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Abstract

We study numerically and experimentally acoustoelastic wave propagation in a two-dimensional phononic metaplate
consisting of a periodic array of cups sitting on a thin epoxy plate that is perforated with cross holes. When all cups
are filled with water, the metaplate possesses a complete band gap. Reconfigurable coupled-resonator acoustoelas-
tic waveguides (CRAEWs) are created by locally emptying certain cups, thus introducing local resonances that are
evanescently coupled. Straight and 90◦ bent periodic waveguides are considered, together with an aperiodic chain
of 11 coupled resonators. The aperiodic chain has no definite spatial periodicity but supports collective resonances
resulting from the coupling of nearest resonators. Lamb waves are experimentally excited by a piezoelectric patch
and received by a scanning optical vibrometer. Experimental results for acoustoelastic wave propagation along both
periodic and aperiodic CRAEWs are compared to a three-dimensional finite element model taking fluid-structure
interaction into account. The propagation of confined acoustoelastic waves in the 90◦ bent waveguides and the col-
lective resonances of the aperiodic chain of defected resonators are observed experimentally. Reconfigurability are
realized based on the coupling of acoustoelastic waves in a phononic metaplate. Our results show plenty of potential
possibilities for the practical design of reconfigurable and programmable elastic wave devices.

Keywords: Phononic crystal, Reconfigurable waveguide, Coupled-resonator acoustoelastic waveguides

1. Introduction

Phononic crystal (PC) is a new type of periodic func-
tional composite material [1, 2] possessing frequency
band gaps within which the propagation of acous-
tic/elastic waves is completely forbidden [3]. Stated
otherwise, Bloch waves become evanescent inside band
gaps [4]. A coupling mechanism for the vibrations
of chains of masses connected by springs [5, 6] or of
coupled-resonator waveguides [7] is provided by those
evanescent waves. Furthermore, strong localization of
waves in the phononic band gap can be achieved. [8, 9,
10]. When the periodicity of a perfect phononic crystal
is destroyed locally, defect states appear. Waves within
the band gap are confined into the defects [11] and de-
cay rapidly far away from them. The guidance of acous-
tic or elastic waves can thus be realized by designing
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defects in a perfect phononic crystal. The introduction
of defects provides new ideas to manipulate waves, and
to design and manufacture novel acoustic devices with
phononic crystals, and has attracted widespread atten-
tion. Linear lines of defects [12, 13, 14], as the most
commonly used guidance mechanism, are thus formed
to channel waves at selected frequencies in the band
gap with strong confinement [15, 16], promising a va-
riety of potential applications [17, 18] such as sens-
ing [19, 20, 21, 22, 23, 24], filtering [25], or waveg-
uiding [14, 26, 27].

The concept of the coupled-resonator optical waveg-
uide (CROW) defined in a photonic crystal [28, 29] has
been extended in recent years to the field of phononic
crystals. Overall, the propagation of waves in evanes-
cently coupled waveguides stands as simple and effi-
cient among the various physical mechanisms for guid-
ing waves in artificial crystals. In contrast to linear-
defect waveguides, the coupled-resonator waveguide is
based on the evanescent coupling of defect cavities or
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resonators [5, 6], permitting the design of rather arbi-
trary acoustic circuits [30, 31]. The coupling between
neighboring defect cavities or resonators creates a prop-
agating dispersion band with a small slope (slow sound)
appearing around the flat band generated by the iso-
lated point defect. If the frequency of the defect state
is inside a complete band gap of the perfect structure,
the defect state is completely localized. The field be-
yond the defect is evanescent, decaying exponentially
away from the defect. Waveguides based on linear
chains of coupled cavities have been shown theoreti-
cally to allow simultaneously for very strong wave con-
finement [8, 9, 10] and for low group velocity trans-
mission [31]. It is conducive to design new and ef-
ficient acoustic devices. In fact, as long as the dis-
tance between resonators remains limited and the res-
onance frequencies are the same, any defect chain of
defect cavities or resonators can form a waveguide [32].
This is the basic idea of a coupled-resonator waveguide.
Coupled-resonator waveguides do not only manipulate
wave propagation by changing the length of the waveg-
uides [33], they also regulate the dispersion relation by
changing the distance between adjacent resonators [34],
the number of resonators along the circuit, or the cou-
pling coefficient between resonators.

