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ABSTRACT
The pressure-based, current-driven impedance control technique known as “Electroacoustic Ab-
sorption” has offered new horizons for room modal equalization at low frequencies, steerable
anomalous reflection, acoustic transmission attenuation and non-reciprocal wave propagation.
Nevertheless, its level of performance is strongly limited by stability constraints. A primary
source of instability is the loss of acoustical passivity due to time delay in the digital implemen-
tation of the controller. In this paper, the effect of time delay on the Electroacoustic Absorber
stability is verified by correlating, both numerically and experimentally, the loss of acoustical
passivity at high frequencies to the upsurge of instability in a one-dimensional closed cavity.
Then, we show the effect of placing a porous layer in front of the Electroacoustic Absorber,
allowing to counteract for the loss of acoustical passivity and enlarge the passivity margin. Fi-
nally, we provide an integral constraint on the absorption spectrum valid for the pressure-based,
current-driven architecture of the Electroacoustic Absorber. It generalizes the integral constraint
for purely passive absorbers to electro-active impedance controlled loudspeakers, and demon-
strates the close interdependence between absorption bandwidth, passivity, and electrical source
supply by a straightforward analytical expression.

1. Introduction
The Active Noise Cancellation (ANC) first experiment dates back likely to 1878 when Lord Rayleigh used two

electromechanically synchronized tuning forks [1], [2]. The first patents of Active Noise Cancellation (by destructive
interference) have been granted to H. Coanda [3], and few weeks later to Lueg [4],[2]. These noise control techniques
have been defined as “feedforward” as they use a reference sensor placed upstream with respect to the actuator (in an
acoustic waveguide). The “electronic sound absorber” of Olson and May [5] is the first analogical feedback system,
as it did not need an upstream reference signal [2], [6], but just a pressure sensor close to the loudspeaker. Olson
and May envisaged the possibility to use their “spot type noise reducer” behind an acoustical resistance, in order to
create what Guicking [7] later called “an active equivalent of the �∕4 resonance absorber”. Following the work of
Guicking, the ANC was used to enhance the performance of a resistive layer in a flow duct at lower frequencies, by
Galland et al [8]. The ambitious objective was to reproduce the Cremer’s optimal impedance for the first duct mode
[9], [10]. It used ANC such that the acoustic impedance of the passive layer would be equal to its flow resistivity at
low frequencies, while purely passive behaviour would be assured at higher frequencies. A FX-LMS adaptive filter
was adopted in order to achieve the hybrid behaviour. One advantage of this hybrid approach was the possibility to
protect the control system from the hostile environment in flow ducts, in view of future applications into nacelle inlets
of aircraft engines. Nevertheless, the complexities linked to the optimal impedance achievement, along with the diffi-
culties arisen for broadband attenuation, limited this interesting approach.
The ANC progressed thanks to the digital systems, which allowed for adaptive filters to cope with the acoustic feed-
back and secondary path issues [2]. Feedback control evolved from local to global noise reduction, but with many
difficulties mainly due to insufficient spatial modelling and neglect of the loudspeaker own mechanical dynamics into
the desired control bandwidth [6]. Phase correction [11] and velocity compensation [12] were proposed by Clark and
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Lane to improve the stability margins.
But the collocation of pressure sensing and actuator, suggested another approach, different from the ANC, for active
noise reduction: the impedance matching. The main advantage of the impedance matching techniques with respect to
the ANC is the possibility to keep the acoustical passive character of the electroacoustic device, contrary to the ANC
which is, by definition, an acoustically active technique, whose stability highly depends upon the external acoustic
environment. An acoustically passive controlled device is instead inherently stable [13] and therefore insensitive to
the external acoustic feedback, which is source of instability in the ANC. Therefore, acoustical passivity brings along
higher robustness and integrability in complex environments, and allows potentially simpler and energetically cheaper
control strategies. Nevertheless, the impedance control techniques are supposed to achieve the acoustical passivity in
the target frequency bandwidth, but not necessarily outside of it, as we will show in the following.
The “relatively simple and straightforward” concept of impedance matching dates back to the work of Bobber [14] who
used an electronic generator for “cancelling the internal acoustic reactance of the transducer” in a water-filled tube.
Guicking et al. [7] proposed an impedance matching in a one-dimensional (1D) waveguide by analogically imple-
menting the two microphone method for retrieving the reflection coefficient to be minimized. The problem was then
the application to a 3D field. The two microphones wave splitter idea was retrieved in [15], through a filtered-X LMS
adaptive filter. The direct impedance control was also approached by processing simultaneously both the pressure and
the loudspeaker velocity [16], the latter being measured with an accelerometer, and by using a reference signal from
the primary source to avoid feedback instability.
The main problem of these direct impedance control strategies is the addition of intrusive sensors, such as accelerom-
eters or frontal microphones, and the complexities related to the adaptive filters.
As the ANC improved thanks to the integration of the loudspeaker dynamics model into the control [12], also the
impedance matching research found new interesting perspectives by querying how to exploit the actuator own electro-
mechanical dynamics. In the realm of audio-engineering, De Boer [17] enounced a “motional feedback theory” to
self-sense the loudspeaker velocity, based upon assumptions on the loudspeaker dynamics. Leo [18] developed a self-
sensing technique to estimate both pressure and velocity by measuring speaker voltage and current, and damp cavity
resonances through second order feedback compensators. Clearly, a sensorless technique requires a good electro-
mechanical model of the loudspeaker. Leo’s technique suffered from weak electro-mechanical coupling in the pressure
estimation, and of inaccurate electrical impedance model despite the use a 5th order transfer function. Samejima [19],
instead, proposed a differentiating circuit attached to a secondary coil (the “pick-up coil”) to have a velocity estimation
for a state-feedback impedance control. In the linear quadratic regulator (LQR) optimization used in [19], neither en-
ergy limits nor stability constraints could be taken into account, therefore resulting in feedback gains extremely high,
and excessive sensitivity to model uncertainties. This prevented the experimental implementation of such technique.
The double coil idea was developed also by Rivet et al. [20] who proposed a control strategy capable of attaining the
target resistance at the resonance frequency, without the need of the loudspeaker model identification. In general, the
use of a secondary coil allowed to get rid of any external sensor, rendering the impedance control system more com-
pact. Nevertheless, the physical realizability in [19], and the restrained frequency bandwidth in [20], inhibited further
investigations on this approach. Rather than controlling the acoustic impedance based upon acoustic variable sensing,
acoustic impedance matching can also be achieved by modifying the electrical impedance of the loudspeaker itself,
thanks to the electromechanical coupling. Lissek et al. [21] introduced an unified formulation of the “Electroacoustic
Absorber” (EA) by demonstrating the equivalence between direct impedance control (based upon pressure and velocity
sensing) and the shunting techniques. They highlighted how, on the one hand, the direct impedance control strongly
depends upon the neutralization of the loudspeaker electrical impedance, therefore is limited by stability issues coming
from wrong modelling of the electrical inductance. On the other hand, the electrical shunting equivalent, even though
always stable, is often not easily realizable. The inherent stability of the shunting impedance controlled systems comes
from their acoustically passive character. This is not necessarily the case for impedance control based upon synthesized
correctors, because of both modelling inaccuracies and time delay in the digital implementation. Fleming [6] showed
the effect of different electrical shunts, based upon a Hemholtz resonator analogy. He also designed an “active-shunt”
control, in the sense that the shunt was substituted by a digital corrector, obtained with optimal control techniques (such
asH∞). The artificially synthesized electrical impedance achieved wider bandwidths of attenuation, and the physical
modelling was substituted by experimentally identified “plant transfer functions”, simplifying the design process on
the one hand, but still being limited by system uncertainties on the other. The problem posed by the inductance model
of the loudspeaker coil in the direct impedance control, was also encountered by Boulandet et al. [22], who identified
it as a limitation due to a not-much-clarified “side effect of the Bode’s sensitivity integral theorem”. He tried to over-
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come this issue using lead-lag phase compensation, “ensuring that the electroacoustic resonator (ER) strictly remains
a dissipative system over the whole frequency range of interest”, but not beyond it, as long as the Bode’s sensitivity
integral constraint applies (it is the so-called “waterbed effect”). Finally, Rivet et al. [23] proposed an “hybrid sensor-
/shunt-based impedance control” which is a mechanical-model-inversion-based control. It detected pressure with a
microphone placed as close as possible to the loudspeaker to achieve quasi-collocation and drove the current (thanks
to a Howland current pump [24]) in order to equal out the own mechanical dynamics of the loudspeaker, and reproduce
a desired acoustical impedance at the speaker interface. The Howland current pump on the one hand, and the use of
a microphone on the other, allowed to restrict the model inversion to the mechanical dynamics only, getting rid of
the electrical inductance modelling issues of the direct impedance control, and of the electrical shunting techniques.
As the mechanical model uncertainties are much less critical than the electrical ones, it was possible to enlarge the
frequency bandwidth of absorption. This control architecture proved great versatility and it has been adopted in vari-
ous applications, such as room modal equalization [25], duct modes damping [26], broadband non-reciprocal acoustic
propagation [27] and as a base for a non-linear control strategy [28]. A primary limitation of such “hybrid” sensor and
model-inversion based impedance control is related to the loss of acoustical passivity caused by the time-delay in the
digital implementation which causes high-frequency instabilities in a similar manner as the acoustic feedback in ANC.
In this perspective, it is significant the work of Xia et al. [29], who have formalized a passivation method based upon
an input-output transformation matrix, and have applied it to time-delayed systems.
The objective of this contribution is to clarify the impact on acoustical passivity of time-delay in a digital impedance
control device, by simple analytical tools and to provide a straightforward remedy to restore acoustical passivity at
high frequencies. The structure of the paper allows to follow the natural evolution of the investigations, and the se-
quentiality of results. After having assessed, in Section 3.1, the effects of both control parameters and time delay on
absorption and passivity, an integral constraint has been analytically derived in Section 3.2, incorporating the impacts
of each factor on the “waterbed-like” behaviour of the absorption coefficient. It enlarges the integral constraint for
purely passive absorbers previously found by [30], toward electro-active resonators. Then, the intimate relationship of
acoustical passivity and stability has been clarified by numerical simulations in Section 3.3. A straightforward solution
for restoring acoustical passivity (and hence passivity) at high-frequencies is then proposed in Section 3.4. Finally,
both passivity and stability outcomes, are validated by experimental tests in Section 4.

