
Change-level detection for Lévy subordinators
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Abstract

Let X = (Xt)t≥0 be a process behaving as a general increasing Lévy process (subordinator)
prior to hitting a given unknown level m0, then behaving as another different subordinator
once this threshold is crossed. This paper addresses the detection of this unknown threshold
m0 ∈ [0,+∞] from an observed trajectory of the process. These kind of model and issue are
encountered in many areas such as reliability and quality control in degradation problems.
More precisely, we construct, from a sample path and for each ε > 0, a so-called detection
level Lε by considering a CUSUM inspired procedure. Under mild assumptions, this level is
such that, while m0 is infinite (i.e. when no changes occur), its expectation E∞(Lε) tends
to +∞ as ε tends to 0, and the expected overshoot Em0([Lε −m0]+), while the threshold
m0 is finite, is negligible compared to E∞(Lε) as ε tends to 0. Numerical illustrations are
provided when the Lévy processes are gamma processes with different shape parameters.

Keywords: Change detection, Lévy process, subordinator, CUSUM, sequential testing.

1. Introduction

Let X = (Xt)t≥0 be a continuous stochastic process. More precisely, we here assume that
X is a monotone increasing Lévy process prior to hitting m0, then it is another increasing
Lévy process once this threshold is crossed. The process X = (Xt)t≥0 is observed on-line
and m0 ∈ [0,+∞] is unknown. In this context, it naturally appears the need to detect the
change, if it took place. One could think about processes that describe gradual deterioration
due to continuous use such as erosion, corrosion, concrete creep, crack propagation (see [1]
in the case of a gamma process). A unit system could have an accelerating degradation
whenever its degradation level crosses m0. This latter is usually unknown and an abrupt
change in the degradation could be one of the causes that complicate the determination of
the failure time of the system. Recall that industries seek to maintain their equipment’s
available while minimizing their total maintenance cost including the unavailability cost.
For that purpose, many maintenance policies have been proposed in the literature. The
maintenance decision could be based on many characteristics such as the reliability level,
the cost function, the remaining useful life or the change time. We here are interested in
the change time characteristic.

Recall that the theory of change detection consists in developing tools to detect the
change as soon as possible and by taking into consideration the false alarm constraints.
Many works in the literature have studied the online change detection for continuous-time
stochastic processes which are Lévy processes. In [2] and [3], the authors studied the problem
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of Poisson disorder problem which seeks to get a stopping time which is close to the time of
disorder (or change-point) when the intensity of an observed Poisson process changes from
one value to another one at a certain (unknown) time. A revisited version of the latter work
has been proposed by [4] by providing a complete solution of the Poisson disorder problem.
Recently, [5] proposed to solve the quickest drift change detection problem for a Lévy process
under the Bayesian set-up by assuming an exponential a priori distribution of the change
point. Furthermore, the authors in [6, 7, 8] have studied the online change detection for a
gamma process in the framework of the condition-based maintenance strategy. They used
the classical CUSUM rule to determine the change time. As for [9], they considered the
change detection problem for continuous-time Lévy processes by approximating an adapted
sequence of change-point problems and where the optimality of a CUSUM rule is shown. To
sum up, in the previous works, the proposed techniques were based on an a priori distribution
for the change-time or a deterministic unknown change-time.

The aim of this paper is to propose a detection level rule to ensure a quick detection
when the degradation of a unit system crosses m0 while minimizing the false alarm rate.
For that purpose, we consider a procedure inspired from a CUSUM detection rule applied
to intervals between jumps larger than some given constant, rather than on the increments
of the process as it is the case in the usual setup. Moreover, in the classic methodology
of on-line change detection, the change is related to the temporal aspect. As a natural
consequence, the performance criteria of the change detection rules result from the mean
time between false alarms when there is no change and the mean time before the detection of
a change. These quantities are named the Average Run Lengths (and denoted respectively
ARL∞ and ARL0). However, in our case, the change is no more related to a temporal
aspect but rather on what we could call a spatial aspect: the change takes place when the
system reaches a given level m0. Consequently, we here consider, instead of the Average Run
Length, a kind of Average Run Level (ARLev) criterion for the evaluation of the detection
rules. Roughly speaking, we are interested by the accumulated level since the change rather
than the delay before the detection. To motivate this approach, if we consider again the
context of the accumulative deterioration of a system, one can imagine that the level of the
accumulated degradation since the change occurred is just as important as the delay for
detection (even if, obviously, the two are related).

The remainder of the paper is as follows. Section 2 provides a quick presentation of the
CUSUM procedure. The proposed methodology along with the main results are presented
in Section 3. In Section 4, the proofs of the main results are exposed. Finally, numerical
results are given in Section 5. In particular, the present detection procedure is compared to
a naive CUSUM approach and is shown to perform better on some examples.

