited resources. This work is the first to develop a lightweight sampling algorithm catered to perform at 

low sampling ratios and designed to require limited memory, limited computational resources and enable privacy-

preserving collective learning. This work is the first conceptualization of lightweight sampling algorithms and has 

the potential of significantly reducing resource stress while only resulting in slight distortion to the sample. This 

compromise would be very beneficial for thin IoT nodes. 
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1. Introduction 

Internet traffic, stimulated by the pervasive technological evolution, has witnessed tremendous 

development in its features. Thus, a new necessity for network-based security systems including Intrusion Detection 

Systems (IDSs) arises. Intrusion Prevention Systems (IPSs), including firewalls, can be used to prevent the exchange 

of prohibited messages between end-users and banned endpoints, with limited ability to analyze and detect user 

activity patterns and abnormal data traffic across the network [1]. With the rise of its complexity, networks are 

becoming more vulnerable and susceptible to various attacks, making IPSs insufficient for single-handedly 

providing the desired security level. 

The Internet of Things (IoT) is one of those networks that introduce complexities and assumptions that 

render IDSs critical for maintaining network’s security. IoT introduces a wide spectrum of wireless nodes that range 

from computationally powerful nodes, such as vehicular onboard units, to small energy limited and computationally 

thin implanted sensors. IoT nodes do not follow the trust structure of traditional networks, thus Firewall, IPS and 

IDS systems play an important role in securing the central network against unwanted IoT traffic. IoT nodes, 

especially those with limited computational and energy resources are left unsecure (or at a much lower security 

level). Implementing a lightweight IDS is thus very effective for elevating the security of IoT nodes [11].  

The implementation of a successful IDS comes with many challenges. The complexity of the underlying 

network, the structure and heterogeneity of the data, and the congestion of the network traffic influence the 

efficiency and ability of an IDS in detecting malicious behaviors. IDSs’ performance is highly affected by how fast 

it can treat and analyze real-time network traffic; some packets may be skipped in case of highly congested 

networks. 



IDSs need to process and analyze the entirety of the network traffic, including those coming from various 

sources such as computers and network sensors. The main issue is the abundance of data and the way the traditional 

IDS operates: It processes each packet in the network and analyzes it to detect any unwanted behavior. Dealing with 

huge amount of data can be cumbersome, especially when the traditional data processing methods are not scalable. 

In addition, in the case of anomaly detection, an early warning about the time, nature, and source of the attack 

should be triggered for a timely response. For this to be achieved, considerable computation, memory and network 

resources are needed, and this can be too expensive for thin nodes or highly heterogeneous networks to achieve.  

To help deal with these issues, many solutions were applied [2]. One solution aims at limiting the packets 

investigated by the IDS through the implementation of a data sampling technique. The network traffic, coming from 

various sources, are fused and sampled using a given sampling technique. Only then the obtained sample will be 

passed to the IDS for further data processing and analysis. This way, the IDS can leverage the limited resources and 

storage capabilities available. This solution poses a compromise where the IDS needs to maintain a high detection 

accuracy while dealing with a significantly lower amount of data. The goal is to sample the data while pre-venting 

the loss of information and keeping the sample as informative as possible. Over the years, many sampling 

techniques and algorithms were developed and tested for improved detection accuracy, mainly falling under two 

categories: static and dynamic sampling [3]. Static sampling focuses on sampling the data periodically or randomly 

with a predefined interval or rule, whereas dynamic or adaptive sampling uses different intervals or rules to sample 

the data. One major benefit of static sampling is its efficiency in reducing both network bandwidth and storage 

requirements.  

It is difficult to choose a suitable sample of packets from all the traffic, because the IDS only analyzes the 

sampled data [2]. The attack may not be detected if malicious packets are not selected by the sampling method. As a 

result, an efficient sampling algorithm must ensure that packets with a malicious payload are sampled. The sampling 

procedure has been shown to impact, skew, and distort anomaly detection metrics and detection rates in previous 

research investigations. If a sampling method is to be used, selecting a suitable sample algorithm and sampling 

interval that provides a decent picture of the overall and original traffic is critical and delicate. 

