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Abstract: This paper presents a new method of fault detection based on residual signal
generation. Most of the existing diagnostic methods that use the residual to detect a failure
are often based on the knowledge of the system model. The developed method does not
require a precise knowledge or deep information about the system model. It is based on the
reconstruction of the system output via an ultra-local model and a model-free controller. The
reconstructed/estimated output is used to build the residual signal which is the fault indicator.
Several simulation tests have been performed to evaluate the potential of the proposed approach
for fault diagnosis. A fault on an actuator of the system is simulated in linear, non-linear and
multi-input non-linear case studies. The simulation results reveal that the fault is successfully
detected for all these systems under a noisy environment.
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1. INTRODUCTION

A fault can be defined as an unauthorized deviation of
one or more system parameters from normal operation to
unusual function. In recent years, researchers have become
increasingly interested in Fault Detection and Diagnosis
of systems due to their sensitivity which requires a high
level of security Venkatasubramanian et al. (2003). The
presence of a fault can be detrimental to both the machine
and the human user when the detection is not performed
in time.
Several fault detections tools have been developed in re-
cent years. They can be classified in two main approaches:
the first one based on data and signal processing Schwab
et al. (2018). Libal and Hasiewicz (2018) proposed new
wavelet representation rules for fault detection. Sánchez
et al. (2018) introduced a variable frequency sinusoidal
signal into the closed loop to examine the consistency of
the output signal with the fault signature. The second
one is based on the analytical model Gertler (1991). The
latter is also called the model-based approach; it relies on
knowledge of the system dynamics to build a model that
reflects the most realistic behavior of the system. In the
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model-based approach, fault detection can be performed
by evaluating a residual signal Fliess et al. (2004) or
by estimating and identifying fault variables Join et al.
(2005). The residual signal is generated by comparing the
output of the controlled system with the estimated output.
Observers are widely used for fault detection, either with
the estimation of the system output or with the system
states whose measurement is not accessible. Meziane et al.
(2015) designed a sliding mode observer for the diagnosis
of three-cell power converters. The objective is to detect a
parametric fault that leads to a change in the value of
the capacitor, which is characterized by a deviation in
the dynamics of the system. An estimation of states and
defects is made via a takagi-sugeneo observe in Garćıa
et al. (2018). Rozas et al. (2018) applied the concept
of analytical redundancy by residue generation to detect
faults associated with changing on lithium-ion battery
parameters. Model-based methods are relevant for fault
detection, but information and knowledge of the model is
mandatory. The main challenge before fault detection is
to find a model that accurately describes the behavior of
the system.

In this paper a novel Model-Free Fault Detection (MFFD)
method is presented. This MFFD relies on the model-
free control (MFC) strategy introduced by Fliess and Join
(2013). In MFC, an ultra-local model that represents the
behavior of the system in a very small time frame is



used to design the controller. In the proposed MFFD
method, the system output is estimated through the ultra-
local model employed by the MFC. A residual signal is
generated between the actual output of the system and the
estimated output in order to detect the fault. Therefore,
no information about the system model is needed to detect
the fault. In addition, the ease of online implementation
with a low computational cost are the main advantages of
the proposed method. The MFFD aims to detect at least
one fault on the actuator for a real-time application.

The paper is structured as follows: in section 2, the MFFD
strategy is detailed. Section 3 presents the simulation
results obtained for linear and non-linear systems. Con-
clusion and prospects are presented in section 4.

2. MODEL FREE FAULT DETECTION

As evoked in the previous section, the proposed method
is based on the model-free control. A brief overview of the
principle of MFC is presented below.

2.1 Model free control:

Model-free control or intelligent PID controllers is suitable
for the control of non-linear systems due to the advantage
of replacing the global model of the system with an ultra-
local model, which is described in more detail in Fliess
and Join (2008). The estimation of the system dynamics
is done on-line via the input and output of the system, this
method suitable for the control of complex systems Barth
et al. (2020). The ultra-local model is defined by:

y(v) = F + α.u (1)

Where: α is a non-physical parameter. F represents the
dynamics of the system. (v) is the order of derivation of
the output y and u is the input of system.