2. A review of the CUSUM procedure for discrete time observed sequences

In the classic online change-point detection problem, it is assumed that a sequence of
i.i.d. random variables Z1, Z2, . . . , with probability density function (pdf) f1, is observed
sequentially, until a change occurs at an unknown instant denoted K ∈ N. After the change,
the observations ZK , ZK+1, . . . are again i.i.d. but with a pdf f2 such that f2 6= f1. K is
called the change time. We can write:

Zk = Z1
k1[k<K] + Z2

k1[k≥K], k ∈ N, (1)

where (Z1
n)n∈N and (Z2

n)n∈N are two i.i.d. sequences with respectively common pdf f1 and
f2.
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Whenever a new observation is collected, a decision must be made: either there is no
evidence against the hypothesis of no change and the system is declared under control and
the monitoring continues, waiting for the next observation, or there is clear evidence that a
change occurred in the past and an alarm is issued resulting in the monitoring to stop. This
decision is taken from a change-detection rule, whose aim is to detect as soon as possible
the change from the two operating modes, guaranteeing a low false alarm rate.

The unknown change time K can be either deterministic or random. In the latter case,
K is supposed to be a random variable which can be dependent on the observations or
completely independent of the observations. The change-point detection rules then rely on
a prior distribution, that means a sequence of probabilities πn = P [K = n|Z1, . . . , Zn] for
n ∈ N. In this bayesian setting, [10] obtains the asymptotic optimality of a rule based on
a likelihood ratio in the case where the prior distribution of the change time is supposed to
be geometric and independent of the observations. Since then, its works were extended to
non-independent observations, to more general prior distributions and considering several
optimality criteria (see for example [11], [12] or even [13] for an overview). Up to our knowl-
edge, in all the previous papers, a prior distribution (usually the geometric distribution) on
the change time should be assumed. As for our case, the procedure is different since we
are here interested in the level detection time. As a consequence, the latter cannot have an
imposed prior distribution.

In the non-Bayesian setting, the most popular change-detection rule is probably the
CUSUM, initially proposed by [14] in 1954. The CUSUM consists in constructing some
likelihood ratio between two hypothesis:

• H1: K = +∞

• H2: K <∞

At time n, the CUSUM statistic is defined by

gn = max
1≤k≤n

n∑
i=k

log
f2(Zi)

f1(Zi)
. (2)

The CUSUM stopping rule is then defined by

τCUSUM = inf{n ≥ 1 : gn ≥ γ} (3)

where γ > 0 refers to a given threshold. It is standard, as γ > 0, that the test statistic in
the definition (3) of τCUSUM can be written, equivalently, in the following recursive form:

gn+1 =

(
gn + log

f2(Zn+1)

f1(Zn+1)

)+

(4)

with g0 = 0 and a+ = max(a, 0), see [15, (2.2.9) p.38], or in the following form

gn =

{
max

1≤k≤n

n∑
i=k

log
f2(Zi)

f1(Zi)

}
∨ 0 (5)

which will be used throughout the paper.
Let us define the set F of all monitoring schemes, i.e. of all stopping times adapted to

the filtration induced by (Zi)i∈N. For all positive real number h, let us define Fh by

Fh =
{
T ∈ F : E1

T := E(∞)(T ) ≥ h
}
, (6)
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i.e. the set of all monitoring schemes such that the mean time before a false alarm is larger
than h. Let also the worst mean delay for detection be defined as

E2
T = sup

K≥1
ess supE(K)[(T −K + 1)+|Z1, . . . , ZK−1]. (7)

In Equations (6) and (7), E(∞) and E(K) respectively refer to the expectation with respect
to the probability distribution P(∞) of no change and probability distribution P(K) of a
change at time K.

In [16], the asymptotic optimality of the CUSUM is obtained by showing that

E1
τCUSUM ≥ exp(γ), (8)

meaning that τCUSUM in (3) belongs to Fh by considering γ = log h, and that

E2
τCUSUM ∼

log h

I
as h→∞ (9)

∼ inf
T∈Fh

E2
T as h→∞, (10)

where I refers to the Kullback-Leibler (KL) distance between the two distributions with
respective densities f1 and f2, which is defined as follows

I = KL(f2||f1) =

∫
log

(
f2(x)

f1(x)

)
f2(x)dx. (11)

Among the most significant extended results of [16] on the CUSUM rule, we may cite [17]
who obtains the optimality of the CUSUM for a fixed value for h (i.e. a non asymptotic
optimality result) and [18] who considers dependent observations, and also several other
optimality criteria.

3. Description of the model and main results

Let us now consider an increasing stochastic process X = (Xt)t≥0 which behaves as
one of two given processes X1 or X2, depending on whether it is below or above a certain
(unknown) threshold m0 ∈ [0,+∞]. More precisely, both processes X1 = (X1

t )t≥0 and
X2 = (X2

t )t≥0 are Lévy processes with respective characteristic exponents

ψj(θ) = iajθ +

∫
R
(1− exp(iθx) + iθx1[|x|<1])Q

j(dx)

where θ ∈ R and Qj(.), j = 1, 2 refers to the Lévy measure that verifies

E[exp(iθXj
t )] = exp(−tψj(θ)), ∀t ≥ 0,

see [19, Section 1.1 p.4]. Let us consider the following assumptions

(A1) Qj(−∞, 0) = 0, dj = −(aj +
∫

(0,1)
xQj(dx)) = 0 and

∫
(0,∞)

(1 ∧ x)Qj(dx) < ∞,

j = 1, 2, i.e. both processes X1 and X2 are driftless subordinators (see [19, Lemma
2.14, p.55]),

(A2)
∫

(0,∞)
x2Qj(dx) <∞ (this implies that

∫
(0,∞)

xQj(dx) <∞ based on (A1)),
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(A3) Qj((0,+∞)) = +∞ for j = 1 or j = 2, and possibly both at the same time,

(A4) lim infε→0

∣∣∣ Q̄2(ε)

Q̄1(ε)
− 1
∣∣∣ > 0, where Q

j
(ε) = Qj((ε,+∞)) for j = 1, 2.