2. A model-inversion strategy for impedance control
Our system is a closed box loudspeaker, used as a membrane absorber, thanks to a pressure-based, current driven

control architecture [23]. In this configuration, the corrector transfer function between the pressure input and the
control variable (the electrical current in the loudspeaker coil) is defined based upon the assumption of knowing the
mechanical dynamics of the loudspeaker. The mechanical dynamics assumed for the loudspeaker corresponds to the
classical SDOF piston-mode approximation [31], and is reported in Eq. (1).

Zm0(s)v(s) = Sd p(s) − Bl i(s) (1)
where s is the Laplace variable, v(s) is the mechanical inward velocity of the loudspeaker diaphragm (check Fig. 1),

p(s) is the sound pressure on the diaphragm front face, Sd is the equivalent piston area (also called effective area), Bl isthe force factor of themoving coil, i(s) is the current circulating in themoving coil. Zm0(s) is themechanical impedance
of the SDOF loudspeaker model in open circuit configuration, and it writesZm0(s) =Mm0s+Rm0+

Km0
s , whereMm0,

Rm0 and Km0 are the mechanical mass, resistance and stiffness of the SDOF loudspeaker model respectively. The
mechanical stiffness Km0 (inverse of compliance Cm0) takes into account also the effect of the backing enclosure. In
the following stationary regime analysis, s is exchangeable with j!, where ! = 2�f is the angular frequency (in
rad/seconds) and f is the ordinary frequency (in Hz).
As we are interested in the acoustic behaviour, it is more convenient and intuitive to divide all the terms of Eq. (1) by
Sd so that to obtain:

Za0(s)v(s) = p(s) − Bl
Sd

i(s), (2)
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Figure 1: Schematic representation of the closed-box electrodynamic loudspeaker. p(s) and v(s) are the acoustic pressure
and inward velocity, respectively, on the speaker diaphragm; i(s) is the electrical current in the loudspeaker coil; H(s)
indicates the operator relative to the controller, which applies to the measured pressure pm(s).

Thiele-Small parameters Mm0 Rm0 Km0 Bl Sd
Units kg N.sm−1 m.N−1 N.A−1 m2

Values 4.45 × 10−4 0.173 3.85 × 103 1.10 1.30 × 10−3

Table 1

Thiele-Small parameters of the EA.

where Za0(s) =Ma0s+Ra0 +
Ka0
s is the acoustical impedance of the EA in open circuit. Looking at Eq. (2), and

supposing that the pressure measured by the microphone pm(s) be equal to the pressure on the speaker diaphragm, it
is easy to derive the transfer functionH(s) between p(s) and i(s), in order to achieve a target impedance Zat(s) on theloudspeaker diaphragm, see Eq. (3):

H(s) =
i(s)
p(s)

=
Sd
Bl

(

1 −
Za0(s)
Zat(s)

)

(3)

The so-called Thiele-Small parameters appearing in Eq. (1) and (3) must therefore be estimated with some tech-
nique, taking advantage of electrical and/or acoustic measurements in different configurations [25]. The Thiele-Small
parameters of the EA taken into account for the following simulations are reported in Table 1. The natural frequency
f0 of the open-circuit loudspeaker resonator is about 468 Hz.
This is the model-inversion technique employed in [23].

We remind that the model of Eq. (1) corresponds to the piston mode approximation, and higher order mechanical
modes of the loudspeaker are not taken into account in the control law (3). This can lead to spill-over effects, which
also can contribute to the stability of the entire system. Nevertheless, in this contribution we focus on the effect of
the time-delay, and the piston-mode approximation of Eq. (1) is considered as representing the full dynamics of the
loudspeaker in our simulations.
The objective of [23] was to attain an acoustic resistance on the loudspeaker diaphragm in an as-wide-as-possible
frequency range. The target impedance Zat(s) was then chosen as a target resistance Rat equal to the characteristic
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impedance of air �0c0 (�0 being the air density and c0 the air speed in standard atmospheric conditions) to have perfect
absorption for normally incident plane waves. In other applications, such as the lining configuration in duct acoustics,
or room acoustics, the optimal value for Rat becomes a more difficult choice (see [9] and [25]).
In any case, a Zat simply equal to the target resistance Rat, would bring a non-proper [32] transfer function H(s),
and indefinitely increasing current at lower and higher frequencies. Therefore, for causality and energy limits, in the
expression of Zat(s) a reactive part was added to Rat, see Eq. (4).

Zat(s) =Mats + Rat +Kat∕s (4)
whereMat andKat are the target mass and resistance. Such terms can be written in terms of the acoustic mass and

stiffness of the EA in open circuit: Mat = �MMa0 andKat = �KKa0. By doing so, the coefficients �M and �K indicate
how far the target acoustical mass and stiffness differ from the case of open circuit. By varying their ratio, it is possible
to set the resonance frequency fat of Zat(s) at different values than the open-circuited EA natural frequency f0, seeEq. (5). Observe that other target impedances could be employed, as corresponding to a multi-degree-of-freedom
resonator [25], and/or with in-parallel components.

fat =
√

�K
�M

f0 =
√

�K
�M

1
2�

√

Km0
Mm0

(5)
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Figure 2: Variation of the normal absorption coe�cient �(!) (a) and absolute bandwidth Δf of e�cient absorption (b)
with respect to each of the target impedance parameters �M , �K and Rat. The default values are �M = 0.2, �K = 0.2 and
Rat = �0c0 respectively.

The influence of each tunable parameter �M , �K and Rat of the target impedance (4) on the normal absorption
coefficient � are simulated on Fig. 2a. The normal absorption coefficient is given by:

� =
4 Re{Ya(j!)}�0c0
|1 + Ya(j!)�0c0|2

, (6)
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where Ya(j!) is the acoustical mobility of the EA, supposed here equal to 1∕Zat(j!).The nominal values for the control parameters are set to �M = �K = 0.2 and Rat = �0c0 as representing a possi-
ble target of desirable bandwidth. The parametric variation of the absolute bandwidth of efficient normal absorption
is simulated in Fig. 2b. The absolute bandwidth Δf in Fig. 2b is the frequency range such that � ≥ �tℎ, where
�tℎ = 1 − (

√

2 − 1)2 corresponds to the case where the total sound intensity on the loudspeaker diaphragm is less
than twice the sound intensity of the normal incident wave [25]. From Fig. 2 we can notice that the main impact on
the bandwidth is given by the �M coefficient, i.e. by the mass term, as the bandwidth significantly enlarges when
�M is reduced. Despite what was reported in [25] and [23], we remark that also �K affects the efficient absorption
bandwidth. Concerning Rat there is an optimal value (which is more than �0c0) achieving the largest bandwidth.

