Data Synchronization in Distributed Simulation
of Multi-Agent Systems

Paul Breugnot Bénédicte Herrmann Christophe Lang
Laurent Philippe

FEMTO-ST institute, Univ. Bourgogne Franche-Comté, CNRS,
Besancon, France

Abstract

Modern Multi-Agent System simulations may involve millions of
agents that are simulated over an extended period of time in order to
better catch real world emergent properties. In this context, the usage of
distributed computing resources may raise single machine limits both in
terms of available memory and execution time. Distributing a simulation
however implies lots of complex and specific issues as the data synchro-
nization issues that we tackle here. Based on an interface that allows to
develop models independently of the distribution, we propose the defi-
nition of synchronization modes, some inspired from existing platforms,
other providing new features such as remote interactions. Since each mode
comes with its pros and cons, guidelines are provided to help developers
to find the best compromise for the distributed implementation of a model
or a simulation platform. The performance of each mode is discussed and
evaluated using a classical epidemiological SIR model.

Keywords: Multi Agent System Distributed Simulation High Perfor-
mance Computing Data Synchronization

1 Introduction

Multi-Agent System (MAS) simulation is used in various fields such as biology,
epidemiology, economics, sociology, energy management or traffic simulation. In
any case, simulating real world phenomena might require the microscopic simu-
lation of millions of agents on a large time scale: for example, EURACE [DvD08]
aims at simulating the economic system at the scale of Europe, and the purpose
of the ChiSIM [MCO™18| model is to simulate the propagation of an epidemic in
the city of Chicago at the individual scale. Such large scale simulations usually
cannot be handled on a single machine, due to available memory and execution
time limitations. The distributed execution on High Performance Computing
(HPCQC) resources can be a solution to raise those limits since the intrinsic paral-
lelism of MAS makes them good candidates to benefit from such architectures.
On the other hand, the requirement for numerous and stochastic interactions
among agents or with the environment, that become remote when agents are
distributed, raises numerous issues since agents do not have a direct access to
each others’ memory: the only way to distribute information is through explicit

message exchanges. Solving those issues in the context of MAS simulation is

especially difficult considering the fact that MAS modelers are not expected to

be HPC experts.

Several platforms, such as Repast HPC [CN12], D-MASON [CSS16] or
FLAME [CWG™12|, among others [Rubl4l, BGLS17, BTTY, STLI3|, provide
solutions to issues related to agent modeling and execution on distributed plat-
forms, in terms of communication scheme, load balancing or time synchroniza-
tion. They however lack of data synchronization features to correctly manage
remote interactions and the user is generally required to adapt his model to the
platform, sometimes preventing the simulation of models with strong or specific
constraints. The exchange of data with remote agents is indeed a critical fea-
ture that need to be solved efficiently in order to find a compromise between
implementation complexity, performance, and model constraints.

This paper brings the following contributions:

e a formal definition of the data synchronization problem, with the proposition
of a distribution independent interface and a generic and extensible specifica-
tion of a synchronization mode concept.

e the definition and implementation of synchronization modes, unifying choices
of other platforms, and introducing modes allowing remote modifications.

e a theoretical analysis of each mode, in terms of interaction rules and repro-
ducibility levels, and a performance analysis based on an SIR model.

Following this introduction, data synchronization issues and their manage-
ment within existing platforms are presented in the next section. The definition
of synchronization modes and their analysis is then provided, and finally the
performances of each mode are assessed using an SIR epidemiological model.

2 Data Synchronization in Distributed MAS
Simulations

In a MAS simulation, allowed interactions, message exchanges or execution
policies usually depend on the model definition [MS12]. More generally, MAS
modeling techniques, supported by the simulators (NetLogo, Repast, MASON;,
GAMA...) imply constraints on the simulated models. Because of the dis-
tributed memory issues, distributed simulators usually constrain even more the
models.

On HPC systems, the distribution of a MAS simulation consists in assigning
agents and environment parts to a set of processes running on different nodes.
This assignment is called agent partitioning. We define agents assigned to a
process as local agents from this process. In order to allow remote interactions,
local agents can access representations of agents executed on remote processes,
that we call distant agents. Representations of distant agents are generally
built according to the local agents perception fields, that can be considered as
a geographical area of interest, or as neighbors in a graph.

