
MAPFASTER: A Faster and Simpler take
on Multi-Agent Path Finding Algorithm Selection

Jean-Marc Alkazzi1,2,∗, Anthony Rizk1,3, Michel Salomon2 and Abdallah Makhoul2

Abstract— Portfolio-based algorithm selection can help in
choosing the best suited algorithm for a given task while lever-
aging the complementary strengths of the candidates. Solving
the Multi-Agent Path Finding (MAPF) problem optimally has
been proven to be NP-Hard. Furthermore, no single optimal
algorithm has been shown to have the fastest runtime for all
MAPF problem instances, and there are no proven approaches
for when to use each algorithm. To address these challenges,
we develop MAPFASTER, a smaller and more accurate deep
learning based architecture aiming to be deployed in fleet
management systems to select the fastest MAPF solver in a
multi-robot setting. MAPF problem instances are encoded as
images and passed to the model for classification into one of the
portfolio’s candidates. We evaluate our model against state-of-
the-art Optimal-MAPF-Algorithm selectors, showing +5.42%
improvement in accuracy while being 7.1× faster to train. The
dataset, code and analysis used in this research can be found
at https://github.com/jeanmarcalkazzi/mapfaster.

I. INTRODUCTION

Multi-Agent Path Finding (MAPF) is the task of finding
collision-free paths that route agents from their start to goal
locations in a known environment. This problem of planning
paths is a task that needs to be solved in all domains where
multiple mobile agents are involved. Practically, MAPF has
many fields of application such as video games, traffic
control, and robotics. For instance, agents can be mobile
robots in a warehouse [1], Unmanned Aerial Vehicles (UAVs)
for delivery services [2], characters in a game [3], [4],
[5], [6], or even piping systems to be routed correctly
in a constrained area [7]. One can easily understand the
underlying difficulty of the MAPF problem due to the real-
time coordination of agents that is required. Their locations
will change constantly over time and the paths will have
to be continuously updated in order to still reach the final
destination while avoiding collisions with each other and
with the obstacles encountered.

MAPF is NP-Hard to solve optimally, given that it is a gen-
eral case of the 15-pieces puzzle problem which was proven
to be NP-Hard [8]. Researchers are trying to move from
benchmark suites [9] to integrating real-world constraints like

1Jean-Marc Alkazzi and Anthony Rizk are with IDEALworks
GmbH, Munich, Germany {jean-marc.alkazzi,
anthony.rizk}@idealworks.com

2Jean-Marc Alkazzi, Michel Salomon, and Abdallah
Makhoul are with FEMTO-ST Institute, UMR 6174 CNRS,
Univ. Bourgogne Franche-Comté, Belfort, France
{abdallah.makhoul,michel.salomon}@femto-st.fr

3Anthony Rizk is with Faculty of Engineering, Saint Joseph Uni-
versity of Beirut, Campus des sciences et technologies, Mar Roukos
Dekwaneh, B.P. 1514 - Riad El Solh, Beirut 1107 2050, Lebanon
{anthony.rizk1}@net.usj.edu.lb

*Corresponding author

0.65 0.7 0.75
0

5

10

15

20

Test Accuracy
N

um
be

r
of

ru
ns

MAPFASTER (Ours)
MAPFAST

Fig. 1: Monte Carlo Cross-Validation Evaluation [17] with
k = 50 runs comparing previous SOTA model’s accuracy
and stability with our proposed method.

robot kinematics [10], [11], [12], [13], and potential real-
world disturbances of unforeseen delays due to slower robot
execution or unpredictable path blockage [14], [15], [16].
Integrating real-world constraints is especially important for
robot fleet management systems where adaptability to new
situations and performance stability across MAPF problems
are key to a successful system. Although a lot of research has
been put into new MAPF approaches, there is no one fastest
optimal algorithm for any given MAPF problem instance.
Adequate algorithm selection based on the MAPF problem
instance is therefore a necessity for a successful real-world
system with varying constraints and needs.

