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Abstract

Cloud computing services are used to fulfill user requests, often expressed in the form of tasks and their execution in such environ-
ments requires efficient scheduling strategies that take into account both algorithmic and architectural characteristics. Unfortunately,
this problem is known to be NP-hard in its general form. Despite the fact that several studies have been published in the literature,
there are still interesting and relevant questions to be addressed. Indeed, most of the previous studies focus on a single objective
and in the case where they deal with a set of objectives, they use a simple compromise function and do not consider how each of
the parameters might influence the others. To this end, we propose an efficient task scheduling algorithm which is based on the
pollination behavior of flowers and makes use of both Pareto optimality principle and TOPSIS technique to improve the quality of
the obtained solutions. Both single and multiobjective optimization variants are investigated. In the latter case, three optimization
criteria are considered namely, minimizing the time makespan or schedule length, the execution cost, and maximizing the overall
reliability of the task mapping. Different test-bed scenarios and QoS metrics were considered and the obtained results corroborate
the merits of the proposed algorithm.
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1. Introduction

A new technology which has emerged in recent years and
has garnered significant interest for scientific applications is the
cloud computing platform. It is a simple consumer-provider
service model which permits flexible and scalable computer5

resources and permits their leasing on an elastic pay-per-use
model without any geographical restrictions. A cloud user can
access to these computing resources, which provide some ser-
vices as on-demand utilities, with minimal management effort
and interaction with the service provider. Most individuals,10

businesses and even government agencies are turning to cloud
technology due to the benefits this new paradigm offers, includ-
ing no upfront investment, reduced operating costs, rapid scal-
ability, unlimited storage and ubiquitous accessibility.

To effectively harness the potential of the cloud system, cloud15

service providers (CSPs) such as Amazon AWS, Google, Mi-
crosoft, Adobe, Accenture, IBM, and Cisco strive to meet the
diverse requirements of their clients by offering various services
that generally fall into three main categories, namely Software
as a Service (SaaS), Platform as a Service (PaaS), and Infras-20

tructure as a Service (IaaS). Saas offers complete applications
as an on-demand service, completely abstracted from the used
hardware and software. It is widely employed for conventional
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cloud applications such as online e-mail, documents editing ser-
vices, etc. PaaS provides a framework for developers in order25

to design or customize their own applications. The third type
of service model IaaS is the lowest paradigm of cloud service.
We mainly focus on the latter which consists of outsourcing the
physical infrastructure of the IT service (networks, storage and
servers) that can be rented by users according to their needs.30

Although the concept of cloud computing is a widespread
today, due to the various benefits and the different services of-
fered to users according to their needs and contracts, there are
many issues that need to be addressed by developing new tech-
nical solutions to handle new challenges and constraints. One35

of these main challenges, which reflects how well the tasks
are managed, and serves as a basis for cloud’s QoS, is task
scheduling. This is the process of assigning appropriately user-
submitted requests to the set of resources under specific con-
straints in IaaS environment. Further, due to the virtualiza-40

tion technology, the cloud gives the illusion of an infinite vir-
tual machines (VMs) with different configurations. These VMs
should be acquired or released from an IaaS provider based on
the applications needs. Therefore, careful attention is needed
for choosing the appropriate resources from a tremendous col-45

lection of computing resources in order to execute users’ ap-
plications. Consequently, to achieve better performances and
efficient utilization of these resources, novel and innovative
scheduling policies should be designed and implemented.
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In recent years, task scheduling problem has become a com-50

pelling process in cloud environments and has attracted many
scientists. For instance, in [1, 2, 3], the authors have presented
an overview of cloud computing and focused on the state-of-
the-art research challenges in which task scheduling is a ma-
jor concern. Unfortunately, this problem has been shown to55

be NP-Complete in its general form and heuristics and meta-
heuristices are needed to achieve near optimal solutions but in
polynomial time complexity [4]. Moreover, several variants of
this optimization problem have also been studied such as multi-
objective optimization [5, 6, 7, 8] where various conflicting cri-60

teria need to be considered at the same time, not only to meet
the different user demands, but also to improve the Quality of
Service (QoS) and the overall system performance according
to the Service Level Agreement (SLA). Due the fact that there
are two primary entities in the cloud: cloud consumers and65

cloud service providers, cloud customers transmit their tasks
to be processed and care more about the performance of their
application, while cloud providers rent out their resources to
cloud consumers and are more concerned with the efficient use
of their resources in order to maximize revenues. Thus, QoS70

constraints can be divided into two main categories: service
provider wishes and consumer desires.

Despite the fact that several works have been proposed by
different researchers to address the scheduling problem, most
of them have mainly focused on a single optimization objective75

such as time makespan [9], and when some existing works con-
sider other quality of service parameters, these studies rely on
a simple compromise function between the targeted objectives
which do not ensure efficient trade-off solutions that satisfy all
user objectives.80

In this paper, the focus is on dependent tasks scheduling
in IaaS cloud environment with heterogeneous resources and
various requirements of end-users. To this end, an efficient
task scheduling algorithm based on a Flower Pollination (FPA)
metaheuristic is presented. This approach generates a variety of85

possible planning solutions for the set of submitted tasks, and
its combination with both the Pareto based approach and the
TOPSIS technique, improves the quality of the obtained solu-
tions in contrast to what have been proposed in the literature.
This allows the user to select the preeminent solution according90

to his preferences while taking into account the cloud character-
istics. We formulate two tasks scheduling scenarios, depending
on the number of parameters involved to measure the cloud con-
sumers’ QoS. The first is a single objective scheduling that aims
to minimize the time makespan, while the second is a multiob-95

jective scheduling optimization that attempts to simultaneously
optimize three conflicting criteria, namely cost, makespan and
reliability.

The main contributions and novelties of the presented study
are summarized as follows:100

1. We use a bio-inspired pollination behavior of flowers to
design an efficient task scheduling algorithm in heteroge-

neous cloud computing environments.

2. A new multi-objective evaluation of the fitness function
is proposed. It consists of first generating the set of all105

Pareto-optimal solutions and then choosing the most inter-
esting solution using TOPSIS (Technique for Order Pref-
erence by Similarity to Ideal Solution). As far as we know,
this study is the first to investigate the combination of the
Pareto based approach as well as TOPSIS method with the110

pollination flower scheme to achieve high performances of
the task scheduling optimization problem addressed in this
work.

3. Both single and multi-objective task scheduling variants
are investigated. In the former case, a single objective115

optimization is formulated in which the time makespan
is considered as the only criteria. The obtained results
were compared to the traditional methods, namely Round
Robin, Max-Min and Min-Min. The second variant, which
refers to multi-criteria optimization, aims to orchestrate120

the trade-offs relationship between cost, reliability and
time makespan optimization and their impact on the global
performances of the proposed algorithm.