In [BHLP21] authors show that different models might have different needs
in terms of synchronization policy to properly run on a distributed architecture.
For example, agents in a Flocking model only need to read their neighbors’
positions. In consequence, it might be satisfying to read local agents’ positions
in place, and read distant agents’ positions from a copy imported at the end

of each time step. Another case is the Prey-Predator model where a predator
agent might try to eat a distant agent, i.e. a prey executed on another process.
According to the model rules, it means that (i) the prey state must be changed
on the prey’s origin process and (ii) it must be ensured that only one predator on
all the processes will be allowed to eat this prey. In consequence, it is necessary
to concurrently manage distant modifications within a time step.

Existing generic platforms supporting the distribution of models however
lack support for different needs. In Repast HPC [CN12], distant agents are up-
dated from their origin process at the end of each time step. The imported data
overrides any modification performed on a distant agent during the time step.
Local agents are directly accessed, and can be modified. D-MASON [CSS16]
also updates distant agents’ states at the end of each time step. But, in or-
der to improve reproducibility, agents read local agents’ data from the previous
time step, so that data access does not depend on the local or distant state of
agents. This might however imply severe limitations and the impossibility to
simulate some models. The FLAME [CWG™12| platform only allows agents
to communicate through a common message board, updated at the end of each
time step. This facilitates model distribution, since agents cannot directly ac-
cess other agents’ data, but concurrent modifications within the current time
step are not allowed.

Other works [SDHPT0, [IPRH™03| propose the definition of methods where
agents send action requests to a conflict resolver, that manages concurrency by
sending back action results once all requests have been received. Being able to
react to negative responses is however specific to some models. It fits in par-
ticular the Influence-Reaction [Mic07] modeling technique. Since the proposed
implementations require global synchronizations before conflict resolutions, to
ensure all requests are received for each agent, each agent must however wait
for the execution of all others to know the result of its request, which is costly.

3 Synchronization Modes

Even if existing platforms define synchronization techniques, motivations are
not always clear and proposed solutions might not fit the requirements of all
models. It is then the responsibility of the user to adapt his model to the
platform. For this reason we propose the synchronization mode concept based
on a generic data synchronization interface.

In the following we first characterize agent interactions, then we describe the
proposed interface that we use to specify synchronization modes.

3.1 Read and Write Operations

In order to provide a generic and meaningful interface to MAS modelers, de-
scribing agent interactions with read and write operations notably seems to
satisfy most model requirements, even if behaviors are not directly described
as such. For example, sending a message can be seen as a write operation in
a buffer from the sender, and a read operation in the buffer from the receiver.
In addition, the implementation of data synchronization in terms of read and
write allows us to rely on existing parallel and distributed data management
algorithms.

Table 1: Temporal Aspect of Interactions for Different Synchronization Modes

self local distant
Synchronization Mode write read write read write
GhostMode T T T T-1 X
GlobalGhostMode T+1 T-1 X T-1 X
HardSyncMode T T T T T
PushGhostMode T T T T-1 T+1

PushGlobalGhostMode T+1 T-1 T+1 T-1 T+1

It can then be observed that a fundamental aspect of synchronization is the
temporal aspect of read/write operations. An agent executed at time step T'
can read data from time steps T or T — 1, and write data to time steps T or
T+ 1. A read at time T — 1 corresponds to an access to a ghost copy, while a
read at time T" means that modifications performed by writes at time T" will be
perceived. A write at time T means other agents performing reads at time T
will be able to perceive the modifications during the current time step, while a
write at time T+ 1 is only accessible at the next time step. Write operations
can also be prohibited in some cases.

Note that each operation has to specify the target agent with which an agent
interact: (i) self: the target agent is the agent itself, (ii) local: the target agent
is executed on the same process as the executed agent, (iii) distant: the target
agent is executed on another process than the executed agent.