These assumptions may be interpreted as follows. (A3) means that at least one of the
two processes (X1 or X2) admits infinitely many small jumps in a finite time interval.

Assumption (A4) is used to discriminate between X1 and X2. Indeed, Q
j
(ε) represents the

average number of jumps greater than ε by unit of time [20, Remark 1.16 p.318]. Intuitively
speaking, this assumption says that the order of magnitude of the number of jumps larger
than ε is different when ε tends to 0. Assumptions (A1), (A2) and (A4) are supposed to
hold throughout the paper. In the sequel, the study of the proposed detection level rule
will be done when Assumption (A3) holds but also when it does not hold, i.e. when X1

and X2 are both Compound Poisson processes. Also, both processes X1 and X2 being
subordinators (see (A1)), we recall that they may be characterized by their Laplace exponent
φj(θ) , instead of the characteristic exponent ψj(θ), j = 1, 2, that verify E[exp(−αXj

t )] =
exp(−tφj(α)) for all t ≥ 0 and α ≥ 0. Since the subordinators are driftless processes, those
Laplace exponent have here the simple expression

φj(α) =

∫
(0,+∞)

(1− e−αx)Qj(dx), α ≥ 0, j = 1, 2,

see [21, Section 2.2 page 9].
The latter processes allow for the process X to be now written as

Xt = X1
t 1[t≤τm0

] + (X2
t−τm0

+X1
τm0

)1[t>τm0
], ∀t ≥ 0, (12)

with the crossing time of level m0 of the process X1 defined as

τm0
= inf{t ≥ 0|X1

t ≥ m0}, (13)

where m0 ∈ [0,∞] is unknown.
Moreover, following [19, Section 2.4, p.44], and because X is driftless, it will be convenient
to note that, thanks to (A2) and more precisely to the fact that

∫
(0,∞)

xQj(dx) is finite,

each process Xj, j = 1, 2, may be expressed in function of a Poisson random measure Nj on
([0,+∞)× (0,+∞),B([0,+∞))× B((0,+∞)), ηj) as follows

Xj
t =

∫
[0,t]

∫
(0,+∞)

xNj(ds× dx), t ≥ 0, (14)

where ηj refers to a measure on ([0,+∞) × (0,+∞),B([0,+∞)) × B((0,+∞)) given by
ηj(ds× dx) = dsQj(dx).
Throughout the paper, Em0

(.) refers to the expectation under the assumption that the
process X change its behavior when it exceeds m0 and E∞(.) to the expectation where
m0 =∞, i.e. when there is no change in the behavior of X, so that Xt = X1

t for all t ≥ 0,
see (12).
The aim of the paper is to determine, by sequentially observing a sample path t ≥ 0 7→ Xt,
a detection rule which achieves the two following goals:

1. To guarantee a quick detection of the crossing of level m0 if it occurs, such that the
overshoot of the underlying process at the time of detection is not too large with
respect to the fixed threshold m0.
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2. To provide a low false alarm rate if there is no change, that means m0 = +∞.

This will be achieved by proving the forthcoming main Theorems 2 and 3. Theorem 2 holds
when (A3) is satisfied and Theorem 3 holds when (A3) is not satisfied.

3.1. Construction of the ε-detection rule

Let ε > 0 and (T εi )i∈N the sequence constructed from the observed trajectory Xt, t ≥ 0,
in the following way:

T ε0 = 0,

T εi+1 = inf{t > T εi | ∆Xt = Xt −Xt− > ε}, i ≥ 0. (15)

Thus, the T εi , i ∈ N, are the successive times when an observed jump of the process X is
larger than a given ε. The corresponding inter-arrival times are then defined by:

ηεi = T εi − T εi−1, i ≥ 1. (16)

Intuitively, due to the Lévy nature of the processes X1 and X2, ηεi seems to be exponentially
distributed with parameter Q̄1(ε) if τm0

> T εi or parameter Q̄2(ε) if τm0
< T εi−1. In other

words, ηεi looks either distributed as E(Q̄1(ε)) or E(Q̄2(ε)) whether we are before or after
having crossed the threshold. Although this latter statement is not rigorous and is only
intuitively correct, this however motivates the use of the following CUSUM type rule. More
precisely, we introduce the CUSUM statistic (Gηn)n∈N associated to the sequence (ηεi )i∈N as
in (4) by Gη0 = 0 and

Gηn+1 =
(
Gηn + φε(η

ε
n+1)

)+
, n ≥ 0 (17)

where

x ∈ [0,+∞) 7→ φε(x) := log
Q̄2(ε)

Q̄1(ε)
+ (−Q̄2(ε) + Q̄1(ε))x := aε + bεx (18)

is the logarithm of the likelihood ratio of the exponential distributions with respective
parameters Q̄2(ε) and Q̄1(ε).