Ideally, the impedance on the loudspeaker diaphragm realised by the controller (3) is exactly the target impedance
Zat(s). However, this is never the case because of model uncertainties (errors or changes in the Thiele-Small parame-
ters), dynamic uncertainties (neglected modes) and time delay in the digital-based control chain. In this contribution
we focus on the effect of the time delay.

3. Simulations
3.1. Time delay and passivity

As any digital control system, a certain time delay happens between the input and the output of the control loop.
A total delay � between the measured pressure and the current in the loudspeaker coil has been estimated to be about
20 microseconds in our implementation of Fig. 1, in accordance with the value reported in [25]. The time delay in
the control chain corresponds to an exponential transfer function e−s� in the Laplace domain, multiplying the con-
troller H(s) of Eq. (3). Supposing pm(s) = p(s), the transfer function between the input pressure p(s) and the output
diaphragm velocity v(s) is given by Eq. (7).

Ya(s) =
v(s)
pm(s)

= 1
Zm0(s)

(

Sd − Bl H(s) e−s�
)

(7)

Because of the time delay, the acoustic mobility Ya(s) achieved on the loudspeaker diaphragm is different from the
target one (1∕Zat(s)). In particular, time delay introduces a phase shift multiplying the corrector, which increases in
frequency.

Fig. 3 shows the effect of time delay on the normal absorption coefficient and on the mobility phase. The high
frequency phase shift of time delay causes the phase of mobility to exit the limits of [−90◦, 90◦]which assure passivity
of a locally-reacting surface. A locally-reacting surface can be defined as passive if the Re{Ya(j!)} is positive [33],that is if �(!) ≥ 0 for every !. A negative absorption indicates that more acoustic energy is reflected than the incident
one (the reflection coefficient becomes |R(j!)| ≥ 1). The ratio of the energy injected by a non-passive locally reacting
surface, to the incident one, at a certain frequency !, is given by the negative value of �(!).
Higher delay shifts the frequency of loss of acoustical passivity toward lower values, meanwhile enhancing the negative
drop of �(!).
In Fig. 4, the effect of varying the target impedance parameters is presented in case of a time delay of 2×10−5 seconds.
This value of � has been estimated in the FEMTO-st Institute of Besançon, France, for the EA tested in Section 4. Fig. 4
shows that, apart from the decay of � at high frequencies, time delay also produces a drop around f0 as more important
as farther we push fat away from f0. Hence, time delay impacts the performance of such impedance control in two
ways, which should be analysed separately. The loss of acoustical passivity around f0, for fat sufficiently distant from
f0, is caused by a residual open circuit dynamics of the EA. The presence of time delay, indeed, hinders a perfect
model-inversion at f0. Such undesired behaviour could be reduced by properly designed compensators [34], as more
efficiently as the time delay gets better identified, along with the loudspeaker model.

The high-frequency loss of acoustical passivity on the other hand, caused by the dephasing introduced by �, gets
more severe as lower is the phase of H(s). Fig. 5b clearly correlates with Figure 4, as the high-frequency behaviour
is concerned. Apparently, reducing the target mass or resistance significantly diminishes the high-frequency phase of
H(s), and hence endangers high-frequency passivity of the delayed control system. Reminding that the best way to
enlarge the frequency bandwidth is by reducing �M , we conclude that the frequency bandwidth requirement conflicts
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Figure 3: Absorption coe�cient � and mobility phase with varying time delay. The target impedance parameters are set
to �M = 0.2, �K = 0.2 and Rat = �0c0.

with the passivity demand. Instead, reducing the target stiffness or increasing the target mass, i.e. shifting the reso-
nance of Yat(s) at lower frequencies, is beneficial for high-frequency passivity.

The physically intuitive concept of acoustical passivity implicitly assumed, is that a system is passive if it absorbs
energy, i.e., in our case, if the normal absorption coefficient is positive. We note that the sign of the absorption coef-
ficient depends exclusively on the sign of the real part of mobility, see Eq. (6). Observe that if the normal absorption
coefficient is positive, it stays positive for any angle of the incident pressure field [35], therefore it is a property which
is fully independent of the external acoustic field, but only depends upon the intrinsic behaviour of the absorber itself.
It is interesting to remark that this acoustical passivity condition is totally equivalent to the passivity definition in con-
trol theory [13], where a Single-Input-Single-Output (SISO) system is defined as passive if the real part of its transfer
function is positive. In our acoustic parallel, a positive real part of the mobility transfer function Ya(j!) correspondsto a positive value of the normal absorption coefficient, or also to an absolute value of the normal reflection coefficient
(which is nothing less than a bilinear transform [36] of the acoustical mobility) lower than one. The minimum value
of the absorption coefficient can be adopted as a passivity index, for an acoustic controlled impedance, analogously to
the “Input-Feedforward-Passivity” (IFP) index defined in [29]. From the definition of [29], a system is said to have an
“excess of passivity” or a “shortage of passivity” if such index is positive or negative respectively.

In order to avoid the passivity shortage around f0, classical compensators could be employed. Nevertheless, to cope
with the high-frequency loss of passivity, classical compensators would only shift the problem toward the forthcoming
frequencies, because of an integral constraint that such EA architecture must obey, see Section 3.2. Moreover, at high
frequencies, other speaker modes appear which are not taken into account in the SDOF loudspeaker model, hence
making the high-frequency range hardly controllable.
3.2. Integral constraint on the reflection coefficient of the EA

In order to give a further insight in the EA behaviour, both with respect to passivity and absorptive performance,
an integral constraint has been derived in Appendix B. Exploiting the theorems of complex analysis, it is possible to
arrive at a relationship between a frequency integral of the normal reflection coefficient spectrum R(j!), the open-
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Figure 4: Variation of the absorption coe�cient � with respect to the control parameters, in case of a delay in the control
loop equal to � = 2 × 10−5 seconds. The default values chosen for the control parameters are �M = 0.2, �K = 0.2 and
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Figure 5: Modulus (a) and phase (b) spectra of H(s) with varying target impedance parameters.

circuit acoustical stiffness of the speakerKa0, the static corrector transfer functionH(s→ 0), and the “unstable zeros”
[32] of the reflection coefficient transfer function R(s), i.e. the zeros of R(s) with positive real part. The relationship
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derived in Appendix B is reported below:

−∫

∞

0

1
!2

ln |R(j!)|d! =
��0c0
Ka0

(

1 − Bl
Sd

lim
s→0

H(s)

)

− �
∑

n

Re{sn}
|sn|2

, (8)

where sn are the unstable zeros of the normal incidence reflection coefficient transfer functionR(s). For lims→0H(s) =
0 we retrieve the integral constraint for purely passive absorbers provided by Yang [30] and reported in Eq. (9).

−∫

∞

0

1
!2

ln |R(j!)|d! =
��0c0d
Beff

− �
∑

n

Re{sn}
|sn|2

, (9)

where the acoustic stiffness of the loudspeaker in the open-circuit configuration Ka0 is substituted by the effectivebulk modulus Beff divided by the thickness of the sample d.
Imposing the acoustical passivity condition, then − ∫ ∞0

1
!2 ln |R(j!)|d! = | ∫ ∞0

1
!2 ln |R(j!)|d!| (because |R(j!)| ≤

1). Since Re{sn} ≥ 0, a constraint on the minimum thickness for a fixed bandwidth of efficient absorption was derived
[30]:

d ≥
Beff
��0c0

|

|

|

|

∫

∞

0

1
!2

ln |R(j!)|d!
|

|

|

|

. (10)

Analogously, for a SDOF-in-series resonator which is purely passive, or having a null static controllerH(s→ 0) =
0, there is a minimum value of the acoustical compliance needed in order to achieve a certain bandwidth of efficient
absorption:

Ca0 =
1
Ka0

≥ 1
��0c0

|

|

|

|

∫

∞

0

1
!2

ln |R(j!)|d!
|

|

|

|

. (11)

Eq. (10) and (11) imply that high absorption in purely passive absorbers (such as porous materials or Helmholtz
and quarter-wavelength resonators) is not possible for any finite thickness or finite compliance, especially at lower
frequencies (look at the expression of the integrand) if not for narrow peaks [30].
If the pressure-based, current-driven control architecture is applied to a SDOF-in-series resonator like a loudspeaker
instead, Eq. (8) holds. If the controller is supposed to keep the acoustical passivity of the system, then once again
− ∫ ∞0

1
!2 ln |R(j!)|d! = | ∫ ∞0

1
!2 ln |R(j!)|d!|, and we get:

−H(0) ≥
Sd
Bl

Ka0
��0c0

|

|

|

|

∫

∞

0

1
!2

ln |R(j!)|d!
|

|

|

|

. (12)