Then, using these observations, we can illustrate the concept of synchroniza-
tion modes with several propositions that support different model specificities.
In the GhostMode, which corresponds to the RepastHPC interaction implemen-
tation, the synchronization consists in allowing writes only on local agents while
distant agents are read from a ghost copy of the system state at the previous
time step (T'—1). In the GlobalGhostMode, which corresponds to the D-MASON
implementation of interactions, local and distant agents must always read other
agents’ data from a ghost copy. Finally, we define the HardSyncMode that
allows concurrent and remote reads and writes, the strongest synchronization
requirement.

Considering this, the previously introduced Flocking model might be sim-
ulated using GhostMode or GlobalGhostMode, while the PreyPredator model
should be simulated using the HardSyncMode. Table [T] summarizes the tem-
poral aspects of the proposed synchronization modes and others that will be
discussed later in this section.

3.2 Data Synchronization Interface

Implementing data synchronization may turn out to be difficult for a model

developer. For this reason, we propose the definition of a data synchronization

interface, independently of the platform specification, in order to:

1. Propose a generic interface to implement models, independently of distribu-
tion or synchronization requirements.

2. Define a common specification, to characterize existing synchronization

modes and to define new ones. This allows to theoretically compare the

properties of each mode, and to provide meaningful benchmarks.
This interface is based on five functions, inspired from lock mechanisms:
read (Agent agent), release_read(Agent agent), acquire(Agent agent),
release_acquire(Agent agent) and synchronize(Model model).
They allow to define protected blocks of code in which it is safe to call
any existing agent method, rather that defining atomic read/write operations
for each piece of data an agent can possibly own. In consequence, the only
adaptations required from the user is to wrap instructions that access or modify
agent data with the following guards:
read(Agent agent), release read(Agent agent) : Any data can be safely
read from the specified agent between read() and release_read() calls.
How the internal data is updated (or not), i.e. which data is actually read,
depends on the implemented synchronization mode.

acquire(Agent agent), release_acquire(Agent agent) : The acquire()
operation gives to the calling process an exclusive access to the specified
agent, so that any modification, considered as write operations, can be
performed on the agent until release_acquire() is called. The actual
behavior of those methods is also implementation defined, and does not
require to take modifications into account.

synchronize (Model model) : This method is called from each process once it
has finished to execute its local agents at the end of each time step.

Using this platform independent interface we can specify the implementation
of synchronization modes. The implementation of each method then defines the
properties supported by a synchronization mode, but must be provided in any
case, even if some methods have no effect. Using this generic interface allows
to develop a model without altering its implementation with synchronization
dependent code and to transparently apply different modes on the same model.

3.3 Specification of Proposed Modes

Thus we provide some synchronization mode specifications that platform devel-
opers might implement according to their needs, independently of the simulation
environment. This requires that some predefined distribution specific features,
not discussed in this work, are provided:
1. Methods to query the neighbors of each local Agent. The neighbors might
be local or distant, so that the agents’ neighborhoods are properly pre-
served [BHLP21]. The neighborhood relation is model dependent (neigh-
bors in a graph, agents in the Moore neighborhood, agents in a perception
radius. . .).
2. Methods to query the complete list of local and distant agents on the
current process within a Model.
3. A method to query the process on which each distant Agent is executed
(for local agents, the method returns the current process).
Even if implementation choices are up to the developer, the behavior of each
method of the interface for each mode should comply with the statements below:

GhostMode. read() and acquire() immediately return the local agent
state, for both local and distant agents. The synchronize() method updates
distant agents from data fetched from their origin process. In consequence, only
distant agents are accessed from a ghost copy.

GlobalGhostMode. The read() method always returns a ghost copy of the
agent, even if it is local. The acquire() method returns the local state of the
agent, to allow an agent to update itself, but should not be called on other
agents. The synchronize() method updates distant agents as in GhostMode,
and updates the ghost copy of each local agent with its current state.