Algorithm Selection is a meta-algorithmic technique for
choosing the most suitable algorithm per input instance. Each
problem has specific metrics to define the best performing
solver (e.g. solving speed, accuracy, or a custom metric).
What makes Algorithm Selection helpful is its ability to
leverage the complementary strengths of the algorithms in
the portfolio. It is therefore crucial that candidate algorithms
behave differently on the input instances and, if chosen
optimally, will resolve all input instances.

Using Deep Learning approaches to select the algorithm
with fastest runtime for an input instance encoded as an im-
age was originally tackled by Sigurdson et al. [18] focusing
on single-agent path finding. It was later shown that using
a similar approach to [18] while encoding start and end
goals of each agent in the map image and using AlexNet
model [19] for prediction can achieve SOTA performance
on the benchmark dataset [20]. Kaduri et al. [21] later

https://github.com/jeanmarcalkazzi/mapfaster


demonstrated that manually engineered features extracted
per instance and passed to an XGBoost [22] model could
beat previous deep-learning based approaches in terms of
choosing the fastest optimal solver per input instance. Ren et
al. [23] further improved on previous work by adding single-
agent shortest path embedding to the input images denoting
their importance in increasing the accuracy from 67.10% up
to 71.18% using a modified Inceptionv3 [24] body and a
classification head. Introducing auxiliary tasks while training
helped the model learn more relevant features from the input
instance and was proposed as their final MAPFAST [23]
architecture reaching a reported 76.89% of accuracy.

To tackle the MAPF Algorithm Selection for Fleet Man-
agement Systems, this paper proposes (1) MAPFASTER,
a smaller and more accurate Deep Learning based archi-
tecture for MAPF Algorithm Selection, (2) An analysis of
current benchmark dataset with potential shortcomings and
improvements, (3) A new evaluation approach for more con-
sistent benchmark results. MAPFASTER achieves a +5.42%
accuracy improvement over previous SOTA models and a
7.1× speedup of training due to its smaller architecture.
Evaluating using the Monte Carlo Cross-Validation approach
[17] helps in gaining insights on the stability of a proposed
model for confident deployments in multi-robot production
environments. It shows a maximum of 4.32% accuracy
deviation between the worst and best runs for MAPFASTER
compared to 11.6% for previous SOTA [23] showing signif-
icant improvement in model stability as can be noticed in
Figure 1. We further outline our failed experiments to save
researchers time and money, and end with proposed future
work for the task of MAPF Algorithm Selection.

The remaining of this paper is organized as follows. Sec-
tion II presents the benchmark specifications. In Section III
we present our proposed model MAPFASTER. The evalu-
ation and experimental results are provided in Section IV.
An analysis section is presented in Section V. Section VI
concludes the paper with proposed future work directions.

II. THE BENCHMARK

The dataset used consists of MAPF problem instances
encoded as images as the model’s input. For each instance,
the fastest algorithm to solve it is considered as its label. The
model’s task is therefore to predict which of the portfolio’s
algorithms would be the fastest solver for the given problem.

A. Dataset

The dataset used is based on the MAPF benchmarks [9].
For each of the 33 different maps, several scenarios are found
with different number of agents and length of agent paths.
A scenario defines a MAPF problem, outlining the missions
per robots with their start and goal locations. For MAPF
Algorithm Selection, 24,967 input instances were created,
depicting a wide combination of different maps, number of
agents, and paths’ length. This dataset was originally created
by Ren et al. [23] and used as the raw data in this paper.

Fig. 2: Input images created by overlaying the occupancy
grid, robots’ start and goal locations, and their shortest path.
Fastest solver in the portfolio is used as the dataset label,
here being CBS.

1) Input Encoding: The MAPF Scenario instances are
encoded as follows:

1) The original occupancy grid map representing the
static obstacles is rendered as a white and red image,
where white represents the free space and red repre-
sents the occupied space.

2) Agents’ start locations are drawn on the original map
as green dots while their goal locations are drawn as
blue dots.

