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Abstract. Convolutional neural networks (CNNs) have proven to be
efficient tools for image segmentation when a large number of segmented
images are available. However, when the number of segmented images
is not so large, the CNN segmentations are less accurate. It is the case
for nephroblastoma (kidney cancer) in particular. When a new patient
arrives, the expert can only manually segment a sample of scanned im-
ages since manual segmentation is a time-consuming process. As a con-
sequence, the question of how to compute accurate segmentations using
both the trained CNN and such a sample is raised. A CBR approach
based on proportional analogy is proposed in this paper. For a source
image segmented by the expert, let a be the CNN segmentation of this
image, b be its expert segmentation and c be the CNN segmentation of
a target image close to the source image. The proposed approach aims
at solving the analogical equation “a is to b as c is to d” with unknown
d: the solution d of this equation is proposed as a segmentation of the
target image. This approach and some of its improvements are evaluated
and show an accuracy increase of the segmentation with respect to the
CNN segmentation.

Keywords: analogical extrapolation, case-based reasoning, convolutional
neural networks, medical image segmentation, kidney cancer

1 Introduction

Convolutional neural networks (CNNs) constitute powerful tools for many tasks,
such as image segmentation [9]. However, as many techniques of deep learning,
they are demanding in terms of the computing time they require for the learning
phase. This is particularly true when the dataset is continuously enriched, as it
leads to re-run regularly the learning process. By contrast, case-based reasoning
(CBR [14]) is usually less demanding in terms of computing time and also for the
volume of resources (including cases) and it is “naturally” fitted to the continuous
enrichment of the case base.

This article studies the issue of using CBR to improve the results of a CNN
when few additional data are available, without having to re-train the CNN. This



issue is considered for an application of image segmentation of kidney cancer
scans. More specifically, a CNN has been run on images segmented by an expert
for 14 patients, with about 100 slices per patient. Given new patient’s images,
the CNN can propose some segmentations, but with an insufficient precision. To
increase this precision, the expert manually segments about 10% of these images
and then, the goal is to exploit this 10% to improve the precision of the CNN
segmentations of the 90% remaining images. For this purpose, an approach called
OV2ASSION based on re-running the CNN with the additional examples (the
10%), has been studied in previous works. In this paper, an alternative approach
to OV2ASSION based on CBR methodology and on analogical proportions is
studied.

After some necessary preliminaries (Section 2), a general approach is pre-
sented (Section 3) explaining how the CNN image segmentation can be modified
by retrieval and adaptation of an image manually segmented. The result is a par-
tial segmentation, meaning that some pixels are undecided. Section 4 presents
some improvements to the approach, in particular, to make decisions for unde-
cided pixels. Section 5 concludes and describes future directions of work.

2 Preliminaries

This section introduces the notions and notations that are useful for the article.
Section 2.1 presents the issue of image segmentation, in the framework of kidney
cancer images. Section 2.2 presents two deep-learning approaches for addressing
this issue: one based on a CNN and one which is an improvement of this approach
in the context of the study, called OV2ASSION. This article proposes another
improvement of the approach of the outcome of the CNN that is based on CBR
and analogical proportions introduced in Sections 2.3 and 2.4.

2.1 Image segmentation and its application to kidney cancer
management

Nephroblastoma is one of the most frequently abdominal tumor observed in chil-
dren (generally 1 to 5-year-old boys and girls). This cancer represents 5 to 14%
of malignant paediatric tumors. This tumor is developped in the kidney. Most
of the time, its initial diagnosis is based on imaging. Generally, ultrasounds are
planned first in order to confirm its existence and approximate its position. Then,
a CT-scan provides its position, and the healthy tissues and organs are reached
with a higher accuracy. Radiologists and surgeons need 3D representation of the
tumor and the border organs in order to plan the surgery (e.g. anticipate vas-
cular risks, choose between a total or partial nephrectomy), and also to inform
the family.