4. Based on CloudSim framework, series of test-bed scenar-
ios and QoS metrics were considered and the obtained re-125

sults show that our proposal achieves good performances
compared to its direct competitor, namely the aggregate
weighted sum technique that has been used in [10].

The rest of this paper is organized as follows: Section 2 re-
views the relevant techniques that have been proposed in the130

literature to deal with task scheduling in cloud computing envi-
ronments. The detail descriptions of the task scheduling model
and the problem statement are given in section 3. In Section 4,
we present in details the proposed algorithm which is made
upon the pollination behaviour of the flowers and the use of135

both Pareto optimality principle and TOPSIS technique. Sec-
tion 5 outlines the key features of the mutli-criteria based WSM
approach [10], which is, to our knowledge, the closest work to
the one presented in this work. We report in Section 6, series of
experimental results to asses the performances of our proposals.140

This paper concludes with a summary of the contributions and
some future work directions in Section 7.

2. Related works

Several techniques have been proposed in the literature to
deal with the problem of task scheduling in parallel and dis-145

tributed network systems. The proposed methods are designed
under various and non similar assumptions and have different
metrics for end-users QoS requirements. Furthermore, most
published multiobjective optimization algorithms transform the
multiobjective problem into a single-objective problem by us-150

ing a simple weighted sum approach for the considered objec-
tives to assess the algorithm’s performances.
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Bezdan et al. [11] developed an independent task scheduling
algorithm which is called BA-ABC. It is based on two meta-
heuristic approaches Bat and Bee colony algorithms. The ob-155

jective is to assign the submitted tasks to the virtual instance
types by Bat’s hybrid optimization algorithm, where the explo-
ration phase of the Bat Algorithm (BA) is enhanced by the ob-
server bee search of Artificial Bee Colony (ABC) algorithm.
BA-ABC uses aggregation approach to optimize during the160

scheduling process the makespan and execution cost. The effec-
tiveness of BA-ABC was compared to four other optimization
algorithms and the obtained results showed that the authors’
proposal has a relative advantage over the compared algorithms.

In the work of Sardaraz et al. [12], a hybrid algorithm based165

on Particle Swarm Optimization (PSO) for scheduling scientific
workflows is proposed. The main idea of this algorithm is to re-
duce in a first step, the execution time in order to give higher
priority to the tasks in queu list and reduce both makespan and
execution cost in the second step. The algorithm also monitors170

load balancing for efficient use of cloud resources. The perfor-
mance of the proposed algorithm is validated through numer-
ical simulations with standard PSO, Genetic Algorithm (GA)
and specialized scheduling approaches based on PSO technique
such as PSO-DS [13] and GA-PSO [14]. A novel dynamic two-175

phase strategy based on Firefly Algorithm (FA) is proposed by
Adhikari et al. [15] for workflows scheduling. Based on the ag-
gregated approach, several conflicting objectives in IaaS cloud
were considered such as cloud server workload, makespan, re-
source utilization and reliability. First, this proposed strategy180

seeks to find a best server for each workflow that can fulfill its
requirements while balancing the loads and resource utilization.
Then a policy-based job assignment is used to allocate the jobs
to the appropriate set of VMs, which minimize the makespan
of the workflow while increasing the reliability of the cloud185

servers.

In a recent paper, Pirozmand et al. [4] designed a new hy-
brid algorithm, called GAECS, combining GA and the Energy-
Conscious Scheduling (ECS) model, which is a time- and
energy-aware technique for multi-objective task scheduling in190

cloud computing systems. The authors’ goal is to solve the
above problem by assigning tasks to processors that allow better
compromise between time makespan and energy consumption.
The performance of the proposed GAECS algorithm is ana-
lyzed using MATLAB and shows that it outperforms other com-195

pared algorithms in terms of accuracy. In [16], the authors de-
veloped a multi-objective evolutionary algorithm called Many-
Objective Genetic Algorithm Scheduler (MOGAS) to solve the
container scheduling problem based on a Non-dominated Sort-
ing Genetic Algorithm III (NSGA-III) [17]. The proposed200

scheduler distributes a batch of different tasks to a heteroge-
neous group of nodes. Various parameters such as availabil-
ity, load balancing, resource utilization, energy, and maximum
number of assigned tasks were considered and the experimen-
tal results corroborate the merits of the introduced algorithm205

compared to Ant Colony Optimization (ACO) scheduler.

Chakravarthi and Shyamala [18] have proposed a new ap-
proach to schedule dynamic concurrent workflows in cloud
computing environments. The proposed technique which is
called TOPSIS inspired Budget and Deadline Aware Multi-210

Workflow Scheduling (T-BDMWS) seeks to minimize execu-
tion cost, time makespan and improves VM’s resource utiliza-
tion while guaranteeing the deadline and the budget constraints
specified by the user. A weighted sum of cost, makespan
and data transfer time is used to determine the best resource215

among the available resources based on the task requirements.
The effectiveness of the T-BDMWS was compared with four
well-known existing algorithms such as Cloud-based Work-
flow Scheduling Algorithm (CWSA), Budget and Deadline
Constraint Heterogeneous Earliest Finish Time (BDHEFT) and220

Budget-Heterogeneous Earliest Finish Time (BHEFT). The
simulation results performed with CloudSim toolkit reveal
that the author’s proposal provides better results in terms of
makespan and cost-effective schedules. In the work of Medara
and Singh [19], an energy-efficient and reliability aware work-225

flow scheduling in a cloud environment (EERS) algorithm is
presented, which optimize the reliability of task workflows
while saving energy consumption. The performance of the
proposed technique was evaluated using two real-world scien-
tific workloads Montage and CyberShake, and the numerical230

results show that this approach surpasses the related existing
approaches, namely HEFT [20], EES [21], and REEWS [22].

By modeling the IaaS cloud and task workflows, Han et
al. [23] have developed an efficient heuristic named CMSWC
(Cost and Makespan Scheduling of Workflows in the Cloud)235

that aims to minimize execution cost and makespan of the
workflows simultaneously. The CMSCW algorithm follows
a two-phase scheduling: ranking and mapping. The latter is
designed to avoid exploring unnecessary resources for tasks,
which significantly reduces the search space. An effective re-240

source selection policy and optimized solution selection strat-
egy are designed by combining two approaches: the quick
non-dominated sorting approach and the Shift-Based Density
Estimation (SDE) based crowding distance in order to make
the solutions close to Pareto front. Extensive experiments on245

real-life workflows demonstrate that this strategy has better
performances in terms of makespan-cost tradeoff compared to
the concurrent approaches: FDHEFT [24], NSGA-II [25] and
MODE [26] for all the tested scenarios.