HardSyncMode. Fetching up-to-date data from distant processes at each
read or write operation, and performing concurrent data modifications within
the time step, including on distant agents, is allowed. read() and acquire()
methods might hence fetch data from other processes. The acquire() method
must ensure an exclusive access upon return, while several processes are al-
lowed to simultaneously read() an agent. The release methods are used to
manage locks according to the well-known Readers-Writers problem. When a
distant agent is acquired, its complete state is imported on the current process
which can perform any modification on it since the access is exclusive. The
releaseAcquire() method then sends back the new agent state, in order to
update the agent on its origin process. Such design allows users to implicitly
perform any write operation on distant agents, without specifying any specific
action or message exchange protocol. Notice that this implies that read () and
acquire() methods might block even when performed on local agents, waiting
for distant processes to release them. The synchronize() method is not re-
quired to perform any data update, but should act as a synchronization barrier
so that it returns only when all processes have reached the synchronize () call.

PushGhostMode. Data access is managed as in GhostMode but modifications
on distant agents are not overridden at the end of each time step but sent
back to the origin process by the synchronize() method. A user specified
conflict resolution mechanism can be implemented to handle updates received
from several processes (including the process that owns the agent).

PushGlobalGhostMode. Read access and data updates are performed using
a ghost copy, as in GlobalGhostMode. The acquired local agents can however be
modified, and pushed back as in PushGhostMode.

It is worth noting that the final user, i.e. the MAS modeler, does not need to
know anything about the implementation details once a synchronization mode
has been successfully implemented within a simulation platform. From the user
point of view, the only requirement is to call the functions of the proposed in-
terface. For instance, in the HardSyncMode, he just has to call acquire() and
releaseAcquire() to modify any agent as if the agent behavior was performed
in a sequential shared memory environment. He does not even need to know
whether the modified agent is local or distant. All calls and concurrency man-
agement are automatically and transparently handled in the background by the
simulation platform.

3.4 Properties

Several properties can be deduced from the specification of modes, notably in
terms of allowed interactions and reproducibility. Such analysis might help
modelers to identify which mode can be used depending on their model require-
ments.

While GhostMode and GlobalGhostMode prevent write operations on distant
agents, only the HardSyncMode can handle read and write operations at time T’
on distant agents. Performing write operations only on local agents, as allowed

Table 2: Reproducibility Levels
Level Description

0 No reproducibility requirement.

1 Results are statistically reproducible.

2 Results are reproducible considering a fixed partitioning.
3 Results do not depend on agents execution order.

4 Results do not depend on partitioning.

by the GhostMode, can however be relevant in some contexts, for example when
the model is guaranteed to be distributed so that all agents at the same location
are assigned to the same process, as in RepastHPC. In that case, predators in
the Prey-Predator model could safely eat preys in their current location. How-
ever, such modes cannot handle the case when agents are required to perform
modifications within their Moore or Von Neumann neighborhood in a grid envi-
ronment for example, or when agents evolve in a continuous or even non-spatial
environment. In the Prey-Predator context, this would require predators to eat
distant preys executed on other processes, what is not allowed by GhostMode
or GlobalGhostMode. Moreover, since several predators might try to simultane-
ously eat a same prey within the time step, the HardSyncMode is the only mode
that can support such interactions. However, if the model rules state that preda-
tors try to eat preys and wait until the next time step to know if their attack
was successful, as in the Influence-Reaction scheme, the model can be simulated
using PushGhostMode or PushGlobalGhostMode. Also notice that the Flocking
model, that can be simulated with GhostMode or GlobalGhostMode, might also
be simulated using the HardSyncMode: in this case, the position of the distant
agents will be read directly from the distant processes, not from a local ghost
copy, what might be a behavior much closer to a sequential execution.

On the other hand, the reproducibility of simulations is directly influenced
by the temporal aspect of interactions. This criteria notably motivated the
D-MASON authors to implement a Global Ghost synchronization. Indeed, re-
producibility levels can be defined as specified in table It can be shown
that each level is a necessary condition to the next level. Note that the “fixed
partitioning” condition requires that a fixed count of processes is also used.