Image segmentation is a topic of image processing. It consists in associating
a single label to each pixel of an image. In the field of health, segmenting a
scan consists in defining the anatomical structure to which each pixel belongs.
Segmentation is one of the key steps of the construction of 3D representations
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of all the organs, veins, arteries, cavities and other anatomical elements (such
as a tumor). Formally, for an image of m × n pixels, let Dom = {0, 1, . . . ,m −
1} × {0, 1, . . . , n − 1}. An image is a mapping associating to each (i, j) ∈ Dom
the code for the color of the pixel. In this paper, only binary segmentations are
considered: there are 2 labels, denoted by the Boolean values 0 and 1. More
precisely, the segmentation distinguishes pixels associated to the tumor (label 1)
from other pixels (label 0). Formally, a segmentation of a tumor is a mapping
S : Dom→ {0, 1}. For (i, j) ∈ Dom, S(i, j) is denoted by Sij .

Automatic segmentation is one of the actual key challenges of image pro-
cessing since most of the time, and in the particular case of the segmentation
of nephroblastoma in children, surgeons and radiologists must lead the segmen-
tation process manually. The manual segmentation of the images of a kidney is
time consuming (it requires about 6 to 8 hours of medical expert time [2]), hence
the usefulness of tools for assisting these experts. The quality of an automatic or
semi-automatic segmentation is evaluated comparing it to a reference one given
by an expert. In the field of image processing applied to healthcare, the Dice
coefficient is usually employed [4]. It gives a similarity value (on [0, 1]) between
two segmentations S1 and S2 defined by

DICE(S1, S2) =
2× number of (i, j) ∈ Dom such that S1ij = S2ij = 1

#S1 +#S2
(1)

where #S is the number of (i, j) ∈ Dom such that Sij = 1.

If S1 is the segmentation automatically computed, and S2 is the desired segmen-
tation (the ground truth, given by the expert), the closest to 1 is DICE(S1, S2),
the better the segmentation is and the least the expert has additional work to
do.

Now, for N images of the same kidney (e.g. N slices as in Figure 1) providing
a 3D representation, a segmentation of this collection of images can be defined as
S : k ∈ {1, 2, . . . , N} 7→ S(k), where S(k) is a segmentation of the image number
k. Now, given S1 and S2 two segmentations of the same collection of images,
the Dice coefficient of (S1,S2) can be computed with a definition similar to (1).1
This is called the 3D Dice coefficient in the following of the paper and provides a
global assessment of a similarity between two collections of segmentations (e.g.,
for a given patient, the predicted collection of segmentations and the expert
collection of segmentations).

The final 3D representations are used by surgeons and radiologists in order
to plan the surgery, to have a clear vision of the healthy tissues and also to
communicate with the children’s families [2].

1 (i, j) ∈ Dom is substituted by ((i, j), k) ∈ Dom × {1, 2, . . . , N}, S1 and S2 are
substituted by S1(k) and S2(k) in the numerator and #S1+#S2 is substituted with
#S1 +#S2, where #S is the number of ((i, j), k) such that Sij(k).
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Fig. 1: 3D representation of a kidney with nephroblastoma, with the horizontal
slices of the scanner imaging.

2.2 Using a CNN for kidney tumor segmentation

Inside the deep learning paradigm, CNN principles [6] have been implemented in
Fully Convolutional Network (FCN) [10], SegNet [1], DeconvNet [12], DeepLab [3],
and appear to be high-performance tools for image segmentation.

In medical and biology applications, Thong et al. [16] used CNN to perform
segmentation of healthy kidneys. U-Net [15] performed segmentation of cells in
microscopy images. Currently, CNNs obtain accurate results on the recognition
of the shape of a healthy kidney, because the shapes and areas are more or less
the same from one subject to another. However, when the form of the considered
structure is complex and varies a lot from one case to another, the segmentation is
still a challenge. Neural networks for segmentation also need many heterogeneous
data in order to be able to transcribe reliable results. In particular, pathological
kidneys deformed by nephroblastoma have very different forms from one patient
to another, with unpredictable shapes and situations. This then has led to find
another method to segment more complicated structures with limited data.