To date, some works have focused experimentally
on elastic or acoustic wave guiding along coupled-
resonator waveguides. Mohammadi et al. realized
an effective band-pass filter for wireless communica-
tion based on a coupled-resonator acoustic waveguide
(CRAW) designed in a phononic crystal plate [35].
Wang et al. investigated coupled resonator elastic
waveguides designed in a PC slab with cross holes [26].
The transmission of strongly confined Lamb waves
along a straight waveguide and in a wave splitter circuit
with 90◦ bends were observed experimentally. How-
ever, the conventionally designed and fabricated struc-
tures can hardly have tunable (or reconfigurable) topolo-
gies or material parameters, limiting the manipulation
of waves.

Many researchers have devoted a lot of efforts to the
design, development, and demonstration of tunable PCs
and metamaterials resulting in an emerging revolution
for tunable, active, or even smart control of acoustic
or elastic waves. Tunable or active ways of manip-
ulating waves either based on multifield coupling ef-
fects [36, 37, 38] or by mechanical means [26, 39] are
investigated. Li et al. tuned the propagation direction
of the flexural wave by active control system behaved
as the piezoelectric patches on a plate with T-shaped
waveguide [40]. Pennec et al. confined and guided
sound and light waves with certain frequencies in the as-

sociated band gaps by engineering the point and linear
defects [41]. Hu et al. investigated the temperature ef-
fects on the defect states by changing the temperature of
the central rod of the two-dimensional ferroelectric ce-
ramic plate and realize the manipulation of elastic waves
in the band gaps [42]. Mazzotti et al. investigated the
effect of a generic state of prestress on the passbands
and bandgaps of a phononic crystal plate [43].

Among the means for tunable or active manipulation
of waves, fluid-solid coupling is a rather easy way to
realize reconfigurability for a phononic crystal [44, 45].
Fluid-solid coupling is also suitable to achieve active
and smart control of acoustic/elastic waves. How to re-
alize reconfigurability of coupled resonator waveguides
is still an urgent problem to be solved. In general, al-
most all works tackling this problem are limited to nu-
merical simulations and a small amount of theoretical
analysis, and lack experimental verification. In previous
researches, some unnecessary limitations to the periodic
array of resonator chains were set on the design of cou-
pled resonator waveguides [30, 31]. However, evanes-
cent coupling of waves across a band gap is omnidirec-
tional, decreasing exponentially away from a resonator.
Therefore, evanescent waves suitably couple adjacent
resonators placed along a rather arbitrary path, forming
an aperiodic coupled-resonator chain [46].

In this paper, we aim at investigating two-
dimensional phononic metaplates consisting of a peri-
odic array of cups sitting on a thin epoxy plate that is
perforated with periodic cross holes [47, 48]. When
all cups are filled with water, the metaplate possesses a
complete band gap. Reconfigurable coupled-resonator
acoustoelastic waveguides (CRAEWs) are created by
locally emptying certain cups, thus introducing local
resonances that are evanescently coupled. We first dis-
cuss the dispersion relation of the bare phononic crystal.
Then, different waveguides are designed by emptying
selected cups. An aperiodic negative chain with 11 cou-
pled resonators is formed respecting an equal-coupling
scheme. 3D finite element computations accounting
for fluid-structure interaction are compared with experi-
mental measurements. In general, Numerical and exper-
imental results are found to be in good agreement with a
slight resonance frequency shifts. Strong acoustoelastic
waves confinement is effectively observed in all cases.

2. Methods

In this work, the unit cell of the metaplate con-
sists of a single cup grafted onto a plate with peri-
odic cross holes, as shown in Figure 1(a). Following
Ref. [45], geometrical parameters of the unit cell are
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Figure 1: (a) Schematic of the PC unit cell and definition of geo-
metrical dimensions. (b) A finite 3D-printed epoxy metaplate sam-
ple consisting of 13 × 12 periodic unit cells. One cup is removed
inside the phononic structure to bond a piezoelectric patch for excita-
tion of Lamb waves. Each cup can be individually filled with water.
Coupled-resonator acoustoelastic waveguides are thus defined in a re-
configurable and re-usable manner. Imaging of wave propagation is
performed on the bottom side of the metaplate.

a=5 cm, h=0.8a, b=0.2a, c1=0.1a, r1=0.38a, r2=0.33a,
and c2=0.11a. With this set of parameters, certainly
wide band gap is obtained. The epoxy metaplate sam-
ple shown in Fig. 1(b) is processed by 3D printing tech-
nique.