Therefore, H(0) must be a negative real number with a minimum absolute value depending upon the frequency
bandwidth of efficient absorption and upon the acoustic stiffness Ka0 of the passive resonator under control, as wellas the ratio Sd∕Bl. Indeed, −H(0)Sd∕Bl is the contribution of the control architecture on the loudspeaker first mode
compliance term. This means that, for any acoustic stiffness (or compliance) of the passive resonator, if the acoustical
passivity of the resonator with the control applied is kept, then a minimum amount of electrical current is required at
the static limit. In case of the control transfer function (3),H(0) = Sd∕Bl(1−1∕�K ). This is in agreement with what
stated in Section 3.1, as in order to keep high frequency passivity, the operative bandwidth should shift toward lower
frequencies (increasing �M or reducing �K for the SDOF target impedance), which entails higher electrical current
supply at the static limit (see Fig. 5a). Note that such integral constraint holds for any correctorH(s)which is a proper
and stable rational transfer function.
From the integral constraint (8), it is clear that there is a strong relationship between the frequency bandwidth of
efficient absorption, the low-frequency controller transfer function (which means electrical energy supply), and the
acoustical passivity. In order to visually interpret the significance of such integral relationship, let us assign the letters
A, B and C to the three contributions appearing in Eq. (8), i.e.:
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Figure 6: Plot of each term of the integral equation (8) (left) and of the unstable zeros of R(s) with positive real part,
with varying time delay � from 0 to 2 × 10−4 seconds. The control parameters are set to �M = �K = 0.2 and Rat = �0c0.

• A = − ∫ ∞0
1
!2 ln |R(j!)|d!,

• B = ��0c0
Ka0

(

1 − Bl
Sd
lims→0H(s)

)

,

• C = �
∑

n
Re{sn}
|sn|2

,
such that Eq. (8) becomes A = B − C .

In Fig. 6a, each term of the integral equation (8) is plotted with varying time delay � from 0 to 4 × 10−4 seconds, the
control parameters being fixed to �M = �K = 0.2 and Rat = �0c0. The dashed black line is the right hand side (rhs)
of Eq. (8) (B−C in Fig. 6a), which must coincide with the left hand side of Eq. (8) (called A in Fig. 6a). Apparently,
increasing the time delay brings about unstable poles of the reflection coefficient of larger real parts, increasing the
term C in Fig. 6a. Fig. 6b allows to verify that higher � produces unstable zeros of R(s) with larger real parts. As the
static transfer functionH(0) does not vary if �K is fixed, the term calledB in Fig. 6a is unchanged. Hence, higher time
delays reduce B −C . In this perspective, Fig. 3 can be reinterpreted as a direct consequence of the integral constraint
(8). Indeed, as higher time delays reduce B − C , for a fixed operative bandwidth where � > �tℎ (i.e. fixed control
parameters �M ,�K and Rat), the high frequency absorption coefficient � must be negative and of larger modulus so
that to negatively contribute to the overall frequency integral A, and satisfy the equality A = B − C .

Figs. 7, 8 and 10 present the variation of each term of the integral constraint (42) with the control parameters, in
case of perfectly synchronous (a) and time-delay affected (� = 2×10−5 seconds) (b) control. The nominal parameters
are set to �M = �K = 0.2 and Rat = �0c0.From Figs. 7a, 8a and 9a, we notice that, in case of no-delay and for Rat = �0c0, R(s) has no unstable zeros (the
curve C is fixed at 0), irrespective of the values chosen for �M and �K . The presence of a � ≠ 0 instead, causes the
contribution C to be slightly different from 0, for low values of �M and/or �K .Hence, Figs. 7, 8 and 9 illustrate that only by reducing �K (i.e. increasing |H(s→ 0)|) the integral A can be enlarged,
as specified by Eq. (12).
Figs. 10 shows that reducing Rat below 1 in case of no-delay, and below 1.1 in case of � = 2 × 10−5 seconds, creates
unstable zeros in R(s), and increases the contribution C , so to further constraining the integral A.

Fig. 7 to 10 verify that the identity (42) holds for any values chosen for �M , �K and Rat.The integral relationship (8) is another means for the understanding and design of the EA control based upon the
specifications assigned. For example, adding phase-lead or lead-lag compensators at high frequencies, as proposed in
[22]), to restore passivity, would inevitably increase |H(j!)|, then reducing the acoustical passivity, at the forthcoming
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Figure 7: Plot of each term of the integral equation (8), with varying �M from 0 to 2, in case of no delay (a) and
� = 2 × 10−5 seconds (b). The other control parameters are set to �K = 0.2 and Rat = �0c0.
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Figure 8: Plot of each term of the integral equation (8), with varying �K from 0.1 to 2, in case of no delay (a) and
� = 2 × 10−5 seconds (b). The other control parameters are set to �M = 0.2 and Rat = �0c0.

frequencies. Looking at Eq. (8) indeed, it can be verified that a phase lead or lead-lag compensator would increase
the term C (augmenting the real part of the unstable zeros of R(s)). As the term B is untouched by high-frequency
modification of H(s), this would bring about an inevitable reduction of the integral A, which translates into a deeper
negative peak of �(!) at higher frequencies.
In order to assure the acoustical passivity at high-frequencies, even in the presence of time-delay, |H(j!)| should be
quickly cut-down to zero above resonance. In the control law defined by Eq. (3), with the target impedance of Eq. (4),
this means that we must increase �M and reduce �K (see Fig. 2a). A lower �K augments |H(s → 0)| allowing to
relax the constraint B on the integral A in the relationship (8). Nevertheless, for higher �M , the bandwidth of efficient
absorption is significantly narrowed (see Fig. 2b). Hence, we conclude that the control law based upon the SDOF
in-series impedance (4) requires a compromise between passivity and operative bandwidth of absorption. Other target
impedances might nonetheless be chosen (and are currently under investigation), in order to optimize the bandwidth
as well as assuring the high-frequency acoustical passivity, while at the same time respecting the limitation upon the
electrical current supply (given by |H(j!)| times the pressure levels involved). This threefold specification might
be implemented in an optimization algorithm to synthesize the ideal corrector H(s) which would at the same time
produce the required bandwidth of efficient absorption, keep the high-frequency passivity, and respect the constraints
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Figure 9: Plot of each term of the integral equation (8), with varying �M = �K from 0.1 to 2, in case of no delay (a) and
� = 2 × 10−5 seconds (b). Rat is set to �0c0.
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Figure 10: Plot of each term of the integral equation (8), with varying Rat from 0.1�0c0 to 2�0c0, in case of no delay (a)
and � = 2 × 10−5 seconds (b). The other control parameters are set to �M = �K = 0.2.

on electrical energy demand.
In this and the previous Sections, we have entered into the details of the “water-bed”-like behaviour of the absorption
coefficient in case of time delay and its consequences on acoustical passivity, providing useful tools to take it into
account for innovative correctors design. In the next section, we clarify the relationship between acoustical passivity
and stability. In classical control schemes, indeed, the problem of non-passive systemsmanifests itself when a feedback
is applied between the output and the input. This is also the case here, with the peculiarity that the feedback between
the output velocity and the input pressure is given by the acoustic domain in which the controlled loudspeaker is
placed. Indeed, as the control system becomes acoustically active, the problem of the acoustic feedback, typical of
acoustically-ANC techniques, comes back into the scenario.
3.3. Time delay and stability

Coupling an acoustically non-passive device with a conservative acoustic cavity inevitably leads to instability. In
Appendix A, it is briefly recalled the solution of a 1D acoustic hard-walled cavity with a rigid termination on one side,
and a generic acoustic element characterized by a reflection coefficient R(s) on the other. It is shown how a reflection
coefficient such that |R(sp)| > 1 (where sp is a pole of the entire system) causes Re{sp} > 0, i.e. instability. Thanks
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Figure 11: Block diagram of the pressure-based, current-driven impedance control.

to the simple expression of the radiation impedance in a 1D cavity, in the current section, the stability is analysed
by an equivalent approach dearer to control engineers: the poles calculation of the closed-loop transfer function. By
evaluating the poles of the closed-loop transfer function of the entire system coupling our EA with a 1D hard-walled
rigidly terminated acoustic waveguide, we verify that the effect of each control parameter on the unstable poles is in
accordance with the results of Section 3.1.