3) For each agent, its shortest path from start to goal
location is calculated and drawn on top of the map in
black. Shortest paths focus on each robot alone without
considering potential collisions with other robots.

Figure 2 shows the different layers involved and the final
input image representing a MAPF Scenario instance. This
input will be used by the model to choose the fastest Optimal
Solver from the Portfolio, in this example, CBS [25].

2) Data Pre-Processing: In the original work, the images
were resized to 320×320 as the model’s input. By analyzing
the resized images, we found a squishing artifact was caused
to several maps of different aspect ratio as depicted in
Figure 4. Such a squishing effect would result in a loss
of information, namely disappearing robots’ start or goal
location, or shortest paths being cut-off. To overcome this, we
modify the resizing approach by using the Albumentations
package [26] and keeping the aspect ratio while padding the
images with black borders when necessary.

B. Algorithm Portfolio

Portfolio-based algorithm selection leverages the comple-
mentary strengths of the potential candidates. This suggests
that the portfolio should be diverse and most importantly,
the algorithms’ strengths should be complimentary for an
extended coverage of the input problems. In this work, we
use the same algorithm portfolio proposed by Ren et al. [23]
for a fair comparison of performance. The proposed port-
folio contains Search-Based algorithms: CBS [25], CBSH
[27], an Optimization-Based algorithm: BCP [28], and a
Satisfiability-Based algorithm: SAT [29]. All instances in
the dataset are solvable by at least one of the algorithms in
the portfolio. This is a strong indication that the algorithms
are complementary and together, cover the entirety of the
input problems. A more in-depth look at the portfolio choice



Fig. 3: MAPFASTER Model Architecture

Fig. 4: Map resizing has squishing artifacts in the original
dataset, which we solve by padding the resized image to keep
the original aspect ratio.

was outlined by the original authors of the benchmark
dataset [23].

III. MAPFASTER

A. Model Architecture

We cast the problem of algorithm selection as a multi-
class classification problem where the goal of the model is
to output the probability for each of the portfolio’s algorithms
of being the fastest on the given input instance.

As shown in Figure 3, our model architecture has 3 main
modules: the encoder, the decoder, and the prediction head.

The encoder module is trained to compress the input
instances to a lower dimensional representation, called the
hidden state. The decoder uses a similar architecture as
the encoder, but the decoder is trained to augment the
compressed representation with additional features, in this
case, through additional channels. The bottleneck created
between the encoder and decoder modules forces the model
to learn and keep the features which are most relevant
to the algorithm selection task. The prediction head then
uses this representation and outputs the probability for each
algorithm of the portfolio for being the fastest one for
the given input instance. We can see that the components
involved in the architecture are basic layers without including
any tricks of residual connections, attention mechanism, or
any other advanced features. The goal behind this is to
find the simplest architecture that can be easily trained and
maintained while solving the MAPF problems with higher

accuracy and stability. This is aimed at providing the research
community with a baseline model which is fast to train,
shows stable performance, and can be easily compared with
other models given the provided code in our repository. The
goal was not to find the smallest possible architecture to
solve the problem, but a small enough one to showcase that
architecture size did not play a role in the model’s accuracy
given the benchmark dataset.

B. Model Training

We initialize our model using Kaiming initialization [30]
for the Convolutional layers’ weights, γ = 1 and β = 0
for BatchNorm layers, a normal distribution with parameters
µ = 0 and σ = 0.01 for the Linear layers’ weights, and
a constant of 0 for all biases. The goal of the Kaiming
initialization is to ensure that the variance of the activations
are the same across every layer. Having this constant variance
helps prevent exploding or vanishing gradients [30]. We use
Cross Entropy Loss as the model’s loss function and Adam
[31] as the optimizer with a learning rate of 0.004. We train
for 7 epochs with a batch size fixed at 64.