Having a sufficiently large volume of data representative of all possible data
is essential for training a deep neural network. As manual segmentation is expert
time-consuming, at the scale of a hospital, the learning set composed of the entire
segmented abdomens of patients may be composed of tens of cases only. This may
not be large enough for conventional learning since each tumor and pathological
kidney is unique and varies greatly from one patient to another. This is the
reason why we have designed a new method for training on a small dataset:
the OV2ASSION (Overlearning Vector for Valid Sparse SegmentatIONs) [11].
As shown in Figure 1, the OV2ASSION method is based on the overlearning of
some manually segmented slices of the patient, separated by a gap in order to
calculate the segmentation of the entire set of unsegmented slices of this patient
automatically. Each black line in this figure represents the selected slice for the
training of the neural network. The gap between the chosen slices is the same in
order to recover information homogeneously at different levels. This method is
used in order to train a CNN based on the U-Net architecture.
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2.3 Case-based reasoning

Let P (resp. S) be a set. An element x of P (resp. y of S) is called a problem
(resp. a solution). A relation on P × S is assumed to exist, with the meaning
“has for solution”. A case is a pair (x, y) ∈ P × S such that x has for solution y.
This “has for solution” relation is not completely known to the system. However,
it is assumed that some cases (xs, ys) ∈ P × S are known: they are the source
cases and constitute the case base CB.

CBR aims at solving a problem, called the target problem and denoted by
xtgt. A classical process model of CBR consists in (1) selecting k source cases
relevant to solve xtgt (retrieval step), (2) inferring a solution ytgt of xtgt by
reusing these source cases (adaptation step). If k = 1, step (2) is qualified as
single case adaptation. Other steps, not considered here, follow adaptation.

2.4 Analogical proportions

Following [13], an analogical proportion on a set U is a quaternary relation on U
denoted, for (a, b, c, d) ∈ U4, by a:b::c:d and read “a is to b as c is to d”, that
satisfies the following postulates:

– a:b::a:b (reflexivity);
– if a:b::c:d then c:d::a:b (symmetry);
– if a:b::c:d then a:c::b:d (central permutation).

On the set U = {0, 1} of the Booleans, the minimal analogical proportion
(according to the inclusion of quaternary relations) can be defined by

a:b::c:d if b− a = d− c

where the differences take their values in {−1, 0, 1}. Another analogical propor-
tion, called in the following Sheldon Klein’s proportion [5], can be defined by
|b− a| = |d− c|.

An analogical equation is an expression of the form a:b::c:? where ? is
the unknown. For the minimal analogical proportion on Booleans, solving this
equation consists in computing b − a + c: if this value belongs to {0, 1} then it
is the unique solution. Otherwise, b − a + c ∈ {−1, 2} and the equation has no
solution: the triples (a, b, c) such that a:b::c:? has no solution are (0, 1, 1) and
(1, 0, 0). By contrast, an equation a:b::c:? based on Sheldon Klein proportional
analogy always has a solution. If (a, b, c) = (0, 1, 1) then the unique solution is
0. If (a, b, c) = (1, 0, 0) then the unique solution is 1. Otherwise, the solution is
the same as for the minimal analogical proportion, i.e., b− a+ c.

Analogical proportions and analogical equations have been used in CBR in
(at least) two ways. First, when the problem and solution spaces are not the
same (P 6= S), a process called analogical extrapolation is applied (see e.g. [8]):
it consists in retrieving k = 3 source cases whose problem parts are in anal-
ogy with the target problem and then in solving the analogical equation given
by their solution parts. Second, when the problem and solution spaces are the
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same (P = S), a single case adaptation can be performed by solving an equa-
tion xs:ys::xtgt:? (see [7]). In the following, analogical proportions are used
according to this second way.

3 General approach

This section presents the general approach to propose an alternative to
OV2ASSION based on CBR. This approach outputs a partial segmentation, that
is, a segmentation with some “undecided” pixels, as described in Section 3.1.
Then, the problem setting is formulated in CBR terms (§3.2) and a CBR ap-
proach is proposed with a straightforward retrieval step (§3.3) and an adaptation
step based on analogical proportions (§3.4). Finally, the approach is evaluated
wrt OV2ASSION, from accuracy and computation time viewpoints (§3.5).