Wave propagation is measured at the bottom surface
of the epoxy metaplate by Polytec PSV-500 scanning
vibrometer, associating with the periodic chirp as the
source waveform. Then the vertical displacement vi-
bration is formed by a vertically polarized piezoelec-
tric patch bonded to the sample. Experimental trans-
missions and displacement distributions are finally inte-
grated by detecting and averaging the vertical displace-
ments around the scan points at the bottom side of the
sample.

To evaluate numerically the transmission properties
of the considered systems, the 3D finite element method
is used. Phononic band structures are obtained by solv-
ing an eigenvalue problem [31]. Based on Bloch’s theo-
rem, two-dimensional Bloch-Floquet periodic boundary
conditions are applied on pairs of opposite boundaries
of the unit cell depicted in Fig. 1(a) with free bottom
and top surfaces. After the finite mesh of the unit cell
is created adaptively, it is divided into finite elements
connected by nodes. At the interface between fluid and
solid, a fluid-solid boundary condition relating the pres-
sure in the fluid to the normal displacement of the solid
boundary is imposed. For the filled cup, a sound-soft
boundary condition is applied on the top surface of the
liquid column. Considering fluid-solid interaction, the
discrete form of the acousto-elastic equations is [49](

Ks ST
f s
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) (
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)
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)
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where u and p represent the displacements and the pres-
sure at the nodes of the solid and fluid field mesh, re-
spectively. F are nodal forces. Ks and K f are the stiff-
ness matrices of the solid and fluid; Ms and M f are the
mass matrices of the solid and fluid; S f s represents the
fluid-solid coupling matrix and ST

f s is its transpose.
Bloch’s theorem is applied on the boundaries of the

unit cell in the direction where periodicity applies,
yielding the following relation between displacements
at the nodes on the boundary of the unit cell:

u(r + a) = eik·au(r), (2)

where r is located at the boundary nodes and a is the
lattice constant vector. We solve directly the eigenvalue
problem Eq. (1) given the wavevector k under the com-
plex boundary condition Eq. (2). We thus get the whole
band structure when the wavevector k sweep the irre-
ducible Brillouin zone. According to the dynamic equi-
librium Eq. (1), we obtain both the pressure field in the
fluid and the displacements field in the solid.

Then the frequency response is estimated as follows.
Since a finite phononic crystal and an external source of
waves are considered, the finite computational domain
has to be terminated with radiation boundary conditions
to minimized unwanted reflections. For simulation, a
time harmonic and spatially random wave source of ver-
tical polarization is used at the source region where a
cup is removed to allow a direct comparison with ex-
periments [50]. By sweeping the excitation frequency
f , we evaluate the frequency response function (FRF)
R( f ) in decibels units by considering the ratio of the
z-component of the displacements integrated over the
source and the receiver as

R( f ) = 20 log10


∫

S r

uzds∫
S s

uzds

 . (3)

where uz is the vertical displacement along S r, the area
of the receiver and S s, the area of the source.

In this work, the solid material parameters for epoxy
are mass density ρs = 1175 kg/m3, Poisson’s ratio
υ = 0.41, and Young’s modulus E = 3.2 GPa. The fluid
material is water with mass density ρ f = 1000 kg/m3

and sound velocity c = 1490 m/s. Here, the influence on
transmission of the viscosity of water and the viscoelas-
ticity of epoxy which are the main sources of damping
is neglected for large lattice constants and low frequen-
cies [34].