IV. EVALUATION

A. Experimental Setup

Our experiments were conducted on an NVIDIA RTX
2080 GPU. The proposed network was implemented in Py-
Torch v1.10.0 [32] with integration of Albumentations [26]
for data pre-processing, and fastai [33] for model training and
analysis. Training and inference were conducted on a single
GPU to ensure fair comparison with single GPU training and
inference of previous SOTA models [23]. We use wandb [34]
to log the dataset used, as well as each training run and the
final model weights to ensure correct reporting of results and
reproducibility of our experiments.

B. Metrics

To assess the performance of our model and compare
to previous approaches, we use accuracy, coverage, total
runtime, and the custom score calculation proposed in [23].
An algorithm selector is deemed accurate when it chooses
the fastest algorithm from the portfolio to solve the input
problem instance. Coverage is defined as the percentage
of problem instances where the algorithm selector did not



TABLE I: Reported Metrics per model over 50 runs with different random seeds following the Monte Carlo Cross-Validation
[17] approach.

Accuracy (%) Coverage (%) Score Runtime (minutes)
Model min max mean std min max mean std min max mean std min max mean std

MAPFASTcl 61.93 73.53 69.68 0.024 90.28 95.26 93.65 0.009 763.27 844.075 813.16 17.9 1480 2065 1675 122

MAPFAST 58.35 74.06 69.39 0.030 90.52 95.86 93.95 0.012 748.35 855.5 815.42 21.6 1390 1999 1636 149

MAPFASTER (Ours) 73.21 77.53 75.1 0.010 94.03 96.84 95.63 0.005 837.76 879.85 856.85 9.15 1233 1627 1439 79

necessarily choose the fastest algorithm, but chose one which
would solve it in less than 5 minutes. Runtime is defined as
the total time needed by the selected algorithms to solve input
instances. A lower runtime shows that the algorithm selector
chooses faster algorithms to solve the MAPF problems. In
many cases, multiple algorithms can solve the same problem
with very similar runtimes. Choosing any of the algorithms
would be a valid choice for fleet management systems.
Accuracy alone is therefore not the best indicator of real-
world performance for an algorithm selector, and a higher
coverage would not rule out a selector always choosing the
slowest algorithm. Ren et al. [23] proposed a custom score to
reward algorithm selectors based on the relative performance
of their chosen optimal solvers. For instance, two selectors
choosing different algorithms with similar runtimes will get
a similar reward instead of only rewarding the one with a
slightly faster algorithm selected.

C. Model Evaluation

To evaluate the model’s performance, we use an 80:10:10
split ratio for training, validation, and test data respectively.
For a fair evaluation of the performance and stability of
both MAPFAST and MAPFASTER, we evaluate both models
using repeated hold-out validation, also called Monte Carlo
Cross-Validation [17]. The Monte Carlo Cross-Validation ap-
proach consists of splitting the data k times using k different
random seeds, and reporting the average accuracy across the
k runs to avoid misinterpreting a model’s performance caused
by a specific data split.

In our evaluation, we use the Monte Carlo Cross-
Validation approach with k = 50 runs. After close inspec-
tion of the original MAPFAST code[35], we found that
the provided data split function was causing a data leak.
Although the seed was fixed and the data split was carefully
designed to be deterministic for the same seed, a Python-
related bug caused the original list of data samples to be
different on each run, hence causing a difference in the
data split. This, in turn, invalidated the evaluation of the
model which, on each run, was evaluated on a new random
split of the original dataset, potentially containing samples
from the training data. To ensure fair and correct evaluation
of MAPFAST, we dockerized the provided code with their
proposed Python requirements and only modified the data
split function to ensure that the data split is deterministic for
the same seed. We further present the fixed MAPFAST code
as well as scripts to replicate the original data leak as part of
our open-source code. To prevent such issues from arising

in our codebase, we implement several unit tests to ensure
the integrity of the dataset used and deterministic splits per
chosen random seed.