In Fig. 11 the block diagram relative to the pressure-based, current-driven impedance control is depicted, where
pm(s) is the pressure sensed by the microphone; v(s) and p(s) are, respectively, the velocity and pressure on the loud-
speaker diaphragm; Zrad(s) is the radiation impedance of the acoustic domain where the loudspeaker is placed; p̃(s)
and p̃m(s) are, respectively, the perturbations upon the pressure on the speaker (due for example to a secondary source),
and on the measured pressure (due to measurement noise and/or non-collocation effects) at the microphone location;
Ym0(s) is the mechanical mobility of the loudspeaker without control Ym0(s) = 1∕Zm0(s).We highlight that it is not possible to incorporate the radiation impedance Zrad(s) into Zm0(s) (as proposed in [23]
and [22]), because the transfer function Zrad(s) plays the role of a feedback term in the closed loop of our controlled
system.
The system will be stable against perturbations (either on the measurement or on the external field) if the transfer
function of the closed loop of Fig. 11 is stable. The closed loop transfer function between the pressure perturbation
on the speaker p̃(s) and the diaphragm velocity is given by Eq. (13):

v(s)
p̃(s)

=
Ya(s)

1 − Ya(s)Zrad(s)
, (13)

whereas the closed loop transfer function between the pressure perturbation on the measurement p̃m(s) and the
diaphragm velocity, is v(s)∕p̃m(s) = −Ya0(s)BlH(s)e−s�∕(1 − Ya(s)Zrad(s)). In both cases the stability margin is
given by the product Ya(s)Zrad(s) with respect to the unstable point +1, as reported in [25]. If the open loop (i.e.
open field) transfer function between the measured pressure pm(s) and the speaker diaphragm velocity v(s) is passive
(see Section 3.1 for definition of passivity), being the feedback operator Zrad(s) always passive, then the entire closedloop will also be passive as passivity is preserved under feedback interconnections [13]. Since passivity is a sufficient
condition for stability [13], then the closed loop will be unconditionally stable. In the plane wave assumption, the
acoustic load relative to a rigidly-terminated hard-walled duct of lengthL corresponds to the transfer function reported
in Eq. (14), which is derived from the plane wave decomposition (see Appendix A), thus supposing to stay below the
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Figure 12: Closed loop poles migration with varying control parameters: �M (left), Rat (right).

cut-on frequency of higher order duct-modes in the rigid duct.

Zrad(s) = −�0c0
esL∕c0 + Rterme−sL∕c0

esL∕c0 − Rterme−sL∕c0
. (14)

In the formula of Eq. (14), Rterm is the reflection coefficient of the termination, which is taken equal to 1 in what
follows. In order to analyse the stability, we choose to calculate the poles rather than to evaluate the Nyquist diagram
as the latter becomes laboured in case of resonances in the feedback term. The presence of the exponentials in Eq.
(13), makes it a transcendental equation. Therefore, for the poles calculation, we need to approximate it with a ratio-
nal proper transfer function. In order to do that, it is common practice [29] to approximate the complex exponentials
appearing in Eq. (7) and (14) by the Padé ratio of polynomials [37], whose order is adjusted in order to have perfect
matching with the actual transfer function in the frequency range of interest.
In Fig. 12 we compute the migration in the complex plane of the poles of the closed loop transfer function (13) with
L = 0.24 m, by varying the control parameters. The nominal values of �M , �K and Rat are the same as the ones of
Section 3.1. From Fig. 12 it is visible how reducing �M causes the unstable poles to increase their positive real-part
significantly, which means quicker divergence of pressure. Decreasing Rat also appreciably move the unstable poles
toward the rhp. The effect of reducing �K instead is double-sided and is reported in Fig. 13a, along with the absorp-
tion coefficient variation in Fig. 13b. Fig. 13a Zoom 1 shows that the smallest unstable pole increases its real part
for higher �K , whereas the higher unstable poles present opposite tendency (check Fig. 13a Zoom 2). This trend is in
accordance with the effect of �K on acoustical passivity showed in Fig. 13b.
Hence, the effects of the control parameters on stability are coherent with their effects on passivity presented in Section
3.1.

Both in this section and in Appendix A, we have supposed a conservative acoustic cavity in front of the EA. Similar
computations can be carried out by simulating the actual damping present in the cavity, in order to assess whether the
coupled system is actually stable or not. In the latter case, an obvious remedy is to add some damping into the system.
The next section propose a simple solution to restore the acoustical passivity of the EA at high frequencies. If we
are able to achieve acoustical passivity at any frequency, then the system will be stable whatever the acoustic cavity
wherein the EA is placed.
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(a) (b)
Figure 13: E�ect of �K on passivity (a) and stability (b).

3.4. Acoustic passivation
In order to enlarge the frequency bandwidth without becoming unstable, it is necessary in some way to restore

the acoustical passivity at high frequencies. In [38] four general possible passivation methods are presented: series,
feedback, feedforward and hybrid compensation. These methods are classically used in order to passivate a (non-
passive) plant before applying the controller, therefore exploiting the robust stability properties of passivity-based
control laws [38]. In our case, it is the entire plant+controller system which has to be acoustically passivated, and it
presents a time delay in series with the control itself. Therefore, a series passivation, generally through alternating
poles and zeros (such as high frequencies phase-lead or lead-lag compensators, as the ones proposed in [22]) does
not solve the problem. Indeed, while allowing passivity over a larger frequency range (leading to what Kelkar calls
“Band-Limited Positive Real systems” [38]), a series passivation would bring about a more serious loss of passivity
at the higher frequencies, as it is demonstrated by Eq. (8) in Section 3.2. Not even feedback compensation can
passivate a non-minimum-phase system [38], and in any case our architecture does not provide for full-feedback control
(feedback of both pressure and velocity). A possible solution is a feedforward compensation, that is a transfer function
between the input pressure and the output velocity which would add up to the entire system transfer function Ya(s)[38]. Nevertheless, it is hard, if not impossible, to conceive a feedforward acoustical passivation through an electrical
network or controller, acting directly on current without deteriorating the performance at the operating frequencies
and, mostly, being devoid of time delay. Predictor-like schemes [34] might be investigated, nevertheless, our SDOF
loudspeaker model does not describe the actual dynamics at high frequencies, likely worsening the problem at those
regions with spill-over effects. From here, the need to acoustically passivate our system by physically filtering the
high-frequencies. Hence, the most straightforward and intuitive solution is to physically apply a porous layer in front
of the loudspeaker membrane. Porous materials are renown for their good absorptive properties at high frequencies,
allowing to compensate for the shortage of acoustical passivity of our EA at those frequencies. In Fig. 14 an example
of application of a porous layer in front of the speaker is depicted. The porous layer must be attached on the support of
the loudspeaker so that there is never a contact between the speaker’s diaphragm in vibration and the porous treatment.
The application of the porous sheet can be seen as a passivation through an input-output transformation matrixM , as
the one proposed by Xia et al. [29]. In our case,M is the TransmissionMatrix relative to the porous medium described
in Eq. (15) where p1, v1 are, respectively, the input pressure and output velocity of the EA system, while p2, v2 are,respectively, the input pressure and output velocity of the entire EA plus porous layer system (see Fig. 14).

[

p2
v2

]

=
[

M11 M12
M21 M22

] [

p1
v1

]

=
[

cos(kcd) −jzc sin(kcd)
−jz−1c sin(kcd) cos(kcd)

] [

p1
v1

]

(15)

The terms of the passivating Transformation Matrix are introduced in the block diagram of Fig. 15, where the EA
is represented by its acoustic mobility Ya(s). Observe that the elements of the transformation matrix for the porous
layer, cannot be written as proper transfer functions, therefore limiting the possibility to find an electrical equivalent
to the porous passivation.
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Figure 14: Sketch of the porous layer arrangement on the EA.

Figure 15: Block diagram of the input-output transformation matrix for passivation applied to our controlled EA.

From Eq. (15), the acoustic impedance of the EA (the cell) with a porous layer in front, can be derived (it is the
so-called Impedance Translation Theorem [39]).

Z2(j!) =
p2(j!)
v2(j!)

= zc(j!)
jZ1(j!) cot(kc(j!)d) + zc(j!)
Z1(j!) − jzc(j!) cot(kc(j!)d)

(16)

where Z2(j!) is the acoustic impedance of the EA with porous layer applied; Z1(j!) = 1∕Ya(j!) is the acousticimpedance of the EA without porous layer; kc(j!) and zc(j!) are the wave number and the characteristic impedance of
the porous medium in the equivalent-fluid modelling [39], here obtained by the Miki semi-empirical power laws [40]
based upon the flow resistivity.
In Fig. 16 we simulate the normal absorption coefficient (on the left) and the poles of the closed loop transfer function
(on the right) of the EA (in blue) and of the EA with a porous layer applied (in red). The porous layer considered here,
has thickness d = 1.2 cm and flow resistivity � = 1× 104 rayl/m, as a typical value for foams. The mobility of the EA
with porous layer applied Y2(j!) = 1∕Z2(j!) has a transcendental expression, thus Y2(j!) has been substituted by a
proper rational transfer function which perfectly fits the actual Y2(j!) in all the frequency range of interest (not shown
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Figure 16: Simulated absorption coe�cient (left) and poles of the closed loop transfer function (right), in case of simple
EA (blue) and EA plus porous layer (red). The control parameters for the EA are set to: �M = �K = 0.3, Rat = �0c0. The
porous layer has a thickness of 12 mm and �ow resistivity � = 1 × 104 rayl/m.

here), in order to evaluate the poles of the closed loop transfer function of Eq. (13) (in Eq. (13) read Y2(s) instead of
Ya(s) in case of porous layer applied).From the simulations of Fig. 16, the porous sheet has the effect of restoring the passivity and therefore the stability,
without practically affecting the performance of the EA in the operating frequency range (around the resonance of the
loudspeaker).