Polack et al. (2019) presented a method to identify the α
parameter. In most applications this parameter is fixed,
however Yaseen and Bayart (2018) considered α as a time
varying parameter. In fact, the model-free control relies on
the good estimation of F . Mboup et al. (2009) proposed
an algebraic estimation method that is robust in a noisy
environment. The estimate of this function is given by:

F̂ =
−6
T 3

∫ t

t−T

(T − 2t)y(t) + αt(T − t)u(t)dt (2)

Where T > 0 might be quite small and [t − T ; t] cor-
responds to the sliding windows of integration interval.
Closing the loop with the intelligent controller iP :

u(t) =
1

α

(
−F̂ + ẏd + kpe

)
(3)

Where: yd is the desired trajectory, e is the tracking error
defined as e = yd−y and kp is the gain of the proportional
controller to be tuned.

2.2 Model free fault detection:

The developed method is based on the generation of a
residual between the measured output and the estimated
output from the ultra-local model in (1). Estimating this
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Fig. 1. Diagram of the MFFD and MFC

output does not require any prior knowledge of the sys-
tem design, which is the main advantage over traditional
methods. The idea is based on the reconstruction of the y
from the command u and the function F̂ which represents
the dynamics of the system. The Fig. 1 shows the diagram
of MFC and MFFD.

In a continuous and theoretical sense, y for any multi-order
system can be written as:

y =

∫ t

0

(F (τ) + αu(τ)) dτ (4)

However, for various reasons (mainly numerical), the esti-
mate of F is erroneous, can be written as follows:

F̂ = F −∆F (5)

Substituting (5) into (4) yields:

y =

∫ t

0

(
F̂ (τ) + αu(τ) + ∆F (τ)

)
dτ (6)

In the case where the estimation error ∆F = 0, the
estimated ŷ = y in the presence or absence of defect. But
in a more realistic context and in practice the estimation
error is not 0 (∆F ̸= 0). The sources of this error
are multiple: variation of the system dynamics, noise,
perturbations, variation of the model-ultra-local due to a
defect, disturbances.
Since the ∆F is unknown the calculated ŷ becomes:

ŷ =

∫ t

0

(
F̂ (τ) + αu(τ)

)
dτ (7)

Due to the absence of the ∆F terms in (7) mainly for
numerical reasons, the calculated ŷ is different from the
measured output y. For this raison, ŷ requires a correction,
a β parameter is introduced to adjust this estimation error.
The residual can be written in the following form:

r = y − βŷ (8)

Any bias is interpreted as a fault, there is no distinction
between a defect and a disturbance.
When a fault appears, the estimation error is no longer
directly related to y/yd, causing a bias on the residual.

Calculation of β: The β parameter is introduced to
compensate the estimation error. In the case of linear
systems, this parameter is permanently determined at the
first change of the desired trajectory. With the assumption
that the system is not affected by a fault during the first



setpoint change.
For non-linear systems case, β does not result from a
linear combination of inputs/outputs and their derivatives.
The evolution of this parameter depends on the dynamics
of the system which is linked to the changes of the
setpoint. Therefore, a new determination of this parameter
is necessary for each new setpoint change. The calculation
of β is performed as follows:

Algorithm 1 β calculation procedure

1: if ẏd = 0 and e ≈ 0 then
2: β ← β
3: else
4: β ← y

ŷ

5: end if

For linear systems, β is calculated via Algorithm 1 just for
the first setpoint. The retained value remains fixed for all
setpoint changes.

3. SIMULATIONS RESULTS

To illustrate the proposed fault detection method, simula-
tion tests are performed for linear and non-linear systems.
All systems are controlled by MFC, the fault is simulated
by a power loss on the actuator. A white Gaussian noise
is added to the output to assess the robustness of this
approach in a noisy environment.