In Table I, we report the min, max, mean, and
std of each metric previously proposed for MAPFAST,
MAPFASTcl, and MAPFASTER. As reported in [23], us-
ing the classification head only, MAPFASTcl achieves an
accuracy of 71.18% whereas the final model with auxiliary
tasks achieves an accuracy of 76.89%. After fixing the
data leak and training again, we found the real accuracy
to be on average 69.39% for MAPFAST and 69.68% for
MAPFASTcl. Nevertheless, MAPFAST was still the state-
of-the-art at time of publication, beating XGBoost Cl. [21]
by +2.57% in accuracy.

Looking at Table I, we can see that reporting a 58.35%
accuracy for MAPFAST would be unfair, and reporting
77.53% accuracy for MAPFASTER would be an overesti-
mation of +2.43% over the actual performance of our model
of 75.1%. This shows the importance of the Monte Carlo
Cross-Validation evaluation approach in the fair reporting of
metrics. We also realize that adding the auxiliary tasks to
MAPFASTcl does not improve the performance as reported
in [23], but introduces a slightly higher instability of the
model.

MAPFASTER outperforms the previous state-of-the-art
approach across all metrics with +5.42% Accuracy, +1.68%
Coverage, +41.43 points in Score, and a decrease of 12.04%
in total Runtime. Our model is also smaller, with 0.8M
trainable parameters vs 3.2M for MAPFAST, and can be
trained in 5.28min compared to 37.5min for MAPFAST.
This sheds the light on the actual complexity of the task
and potential next steps to follow for the future of the field,
which we tackle in the Analysis section of this paper.

V. ANALYSIS

A. Model Performance

Model stability is a key factor to consider when working in
production environments. The model’s performance on real-
world data must be as close as possible to its performance on
the test data. This gives us more confidence that our test data
is representative of the real-world data and that our model
has stable performance characteristics. Our model shows a
total deviation between min and max accuracy of 4.32%
whereas MAPFAST shows a deviation of 11.6% depending
on the randomness in data splits and model initialization.
This shows the increased stability of our proposed approach
and a more predictable range of performance as shown in



Figure 1. The fact that a model architecture with 4× less
parameters was able to extract enough features to achieve a
higher accuracy on 50 different data splits could indicate
that additional model complexity may not be required to
extract relevant features from the input images. Although we
have not experimented with larger architectures, we believe
they would achieve only slightly better accuracy on the
reference dataset. However, we do not believe that such a
model architecture would be sufficient to solve the problem
and capture the complexity of the task in the real-world
setting given the current shortcomings of the input instance
encoding.

Fig. 5: Overcrowded Maze Map with 60 agents showing
overlap of paths and potential difficulty for effective feature
extraction.

B. The Benchmark Dataset

Algorithms like CBS [25] and CBSH [27] display different
performance given the number of potential robot collisions,
the map obstacle density, and the total number of robots
among other factors. For instance, CBS performs on par with
CBSH in high obstacle density maps with up to 40 robots,
but fails to do so with 40 to 120 robots [27]. In more complex
maps, BCP [28] shows a higher success rate than CBSH [27]
whereas CBS [25] fails to solve the problem altogether [28].
This indicates that extracting such features from the input
image may be helpful for an accurate algorithm selection. It
may come as natural to carefully extract such features from
the input instances and use them for algorithm selection,
but that was shown by Kaduri et al. [21] to have a limited
performance. We believe that the current benchmark dataset
suffers from one main shortcoming, the lack of a time
dimension. In a flat image, overlapping paths can hide
potential conflicts, and overcrowded maps can be too noisy
for relevant feature extraction as shown in Figure 5. An
adequate representation of such features while keeping the
data encoding process fast and memory efficient is important
for deployments in fleet management systems and will be the
focus of our future work.

C. Explored Paths

To save other researchers time, sanity, and cloud compute
credits, we briefly outline the list of experiments we tried
which did not improve the performance of our proposed
model. This list, although neither extensive nor do we claim
considerable evaluation of what was done per item, acts as

an additional insight on potential future work and research
paths to consider.