Agent interactions, and thus model results, clearly depend on agents ex-
ecution order when reads and writes are performed at time 7T, since agents
perceive modifications in the current time step only for agents executed before
them. In consequence, modes allowing such interactions cannot go beyond the
level 2 reproducibility. On the other hand, since reads in ghost data, i.e. at time
T — 1, do not depend on the execution order of agents, it is possible to reach
levels 3 and 4 using Global Ghost based modes. Notice that the ghost usage
is however not sufficient to guarantee such reproducibility levels, since random
number generation at the scale of each agent must also not depend on agents
execution order or partitioning. Providing this feature is actually not trivial,
and even impossible in some contexts. A solution, not discussed in this work,
as yet been implemented for grid based models in the FPMAS platform that we
use for the experiments.

4 Experiments

The objective of the presented experiments is to compare the synchronization
mode performance, using a reference model so as to give to the model developers
indications on the impacts of the chosen synchronization mode.

4.1 Experimental Settings

Experiments are based on the well known SIR epidemiological model. The
advantage of this model is that it can run properly with all the synchronization
modes introduced in this paper. It consists in a grid where agents randomly
move and perceive other agents in their Moore neighborhood at each time step.
At each time step, Infected agents can infect each of their Susceptible neighbor
with a probability 3, can Recover with a probability v, or die with a probability
1. Model sources and more detailed information can be accessed online [Bre22b].
From such model specification, two versions of the model can be implemented:
e A read-only version, where each agent performs a Bernoulli experiment of
parameter 3 with each of its Infected neighbor: if the result of at least

one is positive, the agent gets Infected.

o A write version, where Infected agents directly infect their Susceptible

neighbors with a probability 3.

The read-only version can run properly with GhostMode, GlobalGhostMode
and HardSyncMode, even if this might implicitly result in different interactions.
For example, in GhostMode, local agents already Infected within the time step
will be perceived as Infected, while distant agents Infected in the current time
step will still be perceived Susceptible until the next time step. In HardSync-
Mode, distant agents Infected in the current time step will immediately be per-
ceived as Infected, while in GlobalGhostMode all infections are only perceived at
the next time step. The write version could run properly with HardSyncMode,
PushGhostMode and PushGlobalGhostMode.

For the experiments we use the C++ FPMAS [Bre22a] platform, that al-
lows to transparently distribute MAS model simulations. The SIR model is
distributed using a grid based load balancing. Currently only the GhostMode,
GlobalGhostMode and HardSyncMode are implemented but PushGhostMode
and PushGlobalGhostMode could easily be implemented. While GhostMode and
GlobalGhostMode are relatively trivial to implement, the HardSyncMode intro-
duces a complex architecture to provide features that have not been encountered
in existing platforms. In consequence, some of the HardSyncMode implementa-
tion details within FPMAS are provided as a contribution. The solution is based
on a distributed client/server architecture. Each process is attached to a client
and a server instance. Each server handles requests to its local agents, while
the client sends requests to distant agents to other processes. When read()
or acquire() is called on a local agent, the local process possibly waits for
other processes to release it, while processing requests of other agents in order
to ensure progress. In order to prevent deadlocks, requests are performed using
non-blocking communications: while waiting for a response, the local process
keeps handling incoming requests. This allows a deadlock free single thread
HardSyncMode implementation, but other solutions based on multi-threading
could be designed. The synchronize() method then consists in handling in-
coming requests until all processes have initiated the synchronize () method,

Execution time of the SIR model Speedup of the SIR model

105 -
] —e— HardSyncMode (read-only) —e— HardSyncMode (read-only)
] GlobalGhostMode (read-only) 60 GlobalGhostMode (read-only)
. i —r— HardSyncMode (write) —y— HardSyncMode (write)
Ky —&— GhostMode (read-only) 50 4 —A— GhostMode (read-only)
§ —— Linear
@ .
w a 40
2 E
£ 10* o 2 304
Q
5]
2
3 20
aQ
x
w
10 o
0 -
T T T T T T T T T T T T T T
o] 10 20 30 40 50 60 o] 10 20 30 40 50 60
Number of cores Number of cores

Figure 1: Execution times (log scale) and speedups for a SIR model instance
with 1,000,000 agents on a 1500 x 1500 grid, with read-only and write versions.
The speedup is computed for each mode as % where T,, represents the execution
time with n cores.

i.e. all agents have been executed.