Lightweight IDS for IoT is receiving focus from the research community, as will be shown in section 2, but 

to the best of our knowledge, efficient sampling algorithms for lightweight IDS is still a gap. This work is the first 

sampling algorithm designed to help IoT nodes implement lightweight IDS system with minimal impact on its 

limited resources. 

The study of sampling algorithms for lightweight IDSs is still in its early stages and considered a gap. We 

introduce, in section 2.1, relevant work on lightweight IDS for IoT. In section 2.2, we discuss sampling algorithms 

for IDS. In section 3, we start bridging the gap between sampling algorithms and lightweights IDS by proposing a 

lightweight sampling algorithm for IDS. In section 4 we discuss the simulation environment, section 4.1, and the 

results, section 4.2. Section 5 concludes this work and discusses future trends of lightweight sampling. 

2. Related Work 

2.1. Lightweight IDS for IoT 

Zarpelão et al. [13] surveyed the IDS research for IoT and identified a rising interest in lightweight IDS. 

The authors identified two tracks that claim to be lightweight. The first is signature-based lightweight IDS which is 

outside the scope of this work, such as [14]. The second is anomaly-based lightweight IDS which is the focus of this 

work. Lee et al. [12] detected 6LowPAN attacks by observing nodes’ reported energy consumption. Le et al. [15] 

designed a lightweight IDS by restricting sensing operations to cluster heads and thus freeing the remaining nodes to 

operate normally. This approach is consistent with Reza et al. [16]. 

Jan et al. [11] focused on developing computationally lightweight IDS using supervised machine learning-

based support vector machine. This is a different strategy that neither limits the IDS to one type of attacks (such as 

in [12]) nor limits the number of nodes running IDS (such as in [15] [16]). Soe et al. [17] used a different strategy 

for developing a lightweight anomaly-based IDS by limiting the number of investigated features. The proposed 

strategy selects the features that result in the highest gain ratio and discard all other features, thus limiting the 

amount of computation needed. It is worth noting that this strategy risks being oblivious to rare attacks that are only 

detectable using the discarded features. This approach is consistent with Davahli et al. [19] where they proposed 

feature selection using hybridization of genetic algorithm (GA) and Grey Wolf Optimizer (GWO). Instead of being 

selective on the features (such as in [17]) or on nodes (such as in [15] [16]), Sedjelmaci et al. [18] proposed a 

strategy that is selective on time. The authors proposed a game-theoretic approach for identifying the times where 

the attacks are most probably going to happen. Only then, the IDS functionality is enabled. 

  



2.2. Sampling algorithms for IDS 

Internally deployed Intrusion Detection Systems (IDSs) are now standard practice for preventing and/or 

limiting both internal and external threats. However, given the limited bandwidth of network lines and the IDSs' 

limited memory and processing capacity, monitoring and managing the network has become problematic. Sampling 

could be used to reduce the amount of traffic that needs to be processed as a possible solution to this problem. 

Current research projects are looking at which sampling policy and parameters give the optimum compromise 

between IDS performance (response time) and a high attack detection rate in terms of IDS performance (response 

time). A sampling policy seeks to estimate a metric of interest from a set of data while minimizing processing costs. 

This is accomplished by picking a "sample" subset of data and estimating the desired statistic from that subset. The 

sampling approach determines how the data subset is chosen. Packet sampling procedure, in particular, tries to 

create a sample of data on which future analytic tasks would be performed. The effectiveness of the sample and the 

precision of the estimation of traffic characteristics are influenced by several factors, the most important of which 

are the sampling strategy and the sampling rate. The most challenging challenge, given the original collection of 

packets, is to choose the appropriate sampling policy and parameters.   

Packet sampling is a type of data sampling approach that uses packets as the basic unit of analysis. As a 

result, all of the observed packets are considered the original data set, while the selected packets comprise the 

sample. The sampling interval, commonly known as the sampling ratio, has a significant impact on the target sample 

size. However, the sample size acquired by some sampling algorithms may differ from the required sample size. 