3.1 Partial Segmentations

A partial segmentation is a mapping PS : Dom → {0, u, 1} where PSij = 0 and
PSij = 1 have the same meaning as for segmentations and PSij = u means
that PS is undecided about the status of the pixel. For some computations in
this paper, u is replaced by the value 0.5. A partial segmentation PS′ extends
a partial segmentation PS means that, for every (i, j) ∈ Dom, if PSij 6= u then
PS′ij = PSij .

Now, in order to evaluate a partial segmentation PS1 proposed by the system
in comparison to a reference segmentation S2, the idea is to consider the values
DICE(S1, S2) for S1 in the set of segmentations that extend PS1. Following this
idea, the definition of pessimistic, optimistic and average Dice coefficients (the
latter being the average of the two formers) can be defined:

DICEpessim(PS1, S2) = min
{
DICE(S1, S2) | S1 extends PS1

}
(2)

DICEoptim(PS1, S2) = max
{
DICE(S1, S2) | S1 extends PS1

}
(3)

DICEavg(PS1, S2) =
(
DICEpessim(PS1, S2) + DICEoptim(PS1, S2)

)
/2 (4)

Pessimistic and optimistic Dice coefficients can be computed as follows. Let
S1,pessim and S1,optim be the segmentations extending PS1 such that, for (i, j) ∈
Dom:

S1,pessimij =

{
1− S2ij if PS1ij = u
PS1ij otherwise

S1,optimij =

{
S2ij if PS1ij = u
PS1ij otherwise

It can be shown that the pessimistic and optimistic Dice coefficients can be
computed according to the following equalities:

DICEpessim(PS1, S2) = DICE(S1,pessim, S2) DICEoptim(PS1, S2) = DICE(S1,optim, S2)
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3.2 Problem setting in CBR terms

It is assumed that a CNN has been trained on the images of a set of patients
and that it can be used on a new patient to propose segmentations. This CNN
is used in this approach as a black box:

CNN : scanner image of a slice 7→ proposed segmentation of this image

Now, let {image1, image2, . . . , imageN} be the set of scanner images of slices
for the new patient, at the level of the kidneys. The image indexes are ordered
from the top to the bottom: imagei is above imagei+1 (i ∈ {1, 2, . . . , N − 1}). In
this application, for the new patient, N = 136 (there is a variation of the value
of N depending on the size of the kidney which depends in particular on the
age of the patient). Only a sample {images | s ∈ IIMS} of images are manually
segmented, to lower the required expert time (IIMS is the set of indexes of the
images that are manually segmented). In this application, IIMS = {1+11k | k ∈
{0, 1, . . . , 12}}, so the required manual segmentation is about 30 to 45 minutes
of expert time. For s ∈ IIMS, two segmentations are available:

– The segmentation computed by the CNN and denoted in the following xs:
xs = CNN(images);

– The manual segmentation of images given by the expert and denoted in the
following ys.

The pair (xs, ys) is considered as a source case that encodes the experience of
correcting the CNN segmentation. So, the case base is CB = {(xs, ys) | s ∈ IIMS}.

Now, let IINMS = {1, 2, . . . , N} \ IIMS, the set of indexes of images for which
no manual segmentation is available. Let tgt ∈ IINMS and xtgt = CNN(imagetgt).
The objective is to find a segmentation ytgt of imagetgt by reusing CB, the
available experience on CNN to expert corrections in the context of the new
patient. For this purpose, a classical CBR approach with the retrieval of a single
source case and an adaptation of this case is considered.

3.3 Retrieval

In this application, the implemented case retrieval is straightforward: for a given
target problem xtgt with tgt ∈ IINMS, the source case (xs, ys) which minimizes
|s−tgt| is chosen. This choice is justified by the fact that the CNN segmentation
of the tumor varies rather smoothly according to the slice vertical position.