4.2 Results

We note that the objective here is only to provide a relative performance com-
parison of modes, so we do not compare the FPMAS HardSyncMode with the
RepastHPC GhostMode equivalent synchronization for example.

Execution times for a SIR model instance, depending on the number of cores,
are presented on figure [l Experiments were run on the local computing center,
on Intel Xeon 6126 processors running at 2.60GHz. Each measure is the average
of 10 runs of 1000 time steps with different seeds: execution time variations are
negligible. First we can observe that with the GlobalGhostMode the execution
time of the model with 1,000,000 agents on a 1500 x 1500 grid drops from
17 hours in sequential to 26 minutes using 64 processes, what illustrates the
point of using HPC resources to execute MAS simulations. The cost of the
GlobalGhostMode can be explained by the required copies of all agents at the end
of each time step. In comparison, the GhostMode only needs to perform copies
on distant agents, with the same amount of communication. The cost of the
HardSyncMode comes from the point to point communications that are required
for each read or write. As observed on the speedup curves, such communications
scales less than other modes, especially considering the fact that more cores
means more distant agents and so more communications since the number of
agent is constant. The GhostMode and GlobalGhostMode scale well because
they only require well balanced collective communications.

The results of the write version of the SIR model obtained with HardSync-
Mode on 64 processes are presented on figure [2| and shows the consistency of a
simulation performing distant writes with HardSyncMode. Even if this mode is
the most costly, we ran the simulation with 7,000,000 agents and a 3000 x 3000
grid on 64 cores for 500 time steps in 3 hours, which show that this mode can
practically be used.

1e6 SIR model results (HardSyncMode (write))

— Susceptible

Infected
—— Removed
—— Dead

Global Population

T T T T T
0 25 50 75 100 125 150 175 200
Time Step

Figure 2: Example results with 7,000,000 agents and a 3000 x 3000 grid on 64
processes (cropped to 200 time steps).

Note that the results are not limited to the chosen platform, and the relative
comparison of modes should hold independently of their implementation. FP-
MAS indeed allows to build meaningful benchmarks, since the implementation
of each mode is well optimized and the synchronization mode can be changed
at the model level, without altering the read and write SIR model implementa-
tions [Bre22b], preventing implementation bias.

5 Conclusion

To address the data synchronization issue in distributed MAS simulations, sev-
eral synchronization modes with different properties have been presented. The
generic definition of the problem allows to define a common interface to imple-
ment models using generic operations, without considering distributed memory
issues. This interface also allows to inject different synchronization modes in the
same model, without changing its implementation, what is particularly useful to
produce robust performance and results benchmarks. In this work, we notably
focused on a theoretical analysis of proposed modes, and on their performances.
It appears that even if the GhostMode does not provide the best properties in
terms of reproducibility and does not allow remote writes, it is very efficient in
terms of performance. On the other hand, the HardSyncMode is slower, but is
currently the only mode that provides concurrent and remote reads and writes
within the current time step. Finally, the GlobalGhostMode is relatively costly
and does not allow remote writes, but it is the only mode that can guarantee
reproducible results independently of the model distribution. Such considera-
tions show how the synchronization mode used to execute a MAS simulation on
HPC resources is relevant, and should depend on models and user requirements,
justifying the need for platforms that propose several well defined modes.

In our future works we plan to realize a detailed experimental analysis about
the model results and reproducibility, in order to study the synchronization
mode impacts on model results. Distinct or specific model needs might also mo-
tivate the definition of new modes, formally specified with the generic interface.

10

Acknowledgments

Computations have been performed on the supercomputer facilities of the
Mésocentre de calcul de Franche-Comté. FPMAS [Bre22a] and model
sources [Bre22b| are accessible online thanks to permanent identifiers provided
by Software Heritage.

References

[BGLS17]

[BHLP21]

[Bre22a)|
[Bre22b]
[BT19]

[CN12]

[CSS16]

[CWG*12]

[DvDOS]

Francisco Borges, Albert Gutierrez-Milla, Emilio Luque, and Remo
Suppi. Care HPS: A high performance simulation tool for parallel
and distributed agent-based modeling. Future Generation Computer
Systems, 68:59-73, March 2017.