There are three sorts of sampling decisions for a packet: count-based, time-based, and content-based. The sampling 

choice of a packet in a count-based sampling strategy is made based on its position in a stream of packets. The 

sampling decision in time-based sampling algorithms is dependent on the packet arrival time. Finally, content-based 

sampling methods focus their sample decisions on the content of the packet. Filtering algorithms are another term 

for content-based sampling procedures, which are beyond the scope of this paper.   

The area of sampling network traffic has received a lot of attention from the research community in recent 

years, resulting in a slew of new works and benchmarking publications. Several studies have the effects of data 

sampling in this context. In their study, Mai et al. [4] looked at the impact of sampling high-speed IP-backbone 

network traffic on intrusion detection outcomes, particularly port scans and volume anomaly detection. To sample 

the traffic packets, various sampling algorithms were employed. The authors of [5, 6] looked into how packet 

sampling affected anomaly detection findings. The accuracy of the “Autonomous Algorithm for Traffic Anomaly 

Characterization” detector in detecting DDoS attacks over sampled traffic was tested by Roudiere et al. [7]. To 

sample the traffic, various sampling policies were utilized. The influence of traffic sampling on anomaly 

identification was investigated by Bartos et al. [8], who presented a new adaptive flow-level sampling algorithm to 

improve the sampling process' accuracy. Silva et al. [9] proposed a framework for assessing the effects of packet 

sampling. They analyzed each sampling algorithm's effectiveness and proposed a set of metrics for evaluating each 

sampling technique's ability to produce a representative sample of the original traffic. Brauckhoff et al. [10] 

evaluated the accuracy of alternative anomaly detection and data sampling algorithms using traces containing the 

Blaster worm. et al. [10] evaluated the accuracy of alternative anomaly detection and data sampling algorithms using 

traces containing the Blaster worm.  

An extended related work can be seen in our survey [2] and benchmarking [3] where we examined all data 

sampling strategies, their influence on detecting various attacks, and the behavior and robustness of features under 

various sampling strategies. It also investigated how network features estimation differs depending on the sampling 

method, sample size, and other factors, and how this affects statistical inference from these data. 

3. Cluster-based Sampling Algorithm 

To reduce the sampling error and ensure a high level of sample representation where the smallest, extreme, 

and/or rare subgroups of the data are present, we propose in this section a new Cluster-based sampling algorithm. 

The algorithm classifies the data into different clusters and builds and maintains a sample for each cluster. 

Clustering algorithms aim to find new emerging patterns in the data and to detect any changes in the patterns and 

data distribution. Ideally, for a sample to be representative of the entire data stream, the sample and initial stream 

must be closed. The proposed algorithm manages the insertions of the data in the samples so that the difference 

between the sample and the corresponding cluster is minimal. That is, the algorithm ensures that all the subgroups 

within the data are present in the final sample. 

With the most known sampling algorithms, data are randomly sampled from the stream. The samples are 

built fast, but the arbitrary selection and deletion of items may lead to high sampling error. Our proposed approach 

can be considered as an alternative that aims to reduce the sampling error due to the data variance. The idea of pre-



clustering before applying the sampling allows taking into account the prior data distribution when making the 

selection decisions. When items close together in the data stream have similar values, they will be added to the same 

cluster. This cluster tends to be homogeneous so that a small sample from this cluster contains a large amount of 

information about all of the items in the cluster. 

Our proposed sampling method consists of dividing the data stream into separated groups, called clusters, 

using the k-means algorithm, and then, build and maintain a sample from each cluster as shown in Figure 1. To 

guarantee that the final sample contains exactly items representative of every group of the initial data stream, the 

size of each cluster sample is kept proportional to the cluster size. The final sample is constructed by combining all 

the clusters’ samples. From the data in the first window of the stream, i initial clusters are constructed. 

To ensure that the sample is as close as possible to the original cluster, the proposed algorithm maintains a 

sample of a size proportional to the cluster size and modifies it as more stream items arrive, as shown in Figure 2. 