We remind that the higher the delay, or the lower the �M or Rat parameters, the more serious will be the shortage
of passivity. Therefore, to attain full passivation (to re-establish a positive “passivity index” [29]), we need a more
performant (in terms of high frequency absorption) porous layer, which usually means a thicker sample and/or a higher
flow resistivity. Another possible improvement for the acoustic passivation, is to add a thin air-gap between the EA and
the porous layer, so as to increase high frequency viscous dissipation at the porous location [39] at certain frequencies,
as simulated in Fig. 17. To calculate the resulting acoustic impedance in front the porous layer, the Impedance Trans-
lation Theorem has been applied recursively as described in [39]. The air-gap thickness is an additional variable which
could be adjusted for the optimal design of the acoustic passivation. Fig. 17 also shows the effect of placing the porous
layer just in front of the speaker (and not in front of the microphones). The analytical derivation of the corresponding
equivalent impedance is reported in Appendix C. Apparently, � is significantly affected at the resonance. This result
will help in the interpretation of the experimental curves reported in Section 4. In Appendix C, the effect of varying
the flow resistivity � is also displayed, showing how the porous layer should be carefully chosen in order not to degrade
the performance of the EA, or even endanger acoustical passivity in the operative bandwidth.

We underline that this passivation technique should not be confused with a hybrid impedance control as the one
proposed by [8], because in our case the porous element has the only scope of restoring passivity at high frequencies,
and it should not (directly) affect the performance of the EA around the targeted bandwidth of absorption.
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Figure 17: Simulated normal absorption of the EA only (in blue), of the EA plus a porous layer (in red), of the EA plus a
porous layer with a 1 cm air-gap between them, and in case of porous layer applied just on the speaker (see Appendix C).
The EA control parameters are: �M = �K = 0.2, Rat = �0c0; the porous layer thickness considered is 12 mm with a �ow
resistivity � = 1 × 104 rayl/m.

4. Experimental tests
In this section, the EA is experimentally tested in order to verify the effect of the time delay on passivity and sta-

bility simulated in the previous sections. In Fig. 18 there is a picture of the EA produced in FEMTO-ST Institute,
Department of Applied Mechanics. The EA is composed by a loudspeaker and four microphones at the corners used
to estimate an average pressure on the speaker diaphragm. The back case accommodates the necessary electronics for
the control. In Fig. 18 on the right, a layer of 12 mm of melamine foam is applied in front of the loudspeaker (but
not in front of microphones), in keeping with the sketch of Fig. 14. Fig. 19 shows the Howland current pump circuit
[24] adopted in the EA for the current-driven control. It retrieves the one proposed in [23], including an operational
amplifier, two input resistors Ri, two feedback resistors Rf , and a current sense resistor Rs. The resistance Rd and
capacitance Cf constitutes the compensation circuit to ensure stability with the grounded load [41]. The corrector
transfer functionH(s) is digitally implemented by the Infinite Impulse Response technique (IIR) [42], through a pro-
grammable digital signal processor (DSP) specifically designed for the EA in the FEMTO-st Institute, as presented in
[43].

In Fig. 20, the Kundt’s tube adopted for the normal absorption measurements is photographed. The tube is made
by plexiglass and supposed rigid, it is 60 cm long and has a squared cross-section ofD = 53mm side (cut-on frequency
fcut−on = c0∕2D = 3.2 kHz). The two microphones for the Two-Microphone Method (2MM) [44] are spaced by 4
cm along the tube and the distance between the EA and the centre of the closest microphone is 28 cm. The source is
an external loudspeaker reproducing a swept-sine noise signal from 150 Hz to 3.2 kHz, which are the lower and upper
limits of the spectra plotted in this section. The lower limit is due to the minimum frequency at which the (small)
loudspeaker source is capable of emitting sufficient sound power, while the upper limit is fcut−on. The EA is allocated
on the other end of the duct, thanks to an appropriate parallelepiped casing where to clasp our EA. On the right of Fig.
20 there is the internal view of the tube.
4.1. Passivity tests

The absorption coefficient is retrieved according to the ASTM [44], to check the high-frequency behaviour induced
by time delay and verify the contribution of each control parameter on the high-frequency passivity. Fig. 21 illustrates
the variation of the absorption coefficient with the control parameters, as in the simulations of Fig. 4.

Page 18 of 31

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Figure 18: Our EA, before (left) and after (right) the application of the porous layer.

Figure 19: Scheme of the electronic components of the EA control.

In the actual EA, the piston-mode modelled by Eq. (1) and taken into account in our control law (3), is only valid
around the resonance frequency f0 (which is about 500 Hz) of the uncontrolled EA. At about 1.5 kHz, another mode
appears in Fig. 21, which anyway seems to be either amplified or weakened in a concordant way with the piston-mode.
Nevertheless, an unexpected shortage of passivity appears at lower frequencies between 150 and 225 Hz, which is
attenuated for higher values of �K and Rat. This effect is not due to the time delay but it might be related to dynamic
uncertainties and spill-over effects [45] on a low-frequency mode of the speaker which is not taken into account in
our control law, or to acoustic leakage inside the loudspeaker box. Another unwanted behaviour happens around the
resonance frequency f0 of the loudspeaker: the absorption coefficient presents a dip just before f0, which critically
descends toward the negative axis of � the more we shift the resonance frequency fat of the EA with respect to f0.This was predicted by the simulations of Fig. 4 but for higher values of �K∕�M . The anticipation of the negative deep
for lower values of �K∕�M suggests either an underestimation of the time delay in simulations, or the presence of
uncertainties in the Thiele-Small parameters. We remind that both dynamics and parameter uncertainties are the price
to pay by a model-inversion based control, and their effects shall be investigated in a future contribution.
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Figure 20: Kundt's tube.
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Figure 21: Variation of the measured normal absorption coe�cient � with respect to the control parameters, in case of a
delay in the control loop equal to � = 2×10−5 seconds. The default values chosen for the control parameters are �M = 0.2,
�K = 0.2 and Rat = �0c0.

In this paper we focus on the time delay. Fig. 21 confirms that increasing �M raises the high-frequency absorption,
reducing �K also slightly improves high-frequency passivity, while if Rat is significantly augmented an excess of
passivity is promoted. These experimental trends are in agreement with the simulations of Section 3.1.

In Fig. 22 the absorption coefficient is measured for two different time delays. By reducing the number of mi-
crophones adopted by the EA (from four to two), it was possible to increase the sampling frequency fs in the digital
implementation, and consequently reduce the time delay which is directly linked to fs. It is evident the improvement
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Figure 22: Measured normal absorption coe�cient � for two di�erent sampling frequencies fs and consequent time delays.
The control parameters are �M = 0.3, �K = 0.3 and Rat = �0c0.

of high-frequency acoustical passivity obtained thanks to a shorter time delay. We also note that reducing the number
of microphones adopted by the EA has no impact on the performance for normally incident plane waves, except for the
low-frequency loss of passivity. This might be explained by an accentuation of the spill-over effect in using only two
microphones instead of four, and probably suggests that the low-frequency mode of the loudspeaker (between 150 and
225 Hz) is asymmetric. In Fig. 23 the measured normal absorption of the EA, with �M = �K = 0.3 and Rat = �0c0,is compared with the case of the layer of melamine foam applied in front of the speaker. The thicker the porous layer,
the more passivity is gained at high frequencies, whereas the EA performance at the resonance gets significantly mod-
ified. We can see that the addition of the foam layer increases the oscillation of � at f0 (due to the non-coincidence
of the pole and zero of Ya(s)) induced by the time delay. Clearly, an additional dephasing is introduced, which is
further increased if the foam does not fully cover the EA surface, but just the speaker. Fig. 17, in Section 3.4, proves
that the non-uniform application of the foam adds-up to the oscillation of � at f0. In Appendix C, also the effect of
varying the flow resistivity � is simulated according to the Miki semi-empirical model [40], in order to highlight how
EA resonance is more affected for higher flow resistivities (as the porous becomes operative at lower frequencies), to
the point of endangering acoustical passivity. In Fig. 17, we also note a slight shift toward higher frequencies of the
resonance peak, which was not predicted by our simulations. Nevertheless, by modifying the porous model employed
(Johnson-Champoux-Allard [39] instead of the Miki [40] one) along with proper porous properties identification, as
well as taking into account the possibility of vibrational contributions of the foam, might allow to fully describe the
actual impact of the porous. Section 3.4 and Appendix C provides useful avenues that should be accounted for to
predict the resulting equivalent performances, as well as to successfully chose a proper passivating layer.
4.2. Stability tests