Remark 1. One can verify easily that φε(.) is linear, and is increasing (resp. decreasing)
when Q̄2(ε) ≤ Q̄1(ε) (resp. ≥).

Finally, we set the associated stopping rule related to a threshold γ(ε) (which will be
made explicit later on), by

τ ε,ηCUSUM := inf{n ≥ 0| Gηn ≥ γ(ε)}, (19)

and the associated ”pseudo-level”:

Mε =

τε,ηCUSUM∑
i=1

∆XT εi
=

τε,ηCUSUM∑
i=1

(
XT εi

−XT εi
−

)
. (20)

The idea behind the above construction is that the smaller ε is, the closer Mε is from X at
the detection time defined by

dε =

τε,ηCUSUM∑
i=1

ηεi . (21)
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In this case, we will denote by Lε the detection level defined as follows:

Lε = Xdε . (22)

Figure 1 displays all the quantities above that we have used for the construction of the
detection rule. One should note the importance of comparing the proposed model with the

tτm0

Xt

X1
t X2

t−τm0
+X1

τm0

Jump size larger than ǫ

Mǫ

Lǫ

detection time dǫ

m0

ηǫ1 ηǫ2

Figure 1: Detection time and level

classical one described in Section 2 where the model features an unknown (but not random)
instant change of the process behavior. In our case, the process behavior changes once it
exceeds a certain threshold. The main idea of this paper is to exchange the role of time and
space, so that the analog of time detection τCUSUM in (3) is the level detection Lε in (22).

3.2. Main results

The three following theorems are the main contributions of the paper.

Theorem 1. Assume that (A1)− (A4) hold and define the CUSUM statistics τ ε,ηCUSUM in
(19) with γ(ε) := log h(ε) and

h(ε) :=

{
[Q̄2(ε)Iε]2 if Q̄2(0) = +∞,
[Q̄1(ε)]

β
if Q̄2(0) < +∞ (and consequently Q̄1(0) = +∞),

(23)

where β > 2 is arbitrary, and

Iε = log
Q̄2(ε)

Q̄1(ε)
− 1 +

Q̄1(ε)

Q̄2(ε)
,∀ε > 0. (24)
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Then, for all ε > 0, there exist two positive quantities cε1 and cε2 such that the following
properties are satisfied:

(P ε
1 ) Em0

([Mε −m0]+) ≤ cε1, for all ε > 0,

(P ε
2 ) E∞(Mε) ≥ cε2, for all ε > 0,

(P3) cε1 = o(cε2) and lim
ε→0

cε2 = +∞.

In the case where the following assumption holds

lim sup
ε→0

Q̄1(ε)

Q̄2(ε)
<∞, (25)

then (P3) can be made more precise as

(P ′
3) lim supε→0 c

ε
1 <∞ and lim

ε→0
cε2 = +∞.

Theorem 2. Under the assumptions of Theorem 1, it holds that

lim
ε→0

Em0
(Lε −Mε) = 0, ∀m0 ≥ 0, (26)

and the properties (P ε
1 ), (P ε

2 ), (P3) and (P ′
3) are still valid by substituting Mε by Lε.

Remark 2. Note that Em0([Lε−m0]+) corresponds to the mean overshoot of the process X
at detection time above the threshold m0. In a degradation context, this corresponds to the
mean degradation above m0. E∞(Lε) is the mean detection level when there is no regime
change, which will be denoted as the Average Run Level (ARLev∞). This latter quantity
is the analog of the Average Run Length (ARL) in the usual temporal context for detection
rules. Properties (P ε

1 ) and (P ε
2 ) in Theorem 2, applied to Lε, combined with property (P3)

ensure that, as ε tends to 0, the mean overshoot of the process is negligible against the mean
level when there is no regime change E∞(Lε). Even better, (P ′

3) guarantees that the mean
overshoot is bounded, which is useful in practical situations. Moreover, in some specific
cases (such as when X1 is a gamma process or an inverse Gaussian process), it can be
easily verified from the proofs of Theorems 1 and 2 that the quantities c1ε and c2ε could be
explicitly expressed for a fixed ε.

When the assumption (A3) is not satisfied, the processes X1 and X2 are compound Poisson
processes. In that case, the detection procedure is slightly different. The jump and inter-
arrival times of the process X are defined as

T0 := 0,

Ti+1 := inf{t > Ti| ∆Xt = Xt −Xt− > 0}, i ≥ 0,

ηi := Ti − Ti−1, i ≥ 1.