That is, for a sampling rate equal to k/n, k items will be sampled from each cluster. The first k items of the stream are 

classified using the k-means algorithm and serve as a learning base. Then, for each cluster, a sample of size 𝑘𝑗 is 

built and maintained, 𝑘𝑗  being the cluster j size constructed from the initial learning base,  ∑ 𝑘𝑗 = 𝑘𝑖
𝑗=1 . From each 

cluster, 𝑘𝑗 items are selected, each with a probability equal to |1  −  
𝑒𝑖

𝑐𝑒𝑛𝑡𝑒𝑟(𝐶𝑗)
|. Then, the initial items in each cluster 

which are selected and added to the samples are ranked by the "remove-from-sample" principle, where the sampling 

error is calculated by removing the item from the sample, as shown in Figure 3 and Procedure 

CLUSTER_BASED_SAMPLING. Higher ranks are assigned to the removal of the items which leads to lower 

sampling error. 

When new items arrive, they will be processed in sequential order. Each new item will be added to one of 

the clusters based on the Euclidean distance between the item 𝑒𝑖 and the center of each cluster. After fitting the item 

to one of the clusters, a decision will be made whether to add it to the corresponding cluster sample. This is done by 

comparing the sampling error of the cluster sample with and without the item. If not adding the item to the cluster 

sample leads to a higher sampling error, the new item will be sampled with a probability equal to |1  −  
𝑒𝑖

𝑐𝑒𝑛𝑡𝑒𝑟(𝐶𝑗)
|. On 

the other hand, if adding the item to the cluster sample leads to a higher sampling error, the item will be rejected and 

not added to the sample. To keep the cluster sample size fixed, an item must be removed from the sample when the 

featured cluster size exceeds 𝑘𝑗. In this case, the item having the highest-ranked value in the current sample will be 

deleted. Ideally, all items in the current cluster sample should be re-ranked after a new item is added to the sample. 

This is done by recalculating the sampling error using the "remove-from-sample" principle for all items in the 

current cluster sample. A trade-off between the sampling precision and needed computing resources is needed here. 

Thus, re-ranking is only done after 𝑥% of a cluster’s items are changed, where x depicts 

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑑 𝑖𝑡𝑒𝑚𝑠 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑠𝑖𝑧𝑒⁄ ) ∗ 100. 

Let 𝑚 be the original mean calculated from the original data in a given cluster. The empirical mean 𝑋 of 

the cluster sample is an unbiased estimator of m, calculated as follows: 𝑋  =  
1

𝑘
Σ 𝑒𝑖 where k is the sample size, and 

𝑒𝑖 is the value of the item at index i in the sample. The sampling error with/without the item is calculated as follows: 

𝑒𝑟𝑟𝑜𝑟  =   |
𝑚 − 𝑋

𝑚
| ⋅  100% 

Three parameters impact the sampling accuracy: (1) the sampling ratio k/n, (2) change percentage 𝑥. It is 

possible to sample the data with a sampling ratio equal to k/n while using different k and n values, such that: 𝑝  =

 
𝑘

𝑛
  =  

𝑥 ⋅ 𝑘′

𝑥 ⋅ 𝑛′ where x is a positive integer.  

Table 1 shows the conceptual idea of ranking. For instance, item 10 is ranked highest because its removal 

produces the minimum sampling error. Similarly, item 17 is ranked lowest because its removal produces the highest 

sampling error. Thus, it is the best candidate to be replaced by future incoming items. 

 

Table 1 Conceptual items ranking within a cluster 

Item Index Sampling error Rank 

10 3.61 1 

11 ... 2 

12 ... 3 

17 9.62 4 

 



Thin IoT nodes have three main concerns that should be the focus of any lightweight sampling algorithm. 

The concerns are: 

• Limited memory: Dynamic sampling algorithms have increasing sample size [2] and this 

exceeds thin nodes’ capabilities. Static sampling algorithms have fixed sample size. In the 

current version of the proposed algorithm, a fixed number of elements are stored in clusters 

making the stored sample size similar to static sampling algorithms. As will be discussed in 

section 5, we are working on eliminating all the stored elements and only keep the cluster 

definitions. That will significantly drop the amount of memory needed into less than 1% of the 

current standard. 

• Limited computation/energy: The proposed algorithm can be configured for running with 

significantly less computation using the Change Ratio (CR). Lower CR values result in lesser 

need for computational resources. Computational resources vs. sample distortedness should be 

optimized. 