The authors in [27] have designed a new framework as whale250

optimizer algorithm (WOA) which mimics the social behaviour
of humpback whales. The main idea of the presented work
is to improve the workflow scheduling constraints and balance
the load among the used resources. The performances of pro-
posed WOA was evaluated as a multi-objective optimization255

problem, measured in terms of makespan, deadline hit and re-
source utilization. The authors’ proposal performed well com-
pared to other existing techniques such as Gray Wolf Optimizer
(GWO), PSO, ACO, GA. Abualigah and Diabat [28] have de-
veloped a new multi-objective task scheduling which makes use260

of AntLion Optimization (MALO) method. It uses local search
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technique and Differential Evolution (DE) strategy in order to
improve the exploitability of ALO and avoid being trapped in
local optima. Practical results show that the authors’ work
presents a significant improvement not only in terms of resource265

utilization and makespan but also in terms of convergence speed
of the optimization process.

A bi-objective model involving QoS and energy consump-
tion in Cloud Manufacturing (CMfg) is proposed by Yang et
al. [29]. It presents some improvements of original Multi-270

Objective Grey Wolf Optimizer (MOGWO) in order to increase
the efficiency of finding solutions for the Multi-Objective Ser-
vice Composition and Optimal Selection (MO-SCOS) problem.
The authors use the aggregate weighted sum approach between
a maximum QoS value and a low energy consumption during275

the service composition optimization process. The simulation
results illustrated that the improved strategies have good effects
on the performance compared to other multi-objective bench-
mark algorithms. To deal with heterogeneity and dynamicity
in cloud systems, a new approach which relies on an existing280

technique called Shortest Job First (SJF) is presented in [30].
Tasks are scheduled to minimize the energy consumption, CPU
usage and time makespan. The experimental study showed that
the proposed approach (DHSFJ) Following the comparison per-
formed between the authors’ work and other concurrent tech-285

niques such as First Come First Serve (FCFS), SJF and its vari-
ant heterogeneous HSJF showed that the introduced method of-
fers better performance in terms of makespan and energy con-
sumption due to the heterogeneity of both resources and work-
load.290

Menouer and Darmon [31] have designed a new scheduling
method in Docker Swarm, by combining the Spread and the
Bin Packing principles with TOPSIS technique. The aim of this
strategy is to select among a set of nodes that form a cloud in-
frastructure, the most suitable node to execute each container of295

the submitted users’ tasks, while achieving a good compromise
between three criteria: the number of containers executed, the
number of available CPUs and the size of the available mem-
ory. A hybrid bi-objective scheduling algorithm which com-
bines Cuckoo Search (CS) and PSO is proposed in [32]. It seeks300

to reduce both cost and maksepan value to generate task-VM
mapping in a heterogeneous cloud environment. It was shown
through simulations that the proposed approach improves not
only the time makespan and cost values but also the deadline
violation rate. Samriya and Kumar [33] focused on energy, mi-305

gration costs, and eminent resource utilization in cloud systems.
They introduced a hybridization of PSO and Fuzzy TOPSIS for
productive job scheduling. First, the available task and the num-
ber of VMs are optimized by the PSO algorithm. Then Fuzzy
TOPSIS solves the multi-objective job scheduling problem us-310

ing the weighted sum method for energy, cost and execution
time as the objective function. The experimental results con-
firmed that the authors’ scheduling approach provides higher
QoS compared to other algorithms PSO and GA.

In recent years, flower pollination algorithm has attracted the315

interest of researchers in various types of complex problems
such as in the field of engineering [34], geology [35], industries
for process control [36], medical sector for EEG signal denois-
ing [37], and so on. For instance, Gupta et al. [10] presented
a bi-objective optimization for independent task scheduling on320

virtual resources in the cloud. It is based on FPA optimiza-
tion algorithm, and compared to three other metaheuristic ap-
proaches PSO, GA and Gravitational Search Algorithm (GSA).
It uses an efficient pollen representation scheme and a dedicated
process to determine the task-VM mapping from a given pollen325

so that the makespan and the average cloud resource utilization
are optimized. The simulation results illustrate that the task
scheduling based on FPA is better than the compared concur-
rent metaheuristics approaches. However, the proposed work
lacks in terms of dynamicity as it deals only with static inde-330

pendent task scheduling and virtual machines.

The authors, in [38], have used a flower pollination algorithm
to deal with independent task scheduling in cloud systems. The
proposed technique, which is called Exploration-Enhanced FPA
(EEFPA), sustains QoS by considering only time makespan ob-335

jective. This study reveal that the FPA approach is not able to
discover the right section of the search space in the beginning,
due to lack of exploration power. To alleviate this, the authors
propose that in the first 30% of iterations, the worst individuals
in the population are removed and replaced with a new random340

solution. Compared to other methods, it was shown that this
technique is able to reduce the value of makespan and give a
better convergence speed. Recently, Walia et al. [39] presented
an energy-efficient scheduling algorithm (HS) which relies on
both FPA and GA algorithms. The aim is to distribute the re-345

sources among tasks with less energy. The authors’ study con-
siders resource utilization, completion time, energy consump-
tion, and cost of computation as performance metrics for ho-
mogeneous and heterogeneous cloud environments. The con-
ducted simulation performed using ASP.NET tool showed that350

the proposed algorithm is able to produce efficient task schedul-
ing and better resource management than existing algorithms
like GA and FPA. However, the HS fairness index value is less
than the prescribed threshold, which indicates a lack of fair-
ness in resources allocation. Table 1 shows a comparative anal-355

ysis of the existing state-of-art scheduling strategies recently
published, which are designed with various optimization tech-
niques.

To the best of our knowledge, none of the aforementioned
research works have considered three-dimensional (makespan,360

cost, reliability) optimization by employing the flower pollina-
tion scheme combined with the use of both of Pareto optimality
and TOPSIS multi-criteria technique as in this paper. The ob-
jective is to take advantage of each approach to improve the
overall performances of the task scheduling process in cloud365

computing environments in terms of the achieved trade-offs be-
tween cost, time makespan and reliability.
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Contributions Scheduling Type Parameters Simulation tool Year Ref

A method based on BA and diversification Task Makespan CloudSim 2020 [11]
of the ABC algorithm scheduling Execution cost

A hybrid algorithm based on the PSO Workflow Execution time CloudSim 2019 [12]
algorithm for scientific workflow scheduling scheduling Cost

Load balancing

A new dynamic strategy based on the Workflow Cloud server workload N/A 2020 [15]
Firefly algorithm scheduling Makespan

Resource utilization
Reliability

A new meta-heuristic method based on the Task Makespan MATLAB 2021 [4]
GA and the ECS model scheduling Energy

A multi-objective evolutionary algorithm Container Load balancing Swarmkit 2020 [16]
implemented based on NSGA-III scheduling Tasks assigned value