• Adding SE Blocks.
Squeeze-and-Excitation Blocks [36] take the input data
and multiply each channel by a learnable weight to
help the model extract features from relevant parts of
the input. Given that different aspects lie on different
channels (red is obstacle, green is start, blue is goal),
learning weights for each one seemed an intuitive
improvement. However, implementing them did not
improve the model’s performance.

• Using 1cycle training.
1cycle training, also known as super-convergence [37]
leads to faster training times, and helps avoid overfitting.
It did not help us with the small model proposed, but
we still provide it in our open-source code for future
researchers to try.

• Coloring the robot paths differently.
Given the data ambiguity previously mentioned, we
tried coloring each robot’s shortest path with a different
color to support better feature extraction. This did not
help our model’s performance and sometimes led to
worse results. We provide the generated shortest paths
for researchers to try out more tricks in the image
encoding.

• Including the originally proposed auxiliary tasks.
Ren et al. [23] proposed using two auxiliary tasks dur-
ing training to improve the model’s performance. One
head would predict if each algorithm in the portfolio
would solve the MAPF instance in less than 5min, the
other head would output the pairwise comparison of the
portfolio’s algorithms predicted speed. This made the
model bigger, training slower, and led to worse results
overall.

• Adding new auxiliary tasks.
We experimented with multiple different auxiliary tasks,
including predicting the map obstacle density and the
number of unique robots in the map. The intuition
behind it comes from the analysis provided by [21],
[23], [27] showing that the number of robots and the
map obstacle density potentially affect which algorithm
performs the fastest. This did not show considerable
change in the model’s performance, although we believe
it may be useful for future research to revisit this point.

VI. CONCLUSION AND FUTURE WORK

In this paper we have shown that our smaller model of
0.8M parameters, trainable in 5.28min, was able to out-
perform the previous SOTA model with 3.2M parameters,
trainable in 37.5min. We also proposed using a more ap-
propriate performance evaluation approach, the Monte Carlo
cross-validation technique, to report true performance of the
models regardless of the randomness involved in the dataset
split and model initialization. Model stability is crucial for
real-world deployments and our model showed a maximum
deviation of 4.32% between worst and best training run, com-
pared to 11.6% for previous SOTA approaches. Following a



successful implementation of a considerably smaller model
with higher accuracy and stability, we want to shed the light
on the benchmark dataset as the focus of further research,
compared to focusing on bigger or more complex models. We
hope that the open-source code and analysis provided will
help researchers explore different paths and gain new insights
on the underlying complexity of the algorithm selection task
in the muti-agent path finding problem setting.

ACKNOWLEDGMENT

This work has been supported by IDEALworks GmbH
and the EIPHI Graduate School (contract ”ANR-17-EURE-
0002”).

REFERENCES

[1] J. Li, A. Tinka, S. Kiesel, J. W. Durham, T. K. S. Kumar, and
S. Koenig, “Lifelong multi-agent path finding in large-scale ware-
houses,” in Proceedings of the 19th International Conference on
Autonomous Agents and MultiAgent Systems, ser. AAMAS ’20. Rich-
land, SC: International Foundation for Autonomous Agents and Mul-
tiagent Systems, 2020, p. 1898–1900.

[2] F. Ho, R. Geraldes, A. Gonçalves, B. Rigault, B. Sportich, D. Kubo,
M. Cavazza, and H. Prendinger, “Decentralized multi-agent path
finding for UAV traffic management,” IEEE Transactions on Intelligent
Transportation Systems, vol. 23, no. 2, pp. 997–1008, 2022.

[3] R. Graham, H. McCabe, and S. Sheridan, “Neural networks for real-
time pathfinding in computer games,” The ITB Journal, vol. 5, p. 21,
2004.

[4] M. Sinkar, M. Izhan, S. Nimkar, and S. Kurhade, “Multi-agent path
finding using dynamic distributed deep learning model,” 2021 Inter-
national Conference on Communication information and Computing
Technology (ICCICT), pp. 1–6, 2021.