3.4 Adaptation using an analogical proportion

Given the target problem xtgt and the retrieved case (xs, ys), the adaptation
consists in considering that the proposed solution ytgt to xtgt is such that xs is
to ys as xtgt is to ytgt. In other words, the expert “correction” from xs to ys is
applied on xtgt. The implemented approach works at the pixel level, meaning
that it is based on the analogical equations xsij:ysij::x

tgt
ij :? for each (i, j) ∈ Dom.
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xs ys xtgt ytgt experttgt

Fig. 2: Example of adaptation based on the proposed approach, with segmenta-
tions xs, ys and xtgt, and partial segmentation ytgt. In a (partial) segmentation
S, Sij = 1 (resp. Sij = 0) is represented by a white (resp. black) pixel. For the
partial segmentation PS = ytgt, PSij = u is represented by a green pixel. xs and
ys correspond to slice number s = 90, xtgt, ytgt and experttgt correspond to
slice number tgt = 85, respectively corresponding to what the CNN proposes,
how the CBR approach corrects it and what the expert gives.

The minimal analogical equation is chosen, thus such an equation may have no
solution. Therefore, the result of this adaptation is only a partial segmentation.

Formally, adaptation is computed this way:

– For each (i, j) ∈ Dom,
• Solve the analogical equation xsij:y

s
ij::x

tgt
ij :?.

• If it has no solution, then ytgtij ← u.
• Otherwise, let d be the solution of this equation.2 Then ytgtij ← d.

– The partial segmentation ytgt is proposed as a (partial) solution to xtgt.

Figure 2 presents an example of the outcome of such a process.

3.5 Evaluation

The data for this evaluation are constituted by the scanner images of 14 patients
with about 100 images per patient and an expert segmentation for each image.
A CNN was trained on the images and segmentations of 13 patients. For the 14th

patient, the expert segmentations of 1/11 images where kept, with a constant
gap between them, which has constituted the case base. The approach was tested
on the 10/11 images remaining.

Figure 3 and Table 1 present the results with pessimistic, average and op-
timistic 3D Dice coefficients, compared to the 3D Dice coefficients for the seg-
mentations provided by the CNN and by OV2ASSION. The figure presents these
results slice by slice, for slices number 40 to 100 (for the other slices, the number
of pixels for the predicted and expert segmentations that belong to the tumor is
very low, making the Dice coefficient of little relevance). The table presents these
results with 3D Dice coefficients, comparing predicted and expert segmentations
on the tumor as a whole.
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Fig. 3: Evaluation of the approach, slice by slice.

Approach DICEpessim DICEavg DICEoptim Calculation time (s)
OV2ASSION — 0.9489 — 762 + 209 = 971
proposed approach 0.8806 0.8974 0.9143 299 + 473 = 772
CNN — 0.8648 — 299

Table 1: Dice evaluation and calculation time of the general approach. For ap-
proaches without undecided pixels (CNN and OV2ASSION), the values DICEavg
and DICE are equal. The computation time does not include the CNN training.

The initial CNN training (with 200 epochs, and with 16 as batch size) took 2
hours and 42 minutes and the segmentation 5 minutes (this time is common to
the three approaches). As indicated in Table 1, the computation on the images
of the new patient take 299 seconds with the trained CNN, 772 seconds with our
proposed approach (written in Python), and 971 with OV2ASSION.3

This shows that the simple case-based approach presented in this section
actually improves the output of the CNN thanks to a sample of additional seg-
mentations, but that it is still overcome by the OV2ASSION approach using the
same sample (and using a little bit more time). It also shows that the choice of
values for undecided pixels could improve the approach, which is studied in the
next section.
2 With the chosen analogical proportion, the solution, when it exists is unique.
3 All these computations have been made on the Mesocenter of computation of
Franche-Comté, equiped of processor Intel(R) Xeon(R) Gold 6126 CPU @ 2.60GHz
and Nvidia Volta V100 GPU.
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4 Improvements of the approach based on post-processing
techniques

This section presents some ways to improve the approach of Section 3 and ends
with an evaluation.