Paul Breugnot, Bénédicte Herrmann, Christophe Lang, and Lau-
rent Philippe. A Synchronized and Dynamic Distributed Graph
structure to allow the native distribution of Multi-Agent System
simulations. In 2021 29th Euromicro International Conference on
Parallel, Distributed and Network-Based Processing (PDP), pages
54-61, March 2021.

Paul Breugnot. FPMAS Platform v1.5.1. FEMTO-ST, April 2022.
Paul Breugnot. FPMAS Virus Model v1.0. FEMTO-ST, April 2022.

Jim Blythe and Alexey Tregubov. FARM: Architecture for Dis-
tributed Agent-Based Social Simulations. In Donghui Lin, Toru
Ishida, Franco Zambonelli, and Itsuki Noda, editors, Massively
Multi-Agent Systems II, Lecture Notes in Computer Science, pages
96-107, Cham, 2019. Springer International Publishing.

Nicholson Collier and Michael North. Parallel agent-based simula-
tion with Repast for High Performance Computing. SIMULATION,
November 2012.

Gennaro Cordasco, Carmine Spagnuolo, and Vittorio Scarano. To-
ward the New Version of D-MASON: Efficiency, Effectiveness and
Correctness in Parallel and Distributed Agent-Based Simulations.
In 2016 Int. Parallel and Distributed Processing Symp. Workshops,
pages 18031812, May 2016.

L. S. Chin, D. J. Worth, C. Greenough, S. Coakley, M. Holcombe,
and M. Kiran. FLAME : An approach to the parallelisation of
agent-based applications. Rutherford Appleton Laboratory Technical
Reports, (RAL-TR-~2012-013), 2012.

Christophe Deissenberg, Sander van der Hoog, and Herbert Dawid.
EURACE: A massively parallel agent-based model of the European
economy. Applied Mathematics and Computation, 204(2):541-552,
October 2008.

11

[MCO™18] Charles M. Macal, Nicholson T. Collier, Jonathan Ozik, Eric R.

[Mic07]

[MS12]

[PRH*03]

[Rub14]

[SDHP10]

[STL13]

Tatara, and John T. Murphy. CHISIM: an agent-based simulation
model of social interactions in a large urban area. In 2018 Winter
Simulation Conference (WSC), pages 810-820, December 2018.

Fabien Michel. The IRM4S model: The influence/reaction principle
for multiagent based simulation. In Conf. on Autonomous Agents
and Multiagent Systems, AAMAS ’07, pages 1-3, Honolulu, Hawaii,
May 2007. ACM.

Philippe Mathieu and Yann Secq. Environment updating and agent
scheduling policies in agent-based simulators. In Proceedings of the
4th International Conference on Agents and Artificial Intelligence,
volume 1, pages 170-175. SciTePress, 2012.

Konstantin Popov, Mahmoud Rafea, Fredrik Holmgren, Per Brand,
Vladimir Vlassov, and Seif Haridi. Parallel agent-based simulation
on a cluster of workstations. Parallel Processing Letters, 13(04):629—
641, December 2003.

Xavier Rubio-Campillo. Pandora: A Versatile Agent-Based Mod-
elling Platform for Social Simulation. In Proceedings of SIMUL,
pages 29-34, January 2014.

David Scerri, Alexis Drogoul, Sarah Hickmott, and Lin Padgham.
An Architecture for Modular Distributed Simulation with Agent-
Based Models. In Int. Conf. on Autonomous Agents and Multiagent
Systems, volume 1, pages 541-548, Toronto, Canada, 2010.

Vinoth Suryanarayanan, Georgios Theodoropoulos, and Michael
Lees. PDES-MAS: Distributed Simulation of Multi-agent Systems.
Procedia Computer Science, 18:671-681, January 2013.

12

	Introduction
	Data Synchronization in Distributed MAS Simulations
	Synchronization Modes
	Read and Write Operations
	Data Synchronization Interface
	Specification of Proposed Modes
	Properties

	Experiments
	Experimental Settings
	Results

	Conclusion