• Privacy-preserving collective learning: The ability for IoT nodes to share their knowledge 

about the network traffic is a significant enhancement to the security of the whole system and 

this allows for a significant drop in computational and energy resources needed. This is 

assuming that the exchange of information is privacy-preserving. As will be shown in section 5, 

we are experimenting this capability by relying on cluster definitions. 

4. Simulation 

4.1. Simulation Environment 

Our algorithm is implemented using Python to test its efficacity and measure its accuracy. The code is 

accessible through GitHub [20]. In this simulation parameters are defined in table 2. The algorithm has been tested 

against the NSL-KDD test dataset [21]. Clusters’ compactness is measured using the silhouette score [22]. 

Table 2 Simulation parameters 

Parameter Range of values 

Change rate 0.5, 0.75, 0.9 

Learning base size 0.1, 0.3, 0.5, 0.7, 0.9 (× Dataset size) 

Number of clusters 2, 5 (2, 3 and 6 tested but not reported as discussed in section 4.2) 

 

The specifications of our machine are RAM: 12GB, System disk: 108GB, and processor: 2.20GHz Intel 

Xeon CPU. We measured all the dataset features, but for space limitations, we will show the results of four features 

as discussed in section 4.2. 

4.2. Simulation Results 

The selection of cluster sizes 2 and 5, shown in table 2, is not arbitrary. Cluster sizes 3, 4 and 6 have been 

tested, but not reported due to space limitation. 2 and 5 clusters performed consistently better on mean, median and 

standard deviation. 2 clusters group packets into normal or attack, while 5 clusters group packets into normal or one 

of the four attack types listed in table 3. To validate our observations, we measured the clustering performance using 

silhouette score for each of configurations presented in table 2. The silhouette measurements are shown in Figure 4. 

As shown in Figure 4, the cluster fitness is increasing with the increase in the number of clusters, but this 

does not predict performance in maintaining the stream’s mean, median and standard deviation within the sample. 

For this reason, cluster fitness is not a good metric for selecting the appropriate configuration of the IDS. 

Throughout the remaining of this work, we are going to report the values for clusters sizes 2 and 5 only as they 

performed the best. The x-axis in Figure 4 is (Learning base, Change rate). The y-axis is the silhouette score. 

The results shown in this work are presented in consistence with the format used in [3], including mean, 

median, standard deviation, and Overall Statistic (OS) value of the selected dataset features that are most 

representative of network attacks shown in table 3. It is worth noting that our proposed lightweight sampling 

algorithm will be compared to non-lightweight sampling algorithms, surveyed in section 2.2, due to it being the first 

of its category to the best of our knowledge. 

 



procedure CLUSTER_BASED_SAMPLING {n: initial learning 

base size}  

Initialization: Swj is the initial sample of cluster 

Cj, at the beginning S1 = ∅, k is the sample or 
learning base size, x is the change ratio and N is the 

number of clusters. 

//starting pseudo-code presented in figure 2 

for i ∈ [1, k] do 
 for each item ei in the learning base of size k do    Add ei to the corresponding cluster 

   end for 

end for  

//ending pseudo-code presented in figure 2 

//starting pseudo-code presented in figure 3 

While a new item ei is received, (i<n) do 

 i <- i + 1 {i is the index of e} 

 Add ei to the corresponding cluster Cj 

 CalculateError(ei, Sj) {Compute the sampling error 

with and without adding ei to Sj} 

 if samplingErrorWithSampling < 

samplingErrorWithoutSampling then 

  Add ei to Sj with a probability |1- ei/center(Cj)| 

     Cj.change_count <- Cj.change_count + 1 

  if(Sj.size() > k/n) then 

   Remove the item having the highest rank from Sj 

  end if 

 end if 

 if(Sj.size()* x < Cj.change_count) then 

  UpdateRankTable(); 

 end if 

end while 

return Sj 

end procedure=0 

//ending pseudo-code presented in figure 3 

 

Figure 1 Proposed algorithm 

 

Figure 2 Item admission 

 

Figure 3 Cluster management 

 

 

Figure 4 Cluster fitness 

Table 3 Features vs. attack types in dataset 

Attack Feature Names Features 

DoS Source bytes, land, wrong fragment 5,7,8 

Probe Source bytes, srv error rate, diff srv rate, src port rate 5,28,30,36 

R2L Dest bytes, failed logins, count, dst host error rate 6, 11,23,39 

U2R Root shell, srv count, src port rate 14, 24,36 
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Figure 5 shows the mean of feature 5 in the sample generated by each sampling algorithm. The red dotted 

line represents the dataset’s original mean for feature 5. The closer the sample’s mean to the that of the dataset the 

better. Similarly, Figure 6 shows the standard deviation for feature 5 with the red dotted line representing the 

dataset’s standard deviation for feature 5. 