4.1 Two local strategies for choosing a value for undecided pixels

An analogical equation a:b::c:? on Booleans with minimal analogical proportion
has no solution d for (a, b, c) ∈ {(0, 1, 1), (1, 0, 0)}. Two ways of proposing a
solution are considered.

First, considering the Sheldon Klein proportion gives the solution d = 1− c.
Second, considering that the patterns for minimal analogical proportions are

(u, u, v, v) and (u, v, u, v) (u, v ∈ {0, 1}), the solution requiring the least mod-
ifications to these patterns are d = 1 for (a, b, c) = (0, 1, 1) and d = 0 for
(a, b, c) = (1, 0, 0), i.e., d = c for both cases (where the considered modifications
are flips of Boolean values). This strategy is called conservative approach in the
following.

Therefore, these two strategies give the opposite proposition for changing
a value ytgtij = u to ytgtij ∈ {0, 1}. These two strategies have been compared,
following the same evaluation protocol as in Section 3.5, and gives a significant
preference for the second one (cf. the evaluation, at the end of this section).

4.2 Use of convolution masks

The approaches presented and compared in Section 4.1 are limited by the fact
that they do not take into account the context, i.e., the segmentations of the
pixels that are around an undecided pixel. For example, it seems natural to
consider that an undecided pixel surrounded by pixels that are all 0s or all 1s is
likely to be associated with the same common value. More generally, the strategy
consists in choosing the “main tendancy” of these pixels. For this purpose, a
convolution mask is used. By contrast to the CNN approach, the weights of such
a mask are not learned but are chosen parameters.

For the sake of simplicity of the presentation, in this section, for a partial
segmentation PS, if (i, j) is an “out of bound index” pair (i.e., (i, j) 6∈ Dom), then
PSij = u (the undecided value u is assimilated to u = 0.5). 3 types of convolution
masks were tested, with different values of their weights, knowing that the results
(described in§4.4) are poorly sensitive to the choice of the weights.

Use of a 3 × 3 convolution. A 3 × 3 convolution mask is a 3 × 3 matrix M
of real numbers, assumed to be indexed on {−1, 0, 1} (i.e., Mkl is defined for
−1 ≤ k, ` ≤ 1). Following a symmetry principle, the masks considered here

are of the form

wC wB wC
wB wM wB
wC wB wC

, thus are parametrized by wM (the weight at
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the middle), wB (the weight at a border) and wC (the weight at a corner).
Moreover, the mask is assumed to be normalized: the sum of its elements is
wM + 4wB + 4wC = 1.

Given a partial segmentation PS and a mask M, a new partial segmentation
PS′ is defined as follows, for (i, j) ∈ Dom:

with σ =
∑

(k,`)∈{−1,0,1}2
Mk` × PSi+k,j+`, PS′ij =


0 if σ < 0.5

u if σ = 0.5

1 otherwise

This partial segmentation PS′ is then proposed as a result.
Different values of the parameter triple (wM , wB , wC) were considered. In

order to have PS′ extending PS, the choice wM > 0.5 was made: when PSij = u,
this weight is of no consequence on the decision made and when PSij 6= u then
PS′ij = PSij . As a consequence, wM > 4wB + 4wC : the weight of the middle is
greater than the weight of all the other pixels (borders and corners). Moreover,
the relation wB > wC was made, since the non-corner borders of the mask being
closest to the middle that the corners, they have more importance. With these
constraints, various values of the parameter triple were chosen, given similar
result. The evaluation was made with the triple (0.6, 0.075, 0.025).

Use of a 5× 5 convolution. A 5× 5 convolution mask was used in a similar way.
The convolution mask is based on 6-tuple of weights (because of the symmetry,
there are only 6 different values and they are ordered in the tuple by decreasing
distance to the center). The evaluation was carried out with the weight tuple
(0.6, 0.05, 0.025, 0.025, 0, 0).