We first consider the perfect PC metaplate for later
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Figure 2: Schematic of the perfect epoxy metaplate (a) with all cups empty and (b) with all cups filled with water. The green and gray parts mark
water and epoxy materials, respectively. The phononic band structure of the perfect epoxy metaplate without (c) and with (d) water filling the
cups for a selected frequency range. The color scale measures the polarization amount of the out-of-plane component of displacement. Frequency
response functions (FRFs) for the perfect phononic metaplate with all cups empty (red line) and filled with water (black line) obtained from
simulation (e) and experiment (f) for a selected frequency range.

comparison. The properties of the bare phononic crys-
tal can be considered with all cups either empty or filled
with water, as depicted in Figs. 2(a,b). The phononic
band structures of the infinite PC are different for empty
or filled cups, as Figs. 2(c,d) show. Band structures are
shown only within the frequency range of interest ex-
tending from 7.8 kHz to 8.6 kHz. Dispersion bands are
classified as in-plane or out-of-plane by observing the
polarization of the displacement vector for each Bloch
wave. The color bar indicates the amount of vertical
component in the displacement vector. Dark blue bands
are disregarded, as their polarization is purely in-plane.
Recently [45], we have have shown that transmission
is strongly affected by the presence or absence of wa-
ter inside the cups. This phenomenon was explained
based on the local-resonance mechanism and the influ-
ence of the fluid-solid boundary condition [44]. With
filled cups, there is only one flat band with out-of-plane
polarization in the frequency region of interest, around
8.1 kHz; this flat band leads to some transmission in
the numerical simulation but is hardly detected in the
experiment. Conversely, with empty cups, passing out-
of-plane bands appear and lead to partial transmission

from 7.98 kHz to 8.35 kHz in the numerical simulation.
Experimentally, partial transmission over an even wider
bandwidth is observed. As a result, negative contrast
can be used to define resonating defects in the phononic
metaplate, i.e. by emptying given cups in the array of
initially filled cups [45].

The numerical and experimental FRFs are fairly con-
sistent without any parametric adjustment, as a compari-
son of Fig. 2(e) and Fig. 2(f) shows. In detail, the exper-
imental FRFs appear to be shifted in frequency and have
a wider frequency extension compared to the numerical
results. The slight frequency shifts may be attributed
to the difference of machining and material properties
or the underestimated acoustoelastic coupling in the nu-
merical simulation. Generally, the complete band gap
for filled cups is suitable for the design of highly con-
fined coupled resonator waveguides, as we discuss next.
In the following, we investigate wave propagation in ei-
ther periodic or aperiodic coupled-resonator acoustoe-
lastic waveguides (CRAEWs) defined by negative con-
trast (defects are empty cups). It is expected that elastic
waves can be spatially localized around the defects at
the frequencies inside the complete band gaps, decaying
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exponentially away from the defect center [8, 51, 32].

3. Results and discussion

We now consider CRAEWs formed in the perfect PC
metaplate by locally emptying certain cups. We first
consider a straight line of defects, with adjacent cavities
separated by two lattice constants, as shown in Fig. 3(a).
Figs. 3(b-d) present the phononic band structure of the
CRAEW, as well as the numerical and experimental fre-
quency response functions for the finite sample. The
CRAEW supercell is shown in Fig. 3(e) together with a
representative modal shape for the guided wave at point
NL. Looking closer at the band structure in Fig. 3(b),
there are additional guiding bands that appear through-
out the frequency range between 8.09 kHz to 8.27 kHz
which is extremely sensitive to local changes in the res-
onators. In other words, its dispersion relationship is ul-
timately determined by the coupling strength between
the resonators. The simulated and experimental fre-
quency response functions in Figs. 3(c,d) indicate that
transmission through the waveguide is indeed obtained.
As in the case of the perfect crystals, the FRFs agree
fairly well. It is noticed that there are 10 dB differ-
ences between the numerical simulations and the ex-
periments in the FRF. This can possibly be attributed
to the slightly inaccurate modeling of the sample, in-
accurate material properties, evaporation of water dur-
ing experiments, and the neglection of certain aspects
of acoustoelastic coupling. On the other hand, the ex-
citation sources of the simulations and experiments are
not exactly the same. The vibrations for the eigenmode
in Fig. 3(e) are mainly concentrated on the defect. There
is some energy leakage to the adjacent unit cells ensur-
ing coupling between subsequent defects. The eigen-
mode is also symmetric with respect to the direction of
wave propagation. The out-of-plane displacement field
for the finite sample is shown (f) for numerical simu-
lation at 8.27 kHz and (g) for experiment at 8.16 kHz.
Movies of the propagation of the guided waves are fur-
ther shown in the Supplementary Material [52]. Prop-
agation along the straight CRAEW is observed neatly.
After the first row of the crystal, elastic energy is well
confined in the defects along the waveguide.