The sequence (Ti)i∈N corresponds to the jump times of X1 when Ti is less than τm0
(i.e.

before the process crossed the level m0), and to the jump times of X2 when Ti is larger than
τm0 . In other word, this corresponds to (T εi )i∈N in (15) with ε = 0. We aim here at devising
a ”classical” CUSUM rule to the sequence (ηi)i∈N defined above. More precisely we let the
associated CUSUM statistic (Gn)n∈N, defined in (17), with G0 = 0 and

Gn+1 = (Gn + φ0(ηn+1))
+
, n ≥ 0,
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where we recall from (18) that φ0(x) = log Q̄2(0)
Q̄1(0)

+ (−Q̄2(0) + Q̄1(0))x, and

τηCUSUM := inf{n ≥ 0| Gn ≥ log h}, h > 1. (27)

Finally, the associated level is defined as

L =

τηCUSUM∑
i=1

∆XTi =

τηCUSUM∑
i=1

(
XTi −XTi−

)
. (28)

The equivalent of Theorems 1 and 2 in the present case is as follows.

Theorem 3. Let us suppose that Assumptions (A1)− (A2) hold and that X1 and X2 are
compound Poisson processes with finite different intensities Q̄1(0) and Q̄2(0). Then there
exists ch1 and ch2 such that the following properties are satisfied

(P 0
1 ) Em0([L−m0]+) ≤ ch1 for all h > 1,

(P 0
2 ) E∞(L) ≥ ch2 for all h > 1,

(P4) ch1 = o(ch2 ) as h→ +∞ and limh→+∞ ch2 = +∞.

Remark 3. Similarly to Remark 2, Theorem 3 identifies the detection level by detecting
a change in the respective intensities. When the intensities are equal, then the jumps nec-
essarily have distinct distributions whenever the process Xt is less or larger than m0. An
intuitive solution for detecting the change would be to perform a CUSUM rule on the suc-
cessive jump sizes of the process. However, theoretical results on the detection level with this
latter solution seem to be difficult to prove, and this case remains an open problem.

3.3. Example: Gamma Processes

Setting A : R+ → R+ to be a measurable, increasing and right-continuous function with
A(0) = 0 and b > 0, let us recall that a standard (non homogeneous) gamma process Y =
(Yt)t≥0, with A(.) as shape function and b as scale parameter (denoted by Y ∼ Γ(A(.), b)),
is a stochastic process with independent, non-negative and gamma distributed increments
such that Y0 = 0 almost surely. The pdf of an increment Yt − Ys (with 0 < s < t) is given
by

f(x) =
bA(t)−A(s)

Γ(A(t)−A(s))
xA(t)−A(s)−1 exp(−bx),∀x ≥ 0.

Gamma processes are largely used in reliability, notably to model the cumulative deteriora-
tion of a system (see [1] for an overview).

When the shape function is linear, i.e. A(t) = γt, the gamma process is said to be
homogeneous. A homogeneous gamma process is a subordinator.

We consider the case in which X1 and X2 are two homogeneous gamma processes, so
that

X1 ∼ Γ(γ1., b1) and X2 ∼ Γ(γ2., b2)

where b1 and b2 refer to the scale parameters of X1 and X2, respectively.
The Lévy measures of the process X1 and X2 are given by:

Qj(dx) = γi
1

x
e−bjxdx, for j = 1, 2.
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If γ1 6= γ2, the change consists in a modification in the mean rate of degradation or the
variability of the system considered. One can check that the latter condition is equivalent
to the assumption (A4) and that, when b1 = b2 = b, an explicit form of φε can be obtained
as follows, for i ≥ 1:

φε(η
ε
i ) = log

γ2

γ1
+ (−γ2 + γ1)g(0, bε)ηεi ,

where g(., .) is the upper gamma incomplete function.

4. Proof of the main results

The idea of the proof of Theorems 1 and 2 is to approximate the original process X by a
somewhat simpler jump process Xε of which behavior changes too when it crosses m0 and
such that Xε

t converges towards Xt point-wise as ε → 0. The construction of this process
Xε is given in Subsection 4.1. The change detection for the approximating process is easier
to deal with. The point of Section 4.2 is to study some properties of the stopping procedure
related to Xε and τ ε,ηCUSUM defined in (19).

4.1. The approximating process and its associated CUSUM statistics
Construction of Xε

Let ε > 0. The idea here is to approximate Xj , j = 1, 2, by Xj,ε which is given by (14)
by removing the jumps less or equal to ε. Consequently, similarly to the representation (14),
we can express Xj,ε as follows

Xj,ε
t =

∫
[0,t]

∫
(ε,+∞)

xNj(ds× dx), t ≥ 0. (29)

Moreover, it is standard that Xj,ε
t is a compound Poisson process (see [19, Lemma 2.8, p.44])

that can be written as

Xj,ε
t =

Nj,εX (t)∑
i=1

∆j,ε
i ,∀t ≥ 0,

with underlying Poisson process N j,ε
X = (N j,ε

X (t))t≥0, intensity Qj(ε) and jumping times

denoted by (T j,εi )i≥0. The distribution of the associated increments ∆j,ε
i = Xj,ε

T j,εi
−Xj,ε

T j,εi−1

is

given by
1

Qj(ε)
Qj(dx)1[x>ε]. (30)