Use of a 3 × 3 × 3 convolution. A 3 × 3 × 3 mask is the fusion of three 3 × 3
masks obtained on the target slice and the slices preceding and following this
target slice. This construction supposes beforehand to have obtained the partial
segmentations of all the target slices. The 3D convolution mask is based on a
4-tuple of weights (because of the symmetry, there are only 4 different values
and they are ordered in the tuple by decreasing distance to the center). In the
experiment, the chosen tuple was (0.6, 0.0333, 0.0083, 0.0125).

4.3 Use of closures

The idea has emerged to use convex closures for improving the result and then,
more generally, to use other closure functions.

Convex closure and other closures. Given a set X of points of the plane, the
convex closure (also called convex hull) of X, is the minimal set of points CC(X)
such that for every pair (P,Q) ∈ X2, the segment [P,Q] is included in X.
Formally:

CC(X) =
⋃{

[P,Q] | (P,Q) ∈ X2
}
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Fig. 4: Example of post-treatment using the rectangular closure. Left: ytgt pro-
vided by the approach of §3. Center: correction of ytgt using rectangular closure.
Right: expert segmentation.

The function CC belongs to the family of closure functions. A closure function
C on sets of points X is a function that is extensive (X ⊆ C(X)), non-decreasing
(if X ⊆ Y then C(X) ⊆ C(Y )), and idempotent (C(C(X)) = C(X)).

Another example of closures on sets of points of the Euclidian plane is C∆,
where ∆ is a line of the plan: for a set of points X of the plane, C∆(X) is defined
in a similar way as CC(X), except that the segment [P,Q] has to be parallel
to ∆. In particular, given an affine coordinate system Oxy, horizontal closures
(resp. vertical closure, rising diagonal closure, and downward diagonal closure) is
the closure C∆ where ∆ is defined by the equation y = 0 (resp. x = 0, y = x and
y = −x). A final example of closure is the rectangular closure, i.e., the smallest
rectangle whose edges are parallel to the axis that contains all the values of a
set of points X.

How to use closures for the post-treatment. The notions of closures are de-
fined on sets of points of the plane, but are applied on images, making the
approximation that a pixel corresponds to a point. Moreover, a segmentation S
is assimilated to the set of pixels (or points) (i, j) ∈ Dom such that Sij = 1:
S =

{
(i, j) ∈ Dom | Sij = 1

}
, hence the notion of closure C(S) of a segmentation

S (given a closure function).
Now, given three segmentations xs, ys and xtgt (corresponding to a source

case (xs, ys) and a target problem xtgt), the approach of section 3 (possibly with
some post-treatments of the current section) provides a partial segmentation
ytgt. For each of these three segmentations, a closure can be computed with a
closure function C, hence the three segmentations C(xs), C(ys) and C(xtgt). Then,
a partial segmentation PS can be found by applying the section 3 approach on
these three segmentations: PSij is obtained by solving the analogical equations
C(xs)ij:C(ys)ij::C(xtgt)ij:? (for any (i, j) ∈ Dom). This partial segmentation
PS is used as a prediction of the closure of the desired segmentation. Thus, for
(i, j) ∈ Dom, it is expected that ytgtij ≤ PSij . Therefore, the situation ytgtij > PSij
is considered to be abnormal and, when it occurs, ytgt is changed into PSij .
Figure 4 shows that a closure can remove distant noisy pixels. This approach
has been tested for horizontal, vertical, rising diagonal, downward diagonal, and
rectangular closures.
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Method DICEpessim DICEavg DICEoptim Computation time (s)
OV2ASSION — 0.9489 — 762 + 209

(b) conservative approach — 0.9129 — 299 + 473 + 471
(c) 5× 5 convolution 0.9078 0.9078 0.9078 299 + 473 + 643
(c) 3× 3 convolution 0.8984 0.9056 0.9128 299 + 473 + 496
(c) 3× 3× 3 convolution 0.9010 0.9028 0.9045 299 + 473 + 711
(a) general approach 0.8806 0.8974 0.9143 299 + 473
(d) rectangular closure 0.8713 0.8904 0.9095 299 + 473 + 1644
(d) horizontal closure 0.8635 0.8829 0.9024 299 + 473 + 1626
(d) vertical closure 0.8630 0.8828 0.9026 299 + 473 + 1632
(b) Sheldon Klein — 0.8820 — 299 + 473 + 487
(d) rising diagonal closure 0.8621 0.8815 0.9010 299 + 473 + 1573
(d) downward diagonal closure 0.8612 0.8808 0.9005 299 + 473 + 1385

CNN — 0.8648 — 299

(a) General approach, providing a partial segmentation (cf. §3).
(b) Using two local strategies for choosing a value for undecided pixels (cf. §4.1).
(c) Using convolution masks (cf. §4.2).
(d) Using horizontal, vertical, diagonal and rectangular closures (cf. §4.3).