Wave confinement along straight linear waveguides
was discussed quantitatively before [45] and is here ex-
tended to the CRAEW case. A confinement degree [53]
was proposed as follows:

Cx =

(
1
ly

∫
1
lx

∫ [
|uz|

|uz|max
|x|2

]
dxdy

)−1

(4)

where lx and ly are the lengths for one row of the finite
structure in the x and the y directions. |x| is the distance
to the excitation source. The confinement degree cal-
culated for the straight CRAEW is Cx = 32.64 m−2,
which implies a stronger confinement than inside the
linear straight waveguide in the same phononic meta-
plate [45].

Next, we consider a bent CRAEW including a sharp
corner with a 90◦ bend. Fig. 4(a) shows a schematic
representation of the negative contrast bent CRAEW.
In this case, the phononic band structure cannot be ob-
tained. Instead, we can still obtain the frequency re-
sponse function and compare it to the experimental re-
sult. The numerical (b) and experimental (c) FRFs are
not significantly different from the straight CRAEW
case. In particular, the transmission bandwidth are sim-
ilar. The out-of-plane displacement field for the finite
sample is shown (d) for numerical simulation at 8.12
kHz and (e) for experiment at 8.16 kHz. Movies of
the propagation of the guided waves are further shown
in the Supplementary Material [52]. Vibrations are
again mainly confined at the defect sites where the cups
are empty along the circuits. When looking closer to
the displacement distributions, vibrations are similarly
symmetric with respect to the direction of wave prop-
agation before the bend, as for the straight CRAEW.
Then symmetry with respect to the direction of prop-
agation is broken. Vibrations are found to be a su-
perposition of two orthogonal dipolar components, ori-
ented along the x and the y axes, effectively inducing
an elliptical vibration [45]. This effect can especially
be observed in the animations shown in Supplemen-
tary Material [52]. A good consistency is perceived be-
tween numerical and experimental results. In addition,
different from topological waveguides [48], the energy
in bent CRAEW will be either reflected by the corner
or confined by the periodicity. Obtaining a frequency-
dependent number, such as a coefficient of transmission,
indeed appears difficult.

As we know, evanescent coupling of waves across a
band gap is omnidirectional, decreasing exponentially
away from a resonator, that is why the coupling be-
tween adjacent resonators is not limited to the privileged
crystallographic directions [46]. Therefore, evanescent
waves suitably couple adjacent resonators placed along
a rather arbitrary path, forming an aperiodic coupled-
resonator chain [54, 55]. The collective resonances of
a chain of coupled phononic microresonators have been
achieved in the pure silica phononic structure in our pre-
vious work [46] where the defects are designed by omit-
ting the etching of selected holes in a solid plate. Here, a
similar chain of coupled acoustoelastic resonators, or an
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Figure 3: Schematic of the epoxy metaplate with a negative contrast straight CRAEW formed by locally emptying a line of cups (a). The green
and gray parts mark water and epoxy materials, respectively. The phononic band structure (b) of perfect phononic metaplate with all cups filled
with water (solid lines) the straight CRAEW (dash lines) for a selected frequency range. The frequency response functions (FRFs) of the perfect
phononic metaplate with all cups filled with water (black line) and for the straight CRAEW (blue line) obtained from simulation (c) and experiment
(d) for a selected frequency range. The CRAEW supercell and eigenmode NL at the marked dispersion point are depicted in (e). The numerical
(f) and experimental (g) out-of-plane displacement distributions are shown at 8.27 kHz and 8.16 kHz, respectively. The propagating circuits are
surrounded by the pink lines. The black (red) disks indicate the wave source (receiver) positions. The color scales represent the amplitude of the
out-of-plane displacement field from 0 (blue) to maximum (red).

aperiodic CRAEW, is designed by locally emptying cer-
tain cups separated by (±2,±1) or (±1,±2) lattice shifts,
as shown in Fig. 5(a).