In the following, we will let ∆j,ε, j = 1, 2, be generic random variables with same distribution
as the ∆j,ε

i , i ∈ N.
Once the processes Xj,ε are constructed, then the process Xε can be defined in a similar
way of Equation (12)

Xε
t = X1,ε

t 1[t≤τεm0
] + (X2,ε

t−τεm0
+X1,ε

τεm0
)1[t>τεm0

] (31)

with the first crossing time of level m0 of process X1,ε defined as

τ εm0
= inf{t ≥ 0|X1,ε

t ≥ m0}. (32)

At this point, we may note that the pseudo-level in (20) may be conveniently expressed as

Mε = Xε
dε (33)

where we recall that dε is the detection time defined by (21).
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CUSUM statistics associated to Xε

We then define the jumping times of the process Xε by

U εi = T 1,ε
i 1[i≤N 1,ε] + (T 2,ε

i−N 1,ε + T 1,ε
N 1,ε)1[i>N 1,ε], i ≥ 0, (34)

where

N 1,ε = inf

{
n ∈ N

∣∣∣∣∣
n∑
i=1

∆1,ε
i ≥ m0

}
. (35)

Note that N 1,ε refers to the index of the jumping time where X1,ε exceeds m0, i.e. that
N 1,ε = inf{i ∈ N|T 1,ε

i ≥ τ εm0
}. We also define the index of the first jumping time of the

process X1,ε following τm0
by

Dε = inf{i ∈ N|T 1,ε
i ≥ τm0}. (36)

We define the inter-arrival times of the jump processes Xj,ε and Xε as

ηj,εi = T j,εi − T
j,ε
i−1, j = 1, 2, i ≥ 1,

δεi = U εi − U εi−1, i ≥ 1.

Thus, (ηεi )i∈N defined in (16) is associated to the observed process X, (ηj,εi )i∈N referred to

the inter-arrival times of the process N j,ε
X , j = 1, 2, and (δεi )i∈N is related to the constructed

process Xε. A trajectory of X and Xε as well as the corresponding stopping times τm0

and τ εm0
on crossing level m0 are illustrated in Figure 2. An illustration of the construction

of the above sequences is given in Figure 3. As in (17) for the sequence (ηεi )i∈N, let us now
introduce the CUSUM statistic (Gδn)n∈N associated to the sequence (δεi )i∈N by Gδ0 = 0 and

Gδn+1 =
(
Gδn + φε(δ

ε
n+1)

)+
, n ≥ 0, (37)

and the resulting stopping rule related to the threshold γ(ε)

τ ε,δCUSUM := inf{n ≥ 0| Gδn ≥ γ(ε)}. (38)

Outline of Theorems 1, 2, 3 proofs

The proofs of Theorems 1, 2 have different methodologies than that of Theorem 3. More
precisely, the sketch of the proof of Theorems 1, 2 is the following:

1. We perform a detection of the random index N 1,ε defined in (35) through the CUSUM

procedure τ ε,δCUSUM .
2. We prove that τ ε,ηCUSUM (that depends on the observed process X) is stochastically

smaller than τ ε,δCUSUM (that depends on the unobserved process Xε). This part is one
of the main difficulty of the proof and is the object of the forthcoming Proposition 1
in Section 4.2.

3. Since Xε
t point-wise converges to Xt as ε→ 0, we argue that the so-called pseudo-level

Mε and detection level Lε defined respectively in (20) and (22), which depend on the
observed inter-arrival times (ηεi )i∈N and the associated jumps (∆XT εi

)i∈N, satisfy the
properties (P ε

1 ), (P ε
2 ) and (P3) or (P ′

3).

The proof of Theorem 3 is on the other hand simpler, as we let ε = 0 i.e. we directly deal
with the observed process X and construct consequently the CUSUM statistic that detects
the index N 1,ε.

11



t

m0

τm0

Xǫ
t

τ ǫm0
= U ǫ

N 1,ǫ = T 1,ǫ
N 1,ǫ

U ǫ
Dǫ−1

U ǫ
Dǫ

Xt

X1,ǫ
t

X2,ǫ
t−τǫ

m0
+X1,ǫ

τǫ
m0

X1
t X2

t−τm0
+X2

τm0

Figure 2: Trajectories for X and Xε and switching times on reaching level m0.