Table 2: Evaluation of various improvement strategies.

4.4 Evaluation

Table 2 presents an evaluation of the different segmentation approaches: CNN,
OV2ASSION, the case-based approach of Section 3, and the improvements of
this approach proposed in the current section.

The lines are ordered by decreasing 3D DICEavg. For these data, the best
result, according to DICEavg is obtained by applying the general approach of
Section 3 followed by the conservative choice of pixels described in Section 4.1.
It is noteworthy that (1) for other segmentation problems (e.g. kidneys) this
order may be different and (2) some of the other approaches may be improved.

For this first version of our approach, the results are just over the middle
between CNN and OV2ASSION ones, but there is room for improvement, as is
detailed in the conclusion of the paper. Every approach considered here uses the
CNN computation (that requires 2 hours and 42 minutes of computing time).

The required computing times of our best approach and OV2ASSION are
similar (1243 s for the former and 971 s for the latter, knowing that the former
has been programmed in Python and the second uses a highly optimized library).
Now, if the expert just want an improvement of the CNN segmentation of one
slice (at at time), as a starting point for manual segmentation, our approach
needs only about 1243/100 ' 12 s.

5 Conclusion

This article has presented a first case-based approach to improve CNN-based im-
age segmentations given a new sample of expert segmentations from the current
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context, i.e., in the application, in the context of a new patient suffering from
nephroblastoma. This approach improves the result of the CNN but gives still
less accurate results than the OV2ASSION approach that consists in re-running
the CNN with the additional segmentation sample.

This work gives encouraging results, but has to be improved. Other directions
of work follow this study.

First, it can be noticed that the approach presented in this paper relies only
on segmentations (given by the CNN and the experts). By contrast, the CNN
and the OV2ASSION system use also the images taken from the scanner, with
gray levels. A future work aims at using these images for improving the approach.
This can be done as an additional post-processing technique for the choice of
undecided values for segmentation. This can be done also by using analogical
proportions directly on gray levels. More precisely, the idea is as follows. With
the current approach, the adaptation consists in solving the analogical equation

xs:ys::xtgt:?

pixel by pixel. Now, if the mapping of image, an image described by gray levels,
into a segmentation S is denoted by (image 7→ S) then, the adaptation would
consist in solving the analogical equation

(images 7→ xs):(images 7→ ys)::(imagetgt 7→ xtgt):?

and obtaining a mapping (imagetgt 7→ ytgt) from which a segmentation would
be obtained. How to actually realize this idea is still a challenging question.

A second work consists in studying the use of geometrical moments of a seg-
mentation, i.e. the area of the set of tumor pixels, its centroid and its orientation.
The principle is that the geometrical moments can be predicted by analogy (e.g.
by solving in R the analogical equation area(xs):area(ys)::area(xtgt):?) and
to use these predictions to modify ytgt (e.g. by making choices for undecided
pixels based on the difference between the predicted area and area(ytgt)).

Third, it is planned to use the interpolation approach presented in [8] to
improve the results. This approach is based on the retrieval of two source cases
(xr, yr) and (xs, ys) such that xtgt is between xr and xs. Then, it is plausibly
inferred that the expected segmentation ytgt has to be between yr and ys (at a
pixel by pixel level or globally).

Fourth, the search for a smart combination of these approaches remains to
be studied.

Finally, these approaches will be tested for other anatomical structures which
still challenge the segmentation using CNN and OV2ASSION: kidneys, veins,
arteries, and cavities.
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