[5] R. Bamal, “Collision-free path finding for dynamic gaming and real
time robot navigation,” 2019 IEEE 31st International Conference on
Tools with Artificial Intelligence (ICTAI), pp. 101–108, 2019.

[6] H. Ma, J. Yang, L. Cohen, T. K. S. Kumar, and S. Koenig, “Feasibility
study: Moving non-homogeneous teams in congested video game
environments,” in Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, 2017.

[7] G. Belov, L. Cohen, M. G. de la Banda, D. Harabor, S. Koenig,
and X. Wei, “Position paper: From multi-agent pathfinding to pipe
routing,” ArXiv, vol. abs/1905.08412, 2019.

[8] O. Goldreich, Finding the Shortest Move-Sequence in the Graph-
Generalized 15-Puzzle Is NP-Hard. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 1–5.

[9] R. Stern, N. R. Sturtevant, A. Felner, S. Koenig, H. Ma, T. T.
Walker, J. Li, D. Atzmon, L. Cohen, T. K. S. Kumar, E. Boyarski,
and R. Bartak, “Multi-agent pathfinding: Definitions, variants, and
benchmarks,” The 12th Annual Symposium on Combinatorial Search
(SoCS), pp. 151–158, 2019.

[10] W. Hönig, T. K. S. Kumar, L. Cohen, H. Ma, S. Koenig, and
N. Ayanian, “Path planning with kinematic constraints for robot
groups,” ArXiv, vol. abs/1704.07538, 2017.

[11] L. Wen, Z. Zhang, Z. Chen, X. Zhao, and Y. Liu, “CL-MAPF: Multi-
agent path finding for car-like robots with kinematic and spatiotem-
poral constraints,” ArXiv, vol. abs/2011.00441, 2020.

[12] K. S. Yakovlev, A. Andreychuk, and V. Vorobyev, “Prioritized multi-
agent path finding for differential drive robots,” 2019 European
Conference on Mobile Robots (ECMR), pp. 1–6, 2019.

[13] Z. A. Ali and K. S. Yakovlev, “Prioritized SIPP for multi-agent path
finding with kinematic constraints,” ArXiv, vol. abs/2108.05145, 2021.

[14] W. Hönig, S. Kiesel, A. Tinka, J. W. Durham, and N. Ayanian,
“Persistent and robust execution of MAPF schedules in warehouses,”
IEEE Robotics and Automation Letters, vol. 4, pp. 1125–1131, 2019.

[15] D. Atzmon, A. Felner, R. Stern, G. Wagner, R. Barták, and N.-F. Zhou,
“k-Robust multi-agent path finding,” in The 10th Annual Symposium
on Combinatorial Search (SoCS), 2017.

[16] H. Ma, T. K. S. Kumar, and S. Koenig, “Multi-agent path finding
with delay probabilities,” in Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence (AAAI-17), 2017.

[17] Q. Xu and Y. Liang, “Monte Carlo cross validation,” Chemometrics
and Intelligent Laboratory Systems, vol. 56, pp. 1–11, 2001.

[18] D. Sigurdson and V. Bulitko, “Deep learning for real-time heuristic
search algorithm selection,” in Proceedings of the AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment, 2017.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Communications of the
ACM, vol. 60, pp. 84 – 90, 2012.

[20] D. Sigurdson, V. Bulitko, S. Koenig, C. Hernandez, and W. Yeoh,
“Automatic algorithm selection in multi-agent pathfinding,” ArXiv, vol.
abs/1906.03992, 2019.

[21] O. Kaduri, E. Boyarski, and R. Stern, “Algorithm selection for
optimal multi-agent pathfinding,” Proceedings of the International
Conference on Automated Planning and Scheduling, vol. 30, no. 1,
pp. 161–165, 2020. [Online]. Available: https://ojs.aaai.org/index.php/
ICAPS/article/view/6657

[22] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2016.