U ǫ
Dǫ−1

U ǫ
Dǫ τ ǫm0

= U ǫ
N 1,ǫτm0

δǫN 1ǫ = η2,ǫ1δǫDǫ−1 = η1,ǫDǫ−1 δǫDǫ = η1,ǫDǫ δǫDǫ+1 = η1,ǫDǫ+1
δǫN 1,ǫ+1 = η2,ǫ2

η2,ǫ1 η2,ǫ2

ηǫDǫηǫDǫ−1 = η1,ǫDǫ−1 ηǫDǫ+1 = η2,ǫ2

η2,ǫ3

ηǫDǫ+2 = η2,ǫ3

η1,ǫ0

Figure 3: Illustration of definitions for the sequences (ηεi )i∈N, (δεi )i∈N and (ηj,εi )i∈N, j = 1, 2. Recall that
(ηεi )i∈N is related to the observed process X and (δεi )i∈N is related to the unobserved process Xε.
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4.2. Intermediary results

Firstly, one should note that, in view of the explicit expression (5) for the CUSUM
statistic, the following equalities hold

{
Gδn < γ(ε)

}
=

{
max

1≤k≤n

n∑
i=k

φε(δ
ε
i ) ∨ 0 < γ(ε)

}
, n ∈ N, (39)

{Gηn < γ(ε)} =

{
max

1≤k≤n

n∑
i=k

φε(η
ε
i ) ∨ 0 < γ(ε)

}
, n ∈ N. (40)

One can easily prove by induction on n ≥ m the following relation between Gδn and Gδm

Gδn =

 max
m+1≤j≤n

n∑
r=j

φε(δ
ε
r)

 ∨ 0 ∨

[
Gδm +

n∑
r=m+1

φε(δ
ε
r)

]
. (41)

One should note that τ ε,ηCUSUM , which is the CUSUM stopping time based on the observed
path X is based on the sequence (ηεi )i∈N. Nevertheless, we can see on Figure 3 that the
particular time interval ηεDε causes a problem since its distribution is unknown because the
regime change does not occur necessarily after a jump of size larger than ε (i.e. at time

U εDε), unlike τ ε,δCUSUM . The following results, that will be used in the proof of Theorem 1,

shows that τ ε,δCUSUM is larger than τ ε,ηCUSUM in some sense.
Throughout the following sections and for the sake of readability, we denote Em0

and Pm0

by E and P, respectively, when m0 is finite and when no confusion is possible.
Let us recall that, given X and Y two random variables, X is said to be stochastically
smaller than Y , denoted X ≤st Y (see [22, Chapter 1, p.3]) if, for all x ∈ R:

P(Y ≥ x) ≥ P(X ≥ x).

Proposition 1. It holds that
[
τ ε,ηCUSUM | N 1,ε = p

]
≤st

[
τ ε,δCUSUM | N 1,ε = p

]
for all p ∈ N∗.

Proof. Setting p ∈ N∗, we have to prove the following inequality

P(τ ε,δCUSUM ≥ n, N
1,ε = p) ≥ P(τ ε,ηCUSUM ≥ n, N

1,ε = p) (42)

for all n ∈ N. We set throughout the proof

Gε := GηDε−1 + bε(τm0
− U εDε−1) (43)

with bε defined in (18). By construction of the process Xε, one has Gηi = Gδi for all
i = 1, . . . ,Dε − 1 (see Figure 3), so that GηDε and GδDε may be expressed as

GηDε =
(
Gε + φε(η

2,ε
1 )
)+

, (44)

GδDε =
(
Gε + φε(η

1,ε
0 )
)+

, η1,ε
0 := U εDε − τm0

. (45)

A crucial remark is that, since X1,ε has independent increments, η1,ε
0 defined above is inde-

pendent from τm0 , GδDε−1 and U εi , i = 1, . . . ,Dε− 1, and hence is in particular independent

from Gε. Also, since X1,ε and X2,ε are independent processes, η2,ε
1 is independent from
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Gε and is E(Q̄2(ε)) distributed. In fact, it will be proved later on that the r.v. η1,ε
0 is

E(Q̄1(ε)) distributed. Hence, the statement that we want to prove is justified by the fol-
lowing heuristic argument: from (44) and (45), it is clear that both CUSUM statistics Gδn
and Gηn coincide up to index Dε − 1. Starting from index Dε, these two quantities may
then be seen as two CUSUM statistics starting from Gε, with increments respectively given
by φε(η

1,ε
0 ), φε(η

1,ε
Dε+1), . . . , φε(η

1,ε
N ε−1) (cf. Figure 3) which are negative in expectation then

switch to φε(η
2,ε
1 ), φε(η

2,ε
2 ), . . ., which are positive in expectation, and φε(η

2,ε
1 ), φε(η

2,ε
2 ), . . .,

which are positive in expectation. Consequently, (Gηn)n∈N will tend to hit the threshold γ(ε)
before (Gδn)n∈N.
The proof is decomposed into several steps as follows.

Step 1: Decomposition of the event {τ ε,δCUSUM ≥ n}
Let us now decompose the left-hand side of (42) as

P(τ ε,δCUSUM ≥ n, N
1,ε = p) = P(τ ε,δCUSUM ≥ n, n ≥ D

ε, N 1,ε = p)

+ P(τ ε,δCUSUM ≥ n, n < D
ε, N 1,ε = p) (46)

and consider separately the two terms in the right-hand side of (46). We start by considering

P(τ ε,δCUSUM ≥ n, n < Dε, N 1,ε = p). One has{
τ ε,δCUSUM ≥ n, n < D

ε
}

=
{
Gδk < γ(ε), k = 1, . . . , n− 1, n < Dε

}
= {Gηk < γ(ε), k = 1, . . . , n− 1, n < Dε}
= {τ ε,ηCUSUM ≥ n, n < D

ε} ,

as indeed, for all i = 1, . . . ,Dε − 1, δεi = ηεi = η1,ε
i and using (39) and (40). Hence we have

the equality

P(τ ε,δCUSUM ≥ n, n < D
ε, N 1,ε = p) = P(τ ε,ηCUSUM ≥ n, n < D

ε, N 1,ε = p). (47)