The numerical (b) and experimental (c) FRFs are pre-
sented in Fig. 5. A series of sharp resonances are clearly
observed inside the initial complete band gap. As ar-
gued in Ref. [46], it can be explained from the discrete
sequence of eigenfrequencies of the chain modeled as
a phononic polymer. The maximum amplitude of the
out-of-plane displacement for each peak varies notably,
indicating that vibration modes are variously matched
to the excitation source. The out-of-plane displace-
ment field for the finite sample is shown in Fig. 5(d)
for numerical simulation at 8.12 kHz and in Fig. 5(e)
for experiment at 8.16 kHz. Movies of the collective
vibrations are further shown in the Supplementary Ma-
terial [52]. Clearly, the full chain of defects vibrates
coherently. It can be noticed that the vibrations of the
defect resonators along the chain are elliptical, in corre-
spondence with the vibrations in the bent CRAEW after
the bend. This effect results from the lack of periodic-

ity of the chain and of the absence of symmetry with
respect to the direction of propagation. Overall, guided
waves are rather well confined inside the defect chain.

In the following, a simplified periodic version of the
aperiodic CRAEW is considered to compare to some
extent with the discrete structure. The supercell is de-
picted in Fig. 6(a). The sequence of lattice translations
is (2,−1)a then (2,+1)a so that the spatial period along
axis x is 4a. The periodic CRAEW thus defined can be
obtained from a continuous deformation of the chain of
resonators. The phononic band structure for the super-
cell is shown in Fig. 6(b). A number of additional bands
appear inside the complete band gap, as in the case of
Fig. 3(b). These bands have different polarization con-
tents and couple differently with the source of vibra-
tions. As a remark, since two periods of the chain are
actually included in the supercell compared to the peri-
odic straight CRAEW as shown in Fig. 3, the 4a period
causes spurious foldings at the Brillouin zone edges. As
a result, the additional bands around 8.18 kHz extend al-
most asymmetrically and continuously toward the Γ and
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Figure 4: Schematic of the epoxy metaplate with a negative contrast bent CRAEW formed by locally emptying a bent line of cups (a). The green
and gray parts mark water and epoxy materials, respectively. The frequency response functions (FRFs) of the perfect phononic metaplate with all
cups filled with water (black line) and for the bent CRAEW (purple line) obtained from simulation (b) and experiment (c) for a selected frequency
range. The out-of-plane displacement distributions at 8.12 kHz in the simulation (d) and 8.16 kHz in the experiment (e). The propagating circuits
are surrounded by the pink lines. The black (red) disks indicate the wave source (receiver) positions. The color scale represents the amplitude of
the out-of-plane displacement field from 0 (blue) to maximum (red).

X points, in contrast to the cosine shape of the bands of
the straight CRAEW in Fig. 3(b). Therefore, coupling
coefficients are almost independent of the direction of
coupling. Figs. 6(c,d) also illustrate the eigenmodes at
the high-symmetry points of the Brillouin zone around
8.18 kHz corresponding to points A and B. The ellip-
tical vibration directions of both defect resonators are
reversed at the Γ and X points. More significantly, the
eigenmode shapes are clearly very similar to those ob-
served in the collective vibrations of Fig. 6.

4. Conclusions

In this paper, wave propagation in coupled-resonator
acoustoelastic waveguides formed by evanescent cou-
pling of chains of defect cavities has been studied nu-
merically and experimentally. Straight and bent pe-
riodic waveguides, and aperiodic circuits which are
formed by locally emptying certain cups have been in-
vestigated. Localized defect modes existing inside the
complete band gap are the basis of the wave guid-
ance in CRAEWs and lead to strong wave confine-

ment in the defects. Experimental results are found
to be in fair agreement with numerical results in all
cases. This work provides the first numerical and exper-
imental realization of two-dimensional reconfigurable
coupled-resonator acoustoelastic waveguides. Further-
more, to our knowledge it is the first time that acous-
toelastic wave propagation along aperiodic CRAEWs is
achieved, resulting in a larger choice for the definition
of phononic circuits. This work provides prospects for
the reconfigurable manipulation of acoustoelastic wave
transmission in coupled-resonator waveguides. Differ-
ent chains of CRAEWs with a rather arbitrary shape can
indeed be straightforwardly realized without changing
the solid metaplate. Active or even smart manipulation
of localized resonators is thus expected.
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