In this section we propose to experimentally assess the effect of the control parameters and the porous layer on the
instability induced by time-delay. Presenting experimental results about the instability of a system, is not such a trivial
task. Here, we use the time histories of sound pressure recorded in a hard-walled duct with the EA on one side and a
rigid termination on the other, at the upsurge of instability. In Fig. 24 the experimental setup for the stability tests is
shown. A Brüel and Kjaer impedance tube has been employed as hard-walled duct. The rigid termination is given by
the rigid piston of the Brüel and Kjaer equipment. The EA is allocated on the right end side of the duct thanks to an
appropriate cylindrical casing where to clasp our EA. The distance between the EA and the rigid termination is 0.24
m and the diameter of the duct is 0.1m. In Fig. 25, the time history of the recorded sound pressure inside the cavity is
plotted in case of EA with (red curve) and without (blue curve) the foam layer applied. The control parameters adopted
are �M = �K = 0.15, Rat = 3�0c0. As expected, with the porous layer the imaginary part of the unstable poles are
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Figure 23: Measured normal absorption coe�cient � in case of a layer of melamine foam applied of varying thickness.

Figure 24: Experimental setup for stability tests. Brüel and Kjaer tube with rigid piston termination on the left and EA
on the right.

lower (slower divergence of the time signal), i.e. the reflection coefficient is reduced (see Appendix A), as predicted
by Fig. 16.
In Fig. 26, we recorded the time histories for different values of �M = �K and of Rat, with the foam layer applied.
The nominal values of the control parameters are: �M = �K = 0.15 for the Rat variation, and Rat = �0c0 for the
�M = �K variation. We can see that augmenting �M = �K , as well as increasing Rat reduces the imaginary part of
the unstable poles, as expected. For �M = �K = 0.24 and Rat = �0c0, the system is stable.
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Figure 25: Time history of the pressure signal recorded at the upsurge of instability, in case of absence (blue curve) and
presence (blue curve) of the 12 mm foam layer.
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Figure 26: Time history of the pressure signal recorded at the upsurge of instability, for di�erent values of �M = �K and
of Rat, with the foam layer applied.

5. Conclusions
The aim of this contribution was to increase the awareness about the main cause of instability, the time delay,

in the application of a current-driven, pressure-based impedance control. The corrector is synthesized based upon
model-inversion. First of all, we showed the effect of each target impedance parameter on the bandwidth of efficient
absorption, and, in case of time delay, on acoustical passivity. Time delay affects the model-inversion at the original
resonance of the actuator, endangering acoustical passivity around this frequency as more as the target resonance is
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shifted with respect to the original one. Such issue could be coped with, by properly designed compensators, based
upon the precise identification of time delay. This will be addressed in the next contribution. More critically, time
delay jeopardize high frequency acoustical passivity, which cannot be solved by classical compensators, because of
an integral constraint which is for the first time presented and demonstrated in this paper. Therefore, we proposed a
physical filtering of high-frequencies by a porous layer on the EA. Increasing the margin of acoustical passivity, the
bandwidth of efficient absorption can be enlarged. Finally, we correlated the discussion on high-frequency acoustical
passivity with instability upsurge, in case of a 1D cavity placed in front of the EA. The correlation has been conducted
first analytically/numerically, and then experimentally.
Future work will be dedicated to synthesize correctors devoid of time-delay effects around the original resonance.
For that purpose, time-delay should be identified precisely. The experimental tests in case of porous layer, demand
deeper analyses on the interaction between the EA and the porous. An optimal design of the EA should take into
account the acoustical passivity requirement since the very early stage design. This means to include the time-delay
effects in the model-inversion, as well as to research optimal porous absorbers which would minimally affect the EA
performance at the operative bandwidth, and maximally passivating it at higher frequencies. The inevitable impact
of the porous passivation in the operative bandwidth should be compensated by re-defining the corrector in a slightly
iterative process. Finally, as the integral constraint for purely passive systems allowed to design optimal absorbers
with minimum thickness [30], analogously, our integral constraint presented in Section 3.2, might be exploited for
synthesizing optimal correctors with minimal energy supply. Such methods would be also enriched by more robust
approaches, addressing both parameter and dynamic uncertainties.

Appendix A Instability in a 1D acoustic cavity
Let us consider a 1D hard-walled acoustic cavity as depicted in Fig. 27 with a rigid termination on one side and a

generic acoustic element, which can consist of our EA, on the other.
According to the plane wave decomposition [46] the acoustic pressure in the duct is described by p(x, t) = p+(x, t)+

p−(x, t), where p+(x, t) and p−(x, t) are the forward and backward propagating plane waves respectively. Introducing
the complex frequency Ω = ! + j� as in [46], the solution of the lossless wave equation can be written in terms of
Fourier components, as:

p(x, t, jΩ) = p+0 (jΩ)e
j(Ωt−Kx) + p−0 (jΩ)e

j(Ωt+Kx)

= p−0 (jΩ)
(

R(jΩ)ej(Ωt−Kx) + ej(Ωt+Kx)
)

,
(17)

where K = Ω∕c0 is the complex wave number and R(jΩ) = p+0 (jΩ)∕p−0 (jΩ) is the complex reflection coefficient.
By imposing the boundary condition on x = 0:

v(0, t, jΩ) = −Ya(jΩ)p(0, t, jΩ), (18)
where Ya(jΩ) is the acoustic mobility at x = 0 (referred to the inward velocity, which explains the minus sign in Eq.

(18)). For the Euler equation [46], the acoustic velocity is v(x, t) = 1
�0c0

p(x, t) = 1
�0c0

(p+(x, t) − p−(x, t)). Therefore,
from Eq. (17) and (18), we retrieve the definition of the reflection coefficient [35]:

R(jΩ) =
1 − Ya(jΩ)�0c0
1 + Ya(jΩ)�0c0

(19)

By imposing the rigid boundary condition on x = L:

v(L, t, jΩ) = p−0 (jΩ)
(

R(jΩ)ej(Ωt−KL) − ej(Ωt+KL)
)

= 0 (20)
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Figure 27: 1D hard-walled acoustic cavity with an EA on the left end and a rigid termination on the right end.

From Eq. (20), we get Eq. (21) and Eq. (22):

R(jΩ) = e2jKL = e2j!∕c0Le−2�∕c0L (21)

ln |R(jΩ)| = −2
�L
c0

(22)

Therefore, a non-passive acoustical device (with |R(jΩ)| > 1) in a lossless cavity, generates a negative value of �,
which means instability. In Section 3.3 the analysis is carried out in terms of the Laplace variable s. The calculated
poles sp corresponds to jΩp, where Ωp are the complex natural frequencies of the system. Therefore, an |R(sp)| > 1produces a Re{sp} = −� > 0. In addition, according to Eq. (21), the Re{sp} increases in absolute value for shorter
length of the duct, i.e. the upsurge of instability is quicker in a smaller acoustic cavity, as expected.