Resource utilization
Energy

A new approach to schedule dynamic Workflow Makespan CloudSim 2021 [18]
concurrent workflows in cloud scheduling Cost
environments Deadline

Resource utilization

An energy-efficient and reliability-aware Workflow Energy WorkflowSim 2021 [19]
scheduling algorithm scheduling Reiliability

A novel approach for optimizing cost and Workflow Makespan N/A 2021 [23]
makespan simultaneously scheduling Cost

New framework are introduced as whale Workflow Makespan CloudSim 2021 [27]
optimizer algorithm scheduling Deadline

Resource utilization

The hybrid Antlion optimization algorithm Task Makespan CloudSim 2021 [28]
with DE strategy scheduling Resource utilization

Improvements of the original MOGWO Manufacturing QoS value MATLAB 2020 [29]
task scheduling Energy

An improved SJF algorithm to handle Task Makespan CloudSim 2019 [30]
dynamic load in a heterogeneous cloud scheduling Energy
environment CPU utilization

Hybridization of the Spread and Bin Packing Containers Containers executed Grid5000 2019 [31]
principles using the TOPSIS technique scheduling Available CPUs

Available memory

Hybridization of Cuckoo Search and Task Makespan CloudSim 2019 [32]
Particle Swarm Optimization scheduling Cost

Deadline

Hybrid Fuzzy TOPSIS-PSO based scheduling Task Energy CloudSim 2020 [33]
approach scheduling Cost

Execution time
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Contributions Scheduling Type Parameters Simulation tool Year Ref

An efficient pollen representation scheme to Task Makespan MATLAB 2017 [10]
determine the task-VM mapping scheduling Resource utilization

Enhanced FPA for Task Scheduling in Cloud Task Makespan CloudSim 2021 [38]
scheduling

An energy-efficient hybrid algorithm that relies Task Completion Time ASP.NET 2021 [39]
on both FPA and GA algorithms scheduling Ressource utilization

Energy
Cost

Table 1: An overview of the related works.

3. Problem statement

Figure 1: Task scheduler in cloud environment [1].

A typical cloud computing model is outlined in Figure 1. As
illustrated, cloud service providers supply different types of vir-370

tual machine instances, distributed in servers or in physical ma-
chines depending on the availability of resources such as pro-
cessing capacity, storage, memory, bandwidth and other neces-
sary resources. In this model, users can lease VMs on demand
according to their needs. To this purpose, cloud users initiate375

various service requests to run their applications, as a collection
of tasks submitted to the scheduler through the CSP, that acts as
a mediator between the cloud user and the cloud scheduler. The
CSP provides all requested services to the users according to
SLA contract. In simple terms, the task scheduling process is380

made upon the following three steps [40]:

• Resource discovery: the broker discovers all available re-
sources in the system and collects the relevant information
such as capacity, processing cost, etc.

• Resource selection: the most appropriate resource is se-385

lected based on the task requirements and the resource
specifications.

• Task submission: the task is scheduled on the resource
that was selected according to the scheduling algorithm
decisions.390

A task scheduler must also take into account the dependen-
cies between tasks. A task can only be executed if its preceding
tasks have completed their execution. In the presented study,
a cluster scheduling is represented as follows: a set of clusters
defines the tasks as an application to be executed. It consists of395

a variable number of tasks that are executed either sequentially
or in parallel. The following assumptions are made:

(1) At any given time, each task must be processed on a single
selected resource, and each resource can execute several
tasks.400

(2) Each cluster has different number of tasks. We note that
there is no processing dependency between tasks in a clus-
ter. In other words, tasks within a cluster can be executed
in any order.

(3) The parent cluster must be executed before any other clus-405

ter begins execution. In other terms, the cluster designed
by c1 have to be completed before the one denoted by c2
can start its execution (see Figure 2).

(4) Some parameters must be pre-computed for each task on
each assigned resource.410

(5) Once the task has been processed, any interruption is ig-
nored.

An application is represented as a set of n clusters submitted
by an end user C = {c1, c2, ..., cn}, where each ci contains a
batch of tasks T = {Ti1,Ti2, ...,Tik}. Each Tik is defined by a415

pair (aik, lik), where aik denotes the arrival time of the user task
Tik and lik the length of the user task Tik. Consider a set of
m virtual machines S = {V M1,V M2, ...,V Mm}. Each virtual
machine V M j is associated with a tuple (s j, u j, r j), where s j is
the processing speed of the j-th virtual machine, expressed in420
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Figure 2: A simple application example.

Millions of Instructions Per Second (MIPS), u j is the unit price
of using the resource and r j is the reliability rate of the resource
that will be defined in this Section.

When designing an optimization algorithm for a particular
problem, we seek to optimize certain criteria. These criteria425

depend on the nature of the problem to be addressed. In this
work, the selection of VMs during the scheduling process is
evaluated based on three end-user QoS-based criteria, namely
makespan, execution cost, and reliability.

Makespan: it is the overall completion time required to com-430

plete the execution of all tasks. It is calculated as the difference
between the time of submission of the first task and the time of
receiving the results (the time when the last task is completed).
It is defined as follows:

Makespan = max j∈TS K
(
FinishT ime j

)
− mini∈TS K (S ubmissionT imei) (1)

where TSK is the set of tasks submitted to the scheduler for435

execution.

Cost: most cloud providers set prices for their services. In our
case, the total runtime cost is the sum of the individual costs
associated with the used VMs for all tasks. The usage cost for
a given instance is calculated by the bill function, which takes440

two inputs: the unit price of the resource, and the execution
time required to complete the task. It is formulated as follows:

Cost =
n∑

i=1

vmtime
i ∗ vmU price

i (2)

where n is the number of tasks in the application, vmtime refers
to the time a VM has executed a given task and vmU price is the
unit price of VM for executing a task.445

Reliability: it represents the probability that a task will be per-
formed successfully, without any resource failure. Our model
for measuring reliability is inspired from the one provided in
[41]. It is based on a failure rate λ which is an intrinsic prop-
erty of the resource taking values ranging from 10−5 to 10−7 as450

in [22]. The reliability is calculated by the following formula.

Reliability = exp
−

n∑
i=1

T E(Ti)∗λ j
(3)

where, T E(Ti) is the execution time of the task Ti and λ j is the
failure rate of the machine executing the task.