[23] J. Ren, V. Sathiyanarayanan, E. Ewing, B. Senbaslar, and N. Ayanian,
“MAPFAST: A deep algorithm selector for multi agent path finding
using shortest path embeddings,” in Proceedings of the 20th Interna-
tional Conference on Autonomous Agents and MultiAgent Systems,
ser. AAMAS ’21. Richland, SC: International Foundation for
Autonomous Agents and Multiagent Systems, 2021, p. 1055–1063.

[24] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,” 2016
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Jun 2016. [Online]. Available: http://dx.doi.org/10.1109/
CVPR.2016.308

[25] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Artificial Intelligence, vol.
219, pp. 40–66, 2015. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0004370214001386

[26] A. Buslaev, V. I. Iglovikov, E. Khvedchenya, A. Parinov, M. Druzhinin,
and A. A. Kalinin, “Albumentations: Fast and flexible image
augmentations,” Information, vol. 11, no. 2, 2020. [Online].
Available: https://www.mdpi.com/2078-2489/11/2/125

[27] A. Felner, J. Li, E. Boyarski, H. Ma, L. Cohen, T. K. S. Kumar, and
S. Koenig, “Adding heuristics to conflict-based search for multi-agent
path finding,” in ICAPS, 2018.

[28] E. Lam, P. Le Bodic, D. D. Harabor, and P. J. Stuckey, “Branch-
and-cut-and-price for multi-agent pathfinding,” in Proceedings of
the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI-19. International Joint Conferences on Artificial
Intelligence Organization, 7 2019, pp. 1289–1296. [Online]. Available:
https://doi.org/10.24963/ijcai.2019/179

[29] P. Surynek, A. Felner, R. Stern, and E. Boyarski, “Efficient SAT
approach to multi-agent path finding under the sum of costs objective,”
in ECAI, 2016.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification,”
2015 IEEE International Conference on Computer Vision (ICCV), Dec
2015. [Online]. Available: http://dx.doi.org/10.1109/ICCV.2015.123

[31] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” ArXiv, vol. abs/1412.6980, 2017.

[32] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style, high-
performance deep learning library,” ArXiv, vol. abs/1912.01703, 2019.

[33] J. Howard and S. Gugger, “Fastai: A layered api for deep
learning,” Information, vol. 11, no. 2, 2020. [Online]. Available:
https://www.mdpi.com/2078-2489/11/2/108

[34] L. Biewald, “Experiment tracking with weights and biases,”
2020, software available from wandb.com. [Online]. Available:
https://www.wandb.com/

[35] R. Jingyao and S. Vikraman, “MAPFAST,” GitHub repository, 2020.
[36] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-

excitation networks,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 42, pp. 2011–2023, 2020.

[37] L. N. Smith and N. Topin, “Super-convergence: Very fast train-
ing of residual networks using large learning rates,” ArXiv, vol.
abs/1708.07120, 2017.

https://ojs.aaai.org/index.php/ICAPS/article/view/6657
https://ojs.aaai.org/index.php/ICAPS/article/view/6657
http://dx.doi.org/10.1109/CVPR.2016.308
http://dx.doi.org/10.1109/CVPR.2016.308
https://www.sciencedirect.com/science/article/pii/S0004370214001386
https://www.sciencedirect.com/science/article/pii/S0004370214001386
https://www.mdpi.com/2078-2489/11/2/125
https://doi.org/10.24963/ijcai.2019/179
http://dx.doi.org/10.1109/ICCV.2015.123
https://www.mdpi.com/2078-2489/11/2/108
https://www.wandb.com/

	Introduction
	The Benchmark
	Dataset
	Input Encoding
	Data Pre-Processing

	Algorithm Portfolio

	MAPFASTER
	Model Architecture
	Model Training

	Evaluation
	Experimental Setup
	Metrics
	Model Evaluation

	Analysis
	Model Performance
	The Benchmark Dataset
	Explored Paths

	Conclusion and Future Work
	References