3.1 Linear systems

First order system: A first order linear system described
as follow is considered:

ẏ = −5y + 5.u.f

Where the iP controller parameters are: α = 5, Kp = 10
and Te = 10ms. An actuator fault is associated with the
variable f . In case of normal operation f = 1, and in case
of fault f < 1.
First, to better illustrate the method, a case with no faults
is considered, i.e. f = 1. Fig. 2 shows the measured output
y and the estimated output ŷ. It can be seen that the
estimated output has a different magnitude than y due
to the ∆F term which is not calculated. For this reason,
the parameter β is added to correct this difference. The
β is calculated with Algorithm 1. The obtained value of
β is 0.643 and is constant. As shown in Fig. 3, at 31s,
the actuator fault occurs with f = 0.6. From this point,
the estimation of the output diverges from the measured
value. As seen in Fig. 4, before the fault, the residual is null
whatever the setpoints. After the fault occurs, the residual
is 0.20 which means that the fault has been successfully
detected. It should be noticed that the iP is fault tolerant
controller. The fault compensation is done immediately,
it is interesting to determine if the system is in a fault
situation or not.

The Fig. 5 shows the evolution of the parameter β calcu-
lated by Algorithm 1. For the three amplitude changes of
the desired trajectory, β varies for a while but converges
after each trajectory change to a fixed value. This value
is retained at the first setpoint change for linear systems.
The value where β converges for this example is 0.643. The

Fig. 2. y and ŷ without correction

Fig. 3. y and βŷ for first order linear system

Fig. 4. Residual fault indicator

Fig. 5. Evolution of the β calculated by Algorithm 1

variations of β in the transient mode are due to the change
of the dynamics of F̂ which represents the behavior of the
system.



Fig. 6. y and βŷ for third order linear system

Fig. 7. Residual fault indicator

Third order system: A third order system described as
follows is considered:

Ẋ = AX +BU.f

Y = CX +DU

Where:

A =

[−3 −1.5 −0.5
2 0 0
0 1 0

]
, B =

[
1
0
0

]
, C = [1 4 4] , D = 0

The iP controller parameters are: α = 2.5, Kp = 3.5. The
actuator fault is simulated as in the previous example.
The β is fixed after the first change of setpoint, the value
retained is 0.94.

For this system the fault appears at the time of change
of the set point as shown in Fig. 6. The presence of the
fault causes a discrepancy between the estimated and the
measured output, which results in a divergence of the
residual signal as shown in Fig. 7. Of course, the controller
quickly recovers the deviation from the measured output
to follow the desired trajectory.

3.2 Non-linear systems

First non-linear system: A non-linear system described
by the following equation is considered:

ẏ = y2 + u.f

The parameters of iP controller are: α = 3, Kp = 5.
However, as mentioned in the previous section the value of
β changes with the magnitude of the setpoint change. The
Fig. 9 shows the evolution of β calculated with Algorithm 1
during the setpoint changes. This can be explained by the
fact that F̂ is not linear. A fault on the actuator is assumed
by changing the value of the parameter f . As shown in Fig.

Fig. 8. y and βŷ for non linear system

Fig. 9. Evolution of β

Fig. 10. Residual fault indicator

8 and Fig. 10, as soon as the fault appears at time 31s, the
residual signal deviates indicating the presence of a fault.

Three tank system: To examine the abilities of the
proposed method to detect acuator faults, a multivariable
nonlinear known as a three-tank system is investigated.
Several fault detection methods have been applied for
this system: Theilliol et al. (2000) use an observer with
unknown input to detect a sensor fault. Mesbah et al.
(2014) proposes a probabilistic approach for active tolerant
control. The three-tank system is shown in Fig. 11, this
system can be represented as in Fliess et al. (2005) by:



Fig. 11. Three tanks diagram

ẋ1 = −C1sign(x1 − x3)
√
| x1 − x3 |+

u1.f1
S

ẋ2 = C3sign(x3 − x2)
√
| x3 − x2 |−

C2sign(x2)
√
| x2 |+

u2.f2
S

ẋ3 = C1sign(x1 − x3)
√
| x1 − x3 |−

C3sign(x3 − x2)
√
| x3 − x2 |

y1 = x1

y3 = x3

y3 = x3

Where xi, i = 1, 2, 3 is the fluid level in tank i. The
control variables u1 and u2 are the flow input. The pa-
rameter fi, i = 1, 2 is associated with the actuator fault,
if fi < 1 fault is present. The constant C is defined as:
Cn = ( 1

S ).Spµn.
√
2.g, n = 1, 2, 3, S = 0.0154m, Sp =

5.105,g = 9.81m.s−2, µ1 = µ3 = 0.5, µ2 = 0.675.