4. The proposed approach

In this section, we first give the definition of the studied prob-455

lem and then present our proposal. Let’s remember that our
main aim is to assign tasks to VMs in order to satisfy one or
more QoS optimization objectives. For this purpose, two dif-
ferent optimization problems are considered. First, we deal
with a single-objective where we aim at minimizing the time460

maskespan. To assess the performances of our algorithm, we
compare it to three known task scheduling algorithms which
are Round Robin [42], Max-Min [43] and Min-Min [44]. In
the second case, we address the multiobjective scheduling op-
timization in cloud environments. To this end, we use a bio-465

inspired pollination behavior of flowers to design an efficient
task scheduling algorithm. This approach was chosen due to
the fact that it is one of the best performing meta-heuristic ap-
proaches, with a high convergence rate compared to other meta-
heuristic approaches such as GA and PSO, which are widely470

recognized as the most significant references in the optimiza-
tion field [45]. As reported above, we focus on three criteria:
makespan, cost and reliability. The fitness function is calcu-
lated using Pareto-optimal front approach and TOPSIS method
due to their ability to obtain ideal solutions for local optima.475

A comparison was made against the aggregate weighted sum
technique used in [10] which is, as far as we know, the closest
work to the one presented in this paper. It consists of aggre-
gating the different QoS criteria mentioned above into a single-
objective as defined by equation (eq.4).480

F = w1 ∗ Makespan + w2 ∗Cost + w3 ∗

(
1

Reliability

)
(4)

where w = {w1,w2,w3} refers to the weight vector that reflects
the importance or user’s requirements with respect to each cri-
terion.

In order to optimize simultaneously diverse objectives which
are often conflicting and provide greater flexibility to the end-485

user based on his prescribed objective needs, a suitable com-
promise function that takes into account the considered crite-
ria parameters is needed to achieve efficient trade-offs between
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the targeted objectives in order to meets the user’s QoS re-
quirements. For this reason, aggregation solutions and multi-490

criteria decision methods such as TOPSIS are investigated with
different weights assigned to each objective. In this study,
we used two vectors, with different weights {0.5, 0.2, 0.3} and
{0.2, 0.5, 0.3}, corresponding respectively to the considered ob-
jectives {makespan, cost, reliability}. This means that we give495

more importance to the makespan objective in the first vector,
and to the cost in the second weight vector.

The detailed presentation of FPA, Pareto optimilaty based ap-
proach and TOPSIS technique are given in this section.

4.1. Flower pollination algorithm500

A bio-inspired flower pollination algorithm is originally pro-
posed in 2012 by Xin-She Yang [45]. It is inspired by the
pollination characteristics of flowering plants. The pollination
process can take two forms, biotic and abiotic, depending on
the mechanisms of pollen transfer. About 90% of flowering505

plants belong to biotic pollination, in which pollen is trans-
ferred through a specific pollinator such as insects, bats, birds
or other animals [45]. The second form has a limited occur-
rence because it does not require any organism. Wind, gravity
or diffusion in water contribute to transfer pollen and grass is510

an example for this type of pollination. In addition, pollination
can be done by self or cross pollination. The former, which
is also called local pollination, occurs when pollen from one
flower pollinates the itself or other flowers of the same plant
with the help of environmental factors [45]. Whereas the later,515

also known under the name of global pollination, occurs over
long distances when pollen is delivered to a flower from another
plant by direct or indirect intervention of pollinators following
Levy’s flight behavior [46].

From biological evolution point of view, the main objec-520

tive of flower pollination is the optimal reproduction of plants
through the survival of the fittest flowers in the flowering plants
[45].

During the optimization process, the exploration of the
search space of the FPA algorithm, which we study in this525

work, is done by biotic and cross pollination where the move-
ment of the pollen is represented by the Markovian stochastic
Lévy flight process. The latter is a random walk interspersed by
long jumps from its current position according to a power law,
based on a random step of the Lévy distribution to effectively530

mimic the characteristic of long distance movement of insects.
Therefore, we can idealize the characteristics of the pollination
scheme, flower constancy and pollinator behavior based on four
main rules listed below:

• Rule 1: biotic and cross-pollination acting as a global pol-535

lination process via Levy flight.

• Rule 2: abiotic and self-pollination are considered as local
pollination.

• Rule 3: consistency of flowers may be involved due to the
similarity of two flowers.540

• Rule 4: local pollination (exploitation) and global pollina-
tion (exploration) are controlled by a switching probability
p ∈ [0, 1].

Based on these four rules, the main steps of the standard FPA
algorithm are parented in Algorithm 1.545

Algorithm 1 FPA pseudo-code

1: Objective function min or max f (x), x = (x1, x2, ...)
2: Define a switch probability p ∈ [0, 1]
3: Generate initial population of flowers randomly
4: Find the best solution g∗ in the initial population
5: while stop criterion do
6: for each i = 1 : n (all n flowers in the population) do
7: if rand() < p then
8: Draw a step size L that obeys a Lévy distribution
9: Global pollination via xt+1

i = xt
i + L

(
xt

i − g∗
)

10: else
11: Draw ε from a uniform distribution in [0, 1]
12: Choose xt

j and xt
k randomly from all solutions

13: Local pollination via xt+1
i = xt

i + ε
(
xt

j − xt
k

)
14: end if
15: Evaluate the new solution
16: if new solution is better then
17: Update xt

i with xt+1
i

18: end if
19: end for
20: Find the current best solution g∗
21: end while

The algorithm begins by randomly generating the initial pop-
ulation that will be evaluated to determine the best current so-
lution. To calculte a new solution, the type of pollination must
first be defined according to a recomputed probability (Rule 4),
i.e. a random number is generated and if it is less than p, then550

the overall pollination and flower constancy (Rule 1 and Rule 3)
can be applied as follows:

xt+1
i = xt

i + L
(
xt

i − g∗
)

(5)

where xt
i is a solution i at iteration t, xt+1

i is the solution vector
generated at iteration t + 1, g∗ is the current best solution found
among all solutions in the generation. The parameter L is a step555

size based on Lévy flights. Since insects can move over a long
distance with various distance steps, this is modeled by using a
Lévy distribution [46] according to the following equation:

L ∼
λΓ(λ) sin

(
πλ
2

)
π

1
s1+λ , (s > 0) (6)

In the above equation, Γ(λ) is the standard gamma function,
and this distribution is valid for large steps s > 0 which are560
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generated using the formula below:

s =
U
|V |1/λ

(7)

where U and V are two random samples from a normal Gaus-
sian distribution with an average of zero and standard deviations
of σu and σv:

U ∼
(
0, σ2

u

)
,V ∼

(
0, σ2

v

)
(8)

σu =

 Γ (1 + λ)
λΓ ((1+λ)/2)

sin
(
πλ
2

)
2(λ−1)/2


1/λ

, σv = 1 (9)

Otherwise, if the generated random number is greater than p,565

local pollination and flower constancy (Rule 2 and Rule 3) are
performed as follows:

xt+1
i = xt

i + ε
(
xt

j − xt
k

)
(10)

where xt
j and xt

k are two different solutions chosen randomly
and ε ∈ [0, 1] is a random number to make this selection closer
to a local random walk [45]. Then, a new solution will be eval-570

uated based on its fitness (objective function). The new genera-
tion will be also evaluated to select the most promising one and
the search process will be repeated until the stopping criterion
is satisfied.