It can be seen in Figures 5, 6 and 7 that the most accurate algorithms at high sampling ratios/learning base 

sizes, ≥ 0.7, are systematic and deterministic sampling algorithms. For lower sampling ratios/learning base sizes, 

those same algorithms are among the least accurate. Those observations are consistent with [3]. For low sampling 

rates, SRS offline, stratified and the proposed cluster-based sampling algorithm (with 2 clusters and 90% change 

ratio) are the consistently good performers (least distorted). Thin IoT nodes with limited resources benefit from low 

sampling ratios/learning base sizes as this significantly decreases the computational load of both sampling and IDS. 

The results of feature 5 are consistent with those of feature 6, shown in Figures 8, 9 and 10. Feature 6 

shows even better performance for the proposed cluster-based sampling algorithm (with 2 clusters and 90% change 

ratio) for lower sampling ratios than SRS offline, stratified. The proposed cluster-based sampling algorithm (with 2 

clusters and 90% change ratio) resulted in least distortion for two sampling ratios/learning base sizes 0.3 and 0.5. 

The results for feature 14, shown in figures 11, 12 and 13, are not as consistent with the other features. The 

proposed cluster-based sampling algorithm, all configurations, resulted in the least distortion for sampling 

ratio/learning base sizes = 0.3 only. The performance of the proposed algorithm is average for all other sampling 

ratios/learning base sizes. 

The results for feature 28 are consistent with that of features 5 and 6. The proposed cluster-based sampling 

algorithm (with 2 clusters and 90% change ratio) achieved the lowest distortion for sampling ratios/learning base 

sizes 0.1, 0.3 and 0.5 as shown in figures 14, 15 and 16. The results of the remaining features are consistent with the 

ones presented but will not be shown due to space limitations. 

5. Conclusions and Future Work 

Thin IoT nodes benefit from lesser stress on their already limited resources, but that should not result in 

lower security than intended, especially that IoT nodes operate in untrusted environments. The literature covers 

sampling algorithms for traditional IDSs and lightweight IDSs for IoT, but lightweight sampling algorithms for IDSs 

operation in IoT is still a gap. This work is the first, to the best of our knowledge, to touch this gap and develop a 

sampling algorithm that requires minimal resources and achieves good results for low sampling ratios, which is the 

type of configuration suitable for thin IoT nodes. 

The uniqueness of this proposal is the ability to describe the sample in a privacy-preserving manner and 

this allows the exchange of information of node for federated learning. This protocol still requires upgrades to be 

able to reach its full potential which are (1% memory utilization compared to other algorithms, configurable 

computational resources, privacy-preserving collective learning). This version of the protocol succeeded in 

performing the second goal (configurable computational resources) while achieving comparable and sometimes best 

performance and least distortion to the generated sample. 



 
Figure 5 Mean of feature 5 per sampling algorithm 

 
Figure 6 St dev of feature 5 per sampling algorithm 

 
Figure 7 OS level of feature 5 per sampling algorithm 

 
Figure 8 Mean of feature 6 per sampling algorithm 

 
Figure 9 St dev of feature 6 per sampling algorithm 

 
Figure 10 OS level of feature 6 per sampling algorithm 
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Figure 11 Mean of feature 14 per sampling algorithm 

 

Figure 12 St dev of feature 14 per sampling algorithm 

 

Figure 13 OS level of feature 14 per sampling algorithm 

 

Figure 14 Mean of feature 28 per sampling algorithm 

 

Figure 15 St dev of feature 28 per sampling algorithm 

 

Figure 16 OS level of feature 28 per sampling algorithm 
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