The closed loop control with an iP controller is expressed
by:

u1 =
1

150

(
−F̂1 + ẏ1d + 1e1

)

u2 =
1

150

(
−F̂2 + ẏ2d + 2e2

)
where: e1 = y1d − y1 and e2 = y2d − y2. Join et al. (2004)
defined y2d by:

y2d = y3d −

(
−ẏ3d + C1sign(y1 − y3)

√
| y1 − y3 |

C3

)2

For fault detection, the residues are designed as follows:
r1 = y1 − β1ŷ1 and r2 = y2 − β2ŷ2. The evolution of
the parameters β1 and β1 is illustrated in Fig. 14. The
evolution of the parameter β does not converge to a
constant value after the change of trajectory contrary to
the case of linear systems.

The trajectory tracking is well provided with the iP con-
troller as shown in Fig. 12. Actuator faults are simulated
at 200s for the first pump and 2400s for the second pump.
Fig. 13 confirms that the iP controller tolerates the fault,
i.e. the output is maintained at the desired level in the
presence of a fault.
However, the estimate of the output y1 diverges at the
time of the fault occurrence on u1 as shown in Fig. 15.
The residual r2 remains stable around 0 until the fault
occurs on pump 2. The parameter β is calculated for each
new setpoint as described in the previous example.

Fig. 12. y and yd for setpoint tracking

Fig. 13. Measured and estimated outputs y and βŷ

Fig. 14. β1 and β2

Fig. 15. Residual fault indicator



4. CONCLUSION

A new fault detection method has been presented in this
paper, the proposed method is based on the ultra-local
model and the model-free control. The idea is to recon-
struct the output using the estimated dynamics of the
system and the applied control law. Once the estimated
output is obtained, it is corrected by a β parameter in
order to generate a residual signal which is the indicator of
the presence of a defect. This parameter is always constant
for the different setpoint changes for linear systems. On
the other hand, for non-linear systems, this parameter
evolves during the operating points of the system. A new
calculation of this parameter is mandatory when the set-
point changes. Simulation results show that the proposed
method is able to detect an actuator fault for linear,
nonlinear and nonlinear multivariable systems. The fault
detection is done online by generating a residual signal.
The proposed approach seems very promising for the di-
agnosis of complex systems where no knowledge of the
precise mathematical model of the system is required. In
addition, the ease of on-line implementation with low com-
putational cost are the main advantages. However, there
are some aspects that need to be addressed to make the
MFFD more effective. Among these aspects, it is necessary
to distinguish between disturbances that can affect the
system and defects. Concerning non-linear systems, the
fault cannot be detected during setpoint changes. For this
purpose, our research focuses on the enhancement of an
alternative way to determine the β parameter which is
very important in the proposed method. An experimental
application is also planned to test the proposed method
on-line.
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Brake and velocity model-free control on an actual
vehicle. Control Engineering Practice, 92, 104072.

Rozas, H., Claveria, R.M., Orchard, M.E., and Medjaher,
K. (2018). Residual-based scheme for detection and
characterization of faults in lithium-ion batteries. IFAC-
PapersOnLine, 51(24), 200–207.

Sánchez, H., Rotondo, D., Escobet, T., Puig, V., and
Quevedo, J. (2018). Frequency-based detection of replay
attacks: application to a multiple tank system. IFAC-
PapersOnLine, 51(24), 969–974.

Schwab, S., Puig, V., and Hohmann, S. (2018). A robust
fault detection method using a zonotopic kaucher set-
membership approach. IFAC-PapersOnLine, 51(24),
500–507.

Theilliol, D., Ponsart, J.C., and Noura, H. (2000). Sensor
fault diagnosis and accommodation based on analytical
redundancy: application to a three-tank system. IFAC
Proceedings Volumes, 33(11), 535–540.

Venkatasubramanian, V., Rengaswamy, R., Yin, K., and
Kavuri, S.N. (2003). A review of process fault detection
and diagnosis: Part i: Quantitative model-based meth-
ods. Computers & chemical engineering, 27(3), 293–311.

Yaseen, A.A. and Bayart, M. (2018). A model-free ap-
proach to networked control system with time-varying
communication delay. IFAC-PapersOnLine, 51(24),
558–563.