4.2. Pareto optimality based approach575

Multi-objective optimization requires that the relative impor-
tance of each objective should be specified in advance, which
needs prior knowledge of possible solutions. But, using the
Pareto concept, it is possible to avoid the constraint to know
in advance the possible solutions. Indeed, this is also one of580

the reasons for the popularity of these approaches based on the
concept of Pareto [47].

In the following, we will define the concepts related to
Pareto-based multi-objective optimization.

• Dominance: in a problem of minimization, a solution X585

dominates a solution Y if ∀i = 1, 2, ..., k. fi(X) ≤ fi(Y) ∧
∃k ∈ {1, 2, ..., k} such as fk(X) < fk(Y).

• Pareto-optimal solutions: a solution X is called Pareto-
optimal if it is not dominated by any other feasible solu-
tions. Pareto-optimal solutions, also called non-dominated590

solutions, are the ones that do not dominate each other. i.e,
it is impossible to find a solution that improves the value of
one objective without having a detrimental effect on other
objectives. These solutions are defined as follows:

P∗ = {x ∈ X / ∄ x́ ∈ X, x́ < x} (11)

Since the dominance relationship of Pareto defines a partial595

order, the solution of a multi-objective optimization problem is
a set of undivided points. This set is called the Pareto front as
illustrated in Figure 3. It is defined as:

PF∗ = F(x), x ∈ P∗ (12)

Figure 3: Example of dominated, non-dominated and pareto front solution set
for a bi-criteria optimization problem.

When we deal with multi-criteria optimization, we seek to600

explore the complete Pareto front or an approximation of this
set whose objective function values are close to the Pareto-
optimal solutions. Often, the Pareto front contains an expo-
nential number of solutions, where it is necessary to quantify
the interest of a set of non-dominated solutions to assess the605

quality of the obtained result. Consequently, the use of a multi-
criteria method such as TOPSIS is needed to achieve efficient
trade-off solutions of the Pareto front. The TOPSIS method is
a multi-criteria decision analysis technique that was originally
developed by Hwang and Yoon [48] in 1981. It is used for610

ranking purposes and to obtain the best performance in multi-
criteria decision making. Its main feature is to choose the action
having the smallest distance to the ideal solution and the great-
est one from the anti-ideal solution. See subsection 4.3 for more
details of the employed method.615

4.3. TOPSIS technique

TOPSIS approach is based on two potential alternatives i.e.,
Positive Ideal Solution (PIS) and Negative Ideal Solution (NIS).
The former maximizes the benefit criteria and minimizes the
cost criteria, whereas the later maximizes the cost criteria and620

minimizes the benefit criteria. The benefit criteria is for maxi-
mization, while the cost criteria is for minimization. The best
alternative is the one that has the closest distance to PIS and the
farthest from NIS. The different steps of the TOPSIS algorithm
to find the best solution are outlined below.625
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Given a Decision Matrix (DM) with q alternatives and r cri-
teria: makespan (MS), cost (C), reliability (R).

DM =


MS T11 CT12 RT13
MS T21 CT22 RT23
...

...
...

MS Tq1 CTq2 RTq3

 (13)

• Step 1: normalize the decision matrix (NDM).

NDMi j =
Xi j√
q∑

i=1
X2

i j

f or j = 1, 2, . . . , r (14)

where Xi j denotes the ith alternative value relative to the
jth criteria.

• Step 2: calculate the weighted normalized decision ma-
trix.

MS T = w1 ∗ MS T

CT = w2 ∗CT

RT = w3 ∗ RT

(15)

where, w1,w2,w3 represent the prescribed weight values
given to each criteria.

• Step 3: find the ideal and the anti-ideal solutions, PIS S +

and NIS S − are identified with the value of the criteria
having respectively a positive and a negative impact on the
solution.

S + = {V+1 ,V
+
2 , . . . ,V

+
r }

S − = {V−1 ,V
−
2 , . . . ,V

−
r }

(16)

where, S +j and S −j respectively denotes the best and the630

worst value of criteria j for every ideal alternative.

• Step 4: compute for each alternative, the separation mea-
sures using Euclidean distance from PIS S + and NIS S −.

D+i =

√
r∑

j=1
(Xi j − S +j )2

D−i =

√
r∑

j=1
(Xi j − S −j )2

(17)

• Step 5: evaluate the Relative Closeness (RC) to the ideal
solution. More is important, more the alternative is closer
to the positive ideal and farther from the negative ideal
one.

RCi =
D−i

D+i + D−i
f or i = 1, 2, . . . , q, 0 ≤ RCi ≤ 1 (18)

• Step 6: rank the q alternatives according to there RCi.
Here relative closeness is considered as the fitness func-
tion. The VM that gets the highest fitness value is consid-
ered as best solution for a given task.635

4.4. FPA’s adaptation

The FPA metaheuristic is adapted to our problem by con-
sidering a set of virtual machines as the FPA population and a
virtual machine as a new solution candidate generated during
the optimization process, in order to find the appropriate vir-640

tual machine for each submitted task. The pseudo code of the
adapted FPA-based algorithm is outlined in Algorithm 2.

Algorithm 2 Adapted FPA-based task scheduling algorithm

1: Initialize the algorithm parameters: population size, maxi-
mum number of iteration and switch probability p ∈ [0, 1]

2: while T , ϕ do
3: Initialize the initial population with random VMs
4: Find the best virtual machine Vbest for task Ti in the ini-

tial population
5: while stop criterion do
6: for each virtual machine Vi in the population do
7: if rand() < p then
8: Perform levy flight and draw L (step vector)
9: Perform global pollination via

V
′

i = Vi + L(Vi − Vbest)
10: else
11: Draw ε from a uniform distribution in [0, 1]
12: Randomly choose two virtual machines V j and

Vk from all solutions
13: Perform local pollination as V

′

i = Vi + ε(V j − Vk)
14: end if
15: Evaluate the virtual machine V

′

i
16: if new generated machine is better then
17: replace Vi with V

′

i
18: end if
19: end for
20: Update Vbest (the best machine in the population)
21: end while
22: Update T
23: end while

The algorithm begins by identifying its control parameters
in terms of switching probability, population size, and maxi-
mum number of iterations. In steps 3 and 4, a random set of645

virtual machines, referred to as an initial population, is gener-
ated. Following that, the fitness value is calculated to evaluate
each VM’s performance. The best population then identified
and saved as Vbest. At each iteration step in the inner while loop
(lines 5 to 21), for every machine, a random number between 0650

and 1 is generated and if the obtained value is greater than the
switching probability parameter p, a global pollination using
levy distribution is involved to compute a new solution; oth-
erwise, local pollination using uniform distribution is applied.
Then, the new generated solution is examined whether it is su-655

perior to the current solution or not, if yes, then the population
is updated. Finally, the process is iterated until there are no re-
maining tasks to schedule. Note that the arrived tasks, will not
be assigned to the VMs immediately. A pre-simulation phase of
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the mapping process using the adapted FPA is necessary to find660

the suitable VM for each task before sending it to the broker.