Appendix B The integral constraint on the reflection coefficient
Let us consider the complex function

F̃ (s) = 1
s2
ln[R̃(s)], (23)

where:

R̃(s) = R(s)
∏

n

s + s∗n
s − sn

. (24)

By defining:

F (s) = 1
s2
ln[R(s)], (25)

and:

G(s) = 1
s2

∑

n
ln
(s + s∗n
s − sn

)

, (26)
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Figure 28: Contour in the complex plane for the application of the Cauchy Integral Theorem to the function F̃ (s) de�ned
in Eq. (23).

then:

F̃ (s) = F (s) + G(s), (27)
The reflection coefficient transfer functionR(s) is multiplied by∏n

s+s∗n
s−sn

in order for R̃(s) to not have “unstable zeros”
(zeros with positive real part). For a stable system then, R̃(s) has neither poles nor zeros in the right-half complex
plane (rhp) and ln[R̃(s)] is analytic in the rhp. The use of the natural logarithm in Eq. (23) is convenient in order to
separate numerator and denominator of a rational function (like R(s)), which is indeed a common practice in deriving
the Bode integral constraints in the classical control theory (see [32] for example). The s2 at the denominator is present
in order to compensate for the unboundedness of ln(R̃(s)) for large |s|.
Hence F̃ (s) is also analytic in the whole rhp except the origin, therefore for the Cauchy–Goursat Theorem [32]:

∮C
F̃ (s)ds = 0 = ∫Ci−�

F̃ (s)ds + ∫C�
F̃ (s)ds + ∫C∞

F̃ (s)ds. (28)

where C� is the closed counter-clockwise right circular indentation at the origin, of infinitesimal radius �, C∞ is the
clockwise semi-circle of radius which tends to infinity, and Ci−� is the entire imaginary axis except the origin. Let us
evaluate each integral on the rhs of Eq. (28). From the Residue Theorem [36]:

∫C�
F̃ (s)ds = j�Res{F (s), 0} + j�Res{G(s)}. (29)

The residue of F (s) in zero, Res(F (s), 0), is calculated reminding that F (s) has a double pole in zero (the s2 at the
denominator).

Res{F (s), 0} = lim
s→0

d
ds
s2F (s) = lim

s→0

d
ds
ln(R(s)) = lim

s→0

d
ds

{

ln[1 − �a(s)] − ln[1 + �a(s)]
}

. (30)
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The limit appearing in Eq. (30) can be separated in the two following contributions:

lim
s→0

d
ds

{

ln[1 − �a(s)]
}

= lim
s→0

− d�a(s)
ds

1 − �a(s)
= − lim

s→0

d
ds
�a(s). (31)

lim
s→0

d
ds

{

ln[1 + �a(s)]
}

= lim
s→0

d
ds
�a(s). (32)

where �a(s) is the normalized acoustic mobility of the controlled EA: �a(s) = Ya(s)�0c0. Reminding the expression
of Ya(s) of (7), it appears the mechanical mobility in the Open Circuit case Ym0(s) = 1∕Zm0(s) which has a zero in
zero, and the controllerH(s) which must be a proper and stable transfer function. Hence, also �a(s) must have at least
a zero in zero.
From the expression of �a(s) from Eq. (7), and developing the derivative, we find

lim
s→0

d
ds
�a(s) =

�0c0
Ka0

(

1 − Bl
Sd

lim
s→0

H(s)
)

. (33)

Thus, from (30), (31) and (32), and (33), we get the integral along the first term on the rhs of Eq. (29):

j�Res{F (s), 0} = −2j�
�0c0
Ka0

(

1 − Bl
Sd

lim
s→0

H(s)
)

. (34)

The residual of G(s) on the rhs of Eq. (29) instead sums up to zero, hence:

∫C�
F̃ (s)ds = −2j�

�0c0
Ka0

(

1 − Bl
Sd

lim
s→0

H(s)
)

. (35)

Also the integral alongC∞, can be written in terms of the contribution of F (s) andG(s). From the Jordan’s Lemma
[36]:

∫C∞
F̃ (s)ds = −j� lim

s→∞
sF̃ (s) = 0 (36)

because

lim
s→∞

sF (s) = lim
s→∞

1
s

{

ln[1 − �a(s)] − ln[1 + �a(s)]
}

= −2 lim
s→∞

1
s
�a(s) = 0. (37)

and

lim
s→∞

sG(s) = lim
s→∞

1
s

{

ln
(s + s∗n
s − sn

)}

= 0, (38)

Finally, since F (s) is an even function of s according to its definition (25), the integral along Ci−� becomes:

∫Ci−�
F (s)ds = j∫

+∞

−∞
F (j!)d! = 2j∫

+∞

0
F (j!)d! (39)
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The contribution of G(s) over Ci−� is instead:

∫Ci−�
G(s)ds = −2j�

∑

n

Re{sn}
|sn|2

, (40)

so we get the last contribution of F̃ (s) on Ci−�:

∫Ci−�
F̃ (s)ds = 2j∫

+∞

0
F (j!)d! + 2j�

∑

n

Re{sn}
|sn|2

(41)

Therefore, inserting Eq. (41), (36) and (34) in (28), we get the integral constraint:

−∫

∞

0

1
!2

ln |R(j!)|d! =
��0c0
Ka0

(

1 − Bl
Sd

lim
s→0

H(s)

)

− �
∑

n

Re{sn}
|sn|2

, (42)

We highlight that Eq. (8) is valid for any proper transfer functionH(s) applied as a controller in the current-driven,
pressure-based impedance control. This means that for any type of controllerH(s) (even different from the one defined
in Eq. 3 and analysed in this contribution), the integral constraint (8) still applies. We want to emphasize that such
integral constraint, for purely passive resonators retrieves the one found by Yang in 2017 [30], which has its analogous
for electro-magnetic waves in the work of Fano [47] and Rozanov [48]. The difference between our formalism (based
upon the Laplace complex variable s, dearer to control engineers) and the one provided by [47], [48] and [30] (based
upon the complex wave-length �), is simply caused by the fact that Eq. (8) presented in this paper, was originally
obtained without awareness of the previous works of Fano, Rozanov and Yang.
Observe that this integral constraint is different from classical Bode’s integral constraints on sensitivities (see [32]),
as it does not apply to a sensitivity transfer function, but to a bilinear transform of the controlled system transfer func-
tion. Nevertheless, both Bode’s integral constraints and the one provided in [30] (and extended here), are based on the
causality condition.

Finally, we underline that the integral constraint on the reflection coefficient for normal incidence, remains valid
for any angle of incidence as long as Rn is substituted by

R�(!) =
� (!)∕ sin � − 1
� (!)∕ sin � + 1

, (43)
where � (!) is the normalized acoustic impedance of the EA and � is the angle of incidence, i.e. the angle between

the incident pressure field and the tangent to the boundary (normal incidence is for � = �∕2). For � ≠ �∕2 then, Eq.
(8) still holds, with sn being the zeros of R�(s).

Appendix C Equivalent impedance in case of porous layer applied just on the speaker
The experimental test-bench showed in Section 4 did not allow to fully cover the EA cell with the porous layer.

Hence, only the speaker was layered by the melamine foam. This significantly affects the normal absorption. Below,
we analytically derive the equivalent impedance assuming that the pressure used in the EA controller (pm) is not filteredby the porous layer, see Fig. 29. Hence, the acoustic field cannot be considered as planar over the EA (on section 1).
In order to find an analytically convenient expression, the hypothesis of plane wave has been retained: a plane wave
field on the speaker is considered as different from the plane wave field on the microphone. Looking at Fig. 29, the
acoustic variables are assumed as uniforms over the full section 2, while on section 1, the acoustic field is split in two
parts: the one in front of the speaker (characterized by p1, v1), and the one in front of the microphone (defined by pm).Assuming the plane wave between section 2 and the microphone position, we can write:

pm = cos(k0d)p2 + j�0c0 sin(k0d)v2, (44)
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Figure 29: Sketch of EA with porous layer on speaker.

with k0 = !∕c0. The pm of Eq. (44) must be inserted in the loudspeaker dynamics Eq. (2). In turn, the acoustic
variables on section 2, are obtained from the transmission matrix of Eq. (15), in terms of p1, v1. We can hence retrieve
the effective acoustic mobility on the speaker diaphragm v1∕p1:

Ya1 = Ya0

1 − Bl
Sd
He−j!�

[

cos(k0d) cos(kcd) +
�0c0
zc
sin(k0d) sin(kcd)

]

1 + Ya0
Bl
Sd
He−j!�

[

− jzc cos(k0d) sin(kcd) + j�0c0 sin(k0d) cos(kcd)
] , (45)

By applying the translation theorem of Eq. (16), we can finally get the equivalent mobility on section 2. This
simple analytical derivation serves to provide a fast estimation of the effect of placing the porous just in front of the
speaker. In this simple analytical derivation, the plane wave assumption is a strong hypothesis, which neglects the
actual non-planar effects. Nevertheless, it allows to quickly estimate the effect of placing the porous layer on the sole
diaphragm, showed in Fig. 17.
In order to give an indication about the impact porous properties have on the equivalent �, in Fig. 30 the flow resistivity
� has been varied in the Miki [40] semi-empirical model. In Fig. 30 the porous has been supposed applied on the
entire EA, demonstrating the importance of the porous properties as well, on the equivalent absorption at resonance.
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Figure 30: E�ect of �ow resistivity � of a porous layer of thickness 12 mm, applied on the entire EA, on the absorption
coe�cient, with focus around resonance.
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