To determine the best compromise solutions, we recall that,
as stated in the introduction Section, the fitness function pro-
ceeds in two stapes: first, it uses the concept of Pareto optimal-
ity to find a non-dominated set of solutions and then extracts the665

most preferred one according to some criteria from the Preto-
front of pairs (task, VM) by employing the TOPSIS technique.

5. Weighted sum method (WSM)

In order to compare our proposal to the mutli-criteria
scheduling based WSM approach [10], which is, to our knowl-670

edge, the closest work to the one presented in this work, we
briefly outline hereafter the key features of this method.

In decision theory, WSM technique is the best known multi-
objective method due to its simplicity and speed. It allows to
react efficiently, in real time, in order to evaluate a number of
alternatives according to the considered decision criteria. It is
applicable only when all the criteria are quantitative, i.e. they
all have exactly the same unit. The main idea of this method is
to merge the different objectives to be optimized into a single-
objective function. We note that a weighting parameter can be
introduced if needed to reflect the relative importance of an ob-
jective compared to others. In this way, once the problem for-
mulation and the importance of each criteria are given, only one
solution is generated as given by the following equation.

f (x) =
n∑

i=1

wi fi (19)

where the weights w1,w2, ...,wn must meet the following two
constraints:

n∑
i=1

wi = 1, 0 ≤ wi ≤ 1 (20)

Given the conflicting nature of the targeted objectives, it is675

often not always possible to optimize fairly these objectives.
Thus, the introduction of the weighting parameters will allow
the user to express his preferences by favoring some objectives.
The basic idea is that a criterion which is in conflict with a
favored one receives the minimum value among the possible680

weights (the available weights after operation: 1 - the weight
of the relevant criterion; [49]). Therefore, the optimization pro-
cess seeks for a compromise solution between all the objectives,
while favoring the ones that match the user’s preferences.

6. Results and discussion685

The experimental results of the proposed algorithm are de-
scribed in this section. They are performed using the CloudSim
toolkit which is widely used by researchers for simulating and

modeling cloud infrastructures. It is a toolkit for simulating dis-
tributed systems of any scale, that supports both system mod-690

eling and the behavior of cloud computing components such
as data centers, virtual machines, cloudlets (tasks), and brokers
[50].

Three parameters are defined for the FPA based approach:
the population size, the control parameter λ, and the switching695

probability p that determine the percentage of diversification
and intensification during the search. For all simulations, we
used a population size equal to 20% of the created VMs. The
switching probability and the control parameter are set to 0.8
and 1.5, respectively, as in [45].700

As mentioned above, tasks are grouped in clusters where
their dependency indicates the order of their execution. In our
simulations, there are 15 precedence constraints to satisfy since
we use 15 clusters. All the parameters of the performed simu-
lations are shown in Table 2. Note that the experimental set up705

and the parameters used in our study, such as workload distri-
bution, tasks submission time and cloud definition, are chosen
in such a way that they are representative and are in line with
those used in the literature [51, 52, 53].

Entity type Parameter Value

Data-center No. of data-centers 4

Host No. of hosts 8
PES 4 (Quad core)
MIPS 6 000
RAM 20 GB
Storage 1 TB
Bandwidth 10 GB

Virtual Machine No. of VMs 20 - 40 - 60 - 80
MIPS 1 000 to 5 000
Cost 1.0 to 30.0
Failure rate 10−5 to 10−7

RAM 1 GB to 5 GB
Storage 10 GB
Bandwidth 100 MB to 500 MB
Policy type Time Shared

Cloudlets No. of cloudlets 500 - 1 000 - 1 500
Length 3 000 to 10 000
No. of clusters 15
Type Heterogeneous
Submission time Poisson distribution

of parameter λ

Table 2: Cloudsim simulation parameters.

Since metaheuristic algorithms are characterized by random-710

ization, the designed algorithm is not deterministic, i.e. a single
run is not sufficient to draw conclusions. Therefore, we pro-
pose to compute an average of 10 simulations for each type of
scheduling in order to make the results more representative.
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Number of VMs Cloudlets Methode used

FPA Max-Min Min-Min Round Robin

20 500 157 159 162 236
1 000 208 211 213 370
1 500 259 263 266 537

40 500 130 134 136 186
1 000 155 160 162 236
1 500 178 183 184 315

60
500 126 130 132 192
1 000 131 137 139 186
1 500 151 159 162 239

80
500 148 152 154 201
1 000 150 157 158 209
1 500 163 171 173 215

Table 3: Comparative results of proposed algorithm to other scheduling heuristics.

(a) Comparison for 20 VMs. (b) Comparison for 40 VMs.

(c) Comparison for 60 VMs. (d) Comparison for 80 VMs.

Figure 4: Comparison between FPA and heuristics.

6.1. Single-objective evaluation715

The comparison results between the proposed algorithm and
the heuristics Max-Min, Min-Min and Round Robin are pre-
sented in Table 3. We recall that, in this group of experiments,
we consider only one criterion which is the time makespan
value. The number of VMs is varied from 20 to 80 with incre-720

ments of 20 and three sets of simulations with the same number
of tasks are carried out: 500, 1000 and 1500. The obtained
results are shown in Figures 4(a)(b)(c)(d).

As expected, we can observe that the makespan objective in-
creases as the number of tasks increases. This is due to the fact725

that the capacity of the resources to execute the tasks decreases
gradually as the workload increases over time. It can also be
seen that our proposal behaves better than all other heuristic
techniques especially for large number of tasks. For instance, in
the case of 60 VMs, the performance of adapted FPA is higher730

than Max-Min by 4 and 8 seconds for the sets of 500 and 1500
tasks respectively. This can be explained by the fact that the
adapted FPA’s policy explores efficiently the search space based
on Lévy flights. This leads to a noticeable improvement of the
global optimization objective compared to the performances of735

other heuristics, regardless of the number of the used VMs or
the submitted tasks during the scheduling process.
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Number of VMs Cloudlets Technique used Reduction rate (%)

WSM [10] Pareto-TOPSIS

20 500 198 177 10.6
1 000 295 252 14.5
1 500 484 333 31.1

40 500 132 124 6
1 000 190 170 10.5
1 500 277 206 25.6

60 500 146 139 4.7
1 000 176 162 7.9
1 500 214 178 16.8

80 500 124 119 4.0
1 000 144 135 6.2
1 500 163 151 7.3

Table 4: Makespan performance comparison with {0.5, 0.2, 0.3} weight vector.

(a) Comparison for 20 VMs. (b) Comparison for 40 VMs.

(c) Comparison for 60 VMs. (d) Comparison for 80 VMs.

Figure 5: Comparison in terms of makespan.

6.2. Multi-objective evaluation

The second set of experimentations is devoted to the multi-
objective scheduling case. A comparison was carried out using740

two variants of the compromise function to evaluate the qual-
ity of the FPA’ solutions. As reported in the introduction sec-
tion, the objective is to evaluate the efficiency of the concept of
Pareto optimality with TOPSIS technique compared to the ag-
gregate weighted sum [10] which merges the different metrics745

(see Section 3) of QoS.

First, we evaluate the time makespan of the compared ap-
proaches. As presented in Table 4 and Figures 5(a)(b)(c)(d),

it is apparent that the Pareto-TOPSIS approach has higher per-
formances with the weight vector {0.5, 0.2, 0.3} which favors750

the time makespan objective. For instance, compared to the
weighted sum method, the reduction rate of our proposal in the
case of 40 VMs is 6%, 10.5% and 25.6% for 500, 1000, and
1500 tasks, respectively.

This experiment shows that Pareto-TOPSIS strategy allevi-755

ates this problem by finding better compromise solutions be-
tween the considered objectives. This can be explained by the
Pareto dominance concept which does not allow one objective
to dominate an other. We can also observe from Table 4, that
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Number of VMs Cloudlets Technique used Reduction rate (%)

WSM [10] Pareto-TOPSIS

20 500 225 694 213 626 5.3
1 000 490 613 460 142 6.2
1 500 1 626 716 1 478 813 9.0

40 500 97 390 92 552 4.9
1 000 262 573 247 856 5.6
1 500 984 540 895 000 9.0

60 500 25 297 24 542 2.9
1 000 143 927 135 419 5.9
1 500 694 443 634 251 8.6

80 500 17 141 16 776 2.1
1 000 161 064 152 121 5.5
1 500 302 622 282 601 6.6

Table 5: Cost performance comparison with {0.2, 0.5, 0.3} weight vector.

(a) Comparison for 20 VMs. (b) Comparison for 40 VMs.

(c) Comparison for 60 VMs. (d) Comparison for 80 VMs.

Figure 6: Comparison in terms of cost.

when we fix the number of taks and increase the number of760

VMs, the reduction rate gradually decreases. For instance, in
the case of 500 tasks, the reduction rate is 10.6%, 6%, 4.7%,
and 4.0% for 20 VMs, 40 VMs, 60 VMs, and 80 VMs, respec-
tively. However, this is not particularly surprising in light of the
fact that VMs have more ability to influence makespan time.765

Comparing the results of the weighted sum with the ones of
Pareto-TOPSIS in terms of execution cost, we can observe in
Table 5 and from Figures 6(a)(b)(c)(d) respectively, that the lat-
ter obtains better performance values than the weighted sum in
all the scenarios tested with a weighting vector that favors the770

execution cost. For example, in the case of 60 VMs the Pareto-
TOPSIS based approach achieves solutions that are 8.6% more
efficient in terms of execution cost than those provided by the
weighted sum method. This improvement is due to the Pareto-
TOPSIS based approach tries to ensure efficient trade-offs be-775

tween the three considered objectives owing to their impor-
tance. This leads to effective cost minimization during the
scheduling process. However, in terms of reliability optimiza-
tion, we can notice from Table 6 and Figures 7(a)(b)(c)(d)
respectively, that the difference between the achieved perfor-780

mances of the compared methods are almost similar regardless
of the number of VMs and the number of tasks.
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Number of VMs Cloudlets Technique used

{0.5, 0.2, 0.3} {0.2, 0.5, 0.3}

WSM [10] Pareto-TOPSIS WSM [10] Pareto-TOPSIS

20 500 0.993 0.99 0.988 0.986
1 000 0.986 0.979 0.978 0.97
1 500 0.964 0.937 0.952 0.909

40 500 0.998 0.998 0.994 0.988
1 000 0.996 0.994 0.988 0.967
1 500 0.987 0.981 0.977 0.933

60 500 0.999 0.999 0.999 0.998
1 000 0.998 0.998 0.995 0.992
1 500 0.994 0.991 0.987 0.962

80 500 0.999 0.999 0.999 0.999
1 000 0.999 0.998 0.996 0.993
1 500 0.998 0.997 0.994 0.987

Table 6: Reliability performance comparison.

(a) Comparison for 20 VMs. (b) Comparison for 40 VMs.

(c) Comparison for 60 VMs. (d) Comparison for 80 VMs.

Figure 7: Comparison in terms of reliability.

Taken as a whole, for both makespan and cost objectives, it is
more interesting to use Pareto-TOPSIS based approach with the
appropriate weight vector. Indeed, the weighted sum is a simple785

projection from the multi-objective optimization to the single-
objective one. A purely multi-objective approach like Pareto-
TOPSIS is more recommended in this context. Regarding reli-
ability, this is a somewhat special measure because in the cloud,
VMs are considered reliable since existing cloud providers of-790

fer services with too low failure rates that can go down to 10−7.
For this reason, the method used does not have much impact on
this objective.

7. Conclusion

In this paper, we have addressed the problem of task schedul-795

ing in cloud computing environments. The aim is to orchestrate
the assignment of tasks to VMs while satisfying users’ require-
ments. To this end, a new scheduling algorithm is proposed
to deal with both single and multiobjective optimization vari-
ants. It is made upon a combination of a bio-inspired flower800

pollination and Pareto optimilaty approach. Moreover, it makes
use of the TOPSIS technique to ensure efficient trade-offs be-
tween the targeted objectives, namely time makespan, cost and
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reliability. To the best of our knowledge, this is the first study
to investigate the combination of the Pareto front principle as805

well as the TOPSIS technique with the pollination behavior of
flowers to improve the performances of the scheduling process.
The detailed experimental evaluation and the different studied
scenarios using CloudSim framework corroborate the merits of
our proposal.810

Other questions remain to be addressed such as extending
the studied optimization problem to workflows scheduling in
real cloud environments. In this context, we expect a difficult
challenging trade-off between communication costs minimiza-
tion and executing tasks in parallel under different requirements815

of the end users. Another research direction is to consider other
QoS such as fault tolerance and load balancing to cope with un-
predictable failures and achieve global stable equilibrium. Fur-
thermore, it would also be interesting to investigate other meta-
heuristics such as GA [54], PSO [55] or CS [56] as well as their820

hybridization with FPA algorithm to analyse and compare the
behavior of the task scheduling process on the achieved global
performances.
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