The main bulk of the proof concerns the first term in the right-hand side of (46). Condi-
tioning on the crossing time τm0

, the occurrences of the jump times of Xε prior to τm0
as

well as Dε, and since N 1,ε ≥ Dε, we obtain that

P(τ ε,δCUSUM ≥ n, n ≥ D
ε, N 1,ε = p)

=

∫ ∞
t=0

n∧p∑
d=1

∫
t1≤...≤td−1≤t

P(τ ε,δCUSUM ≥ n, τm0 ∈ dt,Dε = d,N 1,ε = p, T 1,ε
i ∈ dti, i = 1, . . . , d−1).

(48)

To avoid cumbersome notation, we define

A := {τm0 ∈ dt,Dε = d,N 1,ε = p, T 1,ε
i ∈ dti, i = 1, . . . , d− 1}

= {τm0
∈ dt, T 1,ε

d−1 < t, T 1,ε
d ≥ t,N 1,ε = p, T 1,ε

i ∈ dti, i = 1, . . . , d− 1} (49)

where the last equality comes from the definition (36) of Dε. We now consider the integrand

on the RHS of (48). The rest of the proof is dedicated to prove that P(τ ε,δCUSUM ≥ n,A) ≥
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P(τ ε,ηCUSUM ≥ n,A). To this end, we first observe, according to (38), that

{τ ε,δCUSUM ≥ n, n ≥ D
ε = d} = {Gδk < γ(ε), k = 1, . . . , n− 1, n ≥ Dε = d}

= {Gδk < γ(ε), k = 1, . . . , d− 1}
⋂
{Gδd < γ(ε)}⋂

{Gδk < γ(ε), k = d+ 1, . . . , n− 1}
⋂
{Dε = d}.(50)

We now consider each event on the RHS of the above equality intersected with A. Thanks
to the explicit expression (5) of the CUSUM statistics as well as (39), the first event may
be expressed as

{Gδk < γ(ε), k = 1, . . . , d− 1}
⋂
A =

{
max

1≤k≤d−1
max

1≤j≤k

k∑
i=j

φε(ti − ti−1) < γ(ε)
}⋂

A.

Then, thanks to (45), the second event can be written as

{Gδd < γ(ε)}
⋂
A =

{
(fd−1(t1, . . . , td−1, t) + φε(η

1,ε
0 ))+ < γ(ε)

}⋂
A

where

fd−1 : (t1, . . . , td−1, t) 7→ fd−1(t1, . . . , td−1, t) := max
1≤k≤d−1

d−1∑
i=k

φε(ti − ti−1) ∨ 0 + bε(t− td−1),

and we recall that η1,ε
0 := U εDε − τm0

refers to the residual time before a jump larger than ε
after that the process X crosses the threshold m0 (see Figure 3). Finally, the third event of
(50) intersected with A can be written as follows thanks to (41):

{Gδk < γ(ε), k = d+ 1, . . . , n}
⋂
A =

{
max

d+1≤k≤n

 max
d+1≤j≤k

k∑
r=j

φε(1[r≤p]η
1,ε
r + 1[r>p]η

2,ε
r−p)

 ∨ 0

∨

[
(fd−1(t1, . . . , td−1, t) + φε(η

1,ε
0 ))+ +

k∑
r=d+1

φε(1[r≤p]η
1,ε
r + 1[r>p]η

2,ε
r−p)

])
< γ(ε)

}⋂
A.

Hence, we obtain

P(τ ε,δCUSUM ≥ n, n ≥ D
ε, A) = P(τ ε,δCUSUM ≥ n, A)

= P
(
v(t1, . . . , td−1) < γ(ε),Ψ(η1,ε

0 , (η1,ε
j )d+1≤j≤p, (η

2,ε
i )1≤i≤n−p)) < γ(ε), A

)
= 1{v(t1, . . . , td−1) < γ(ε)

}P
(

Ψ(η1,ε
0 , (η1,ε

j )d+1≤j≤p, (η
2,ε
i )1≤i≤n−p)) < γ(ε), A

)
(51)

where we define the following two functions

v(t1, . . . , td−1) = max
1≤k≤d−1

 max
1≤j≤k

k∑
i=j

φε(ti − ti−1)

 ∨ 0,
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Ψ : (z1, . . . , zn−d+1) 7→ max

{
(fd−1(t1, . . . , td−1, t)+φε(z1))+, max

d+1≤k≤n

 max
d+1≤j≤k

k∑
r=j

φε(zr−d+1)

 ∨ 0

∨

[
(fd−1(t1, . . . , td−1, t) + φε(z1))+ +

k∑
r=d+1

φε(zr−d+1)

])}
. (52)

Note that Ψ depends on (fixed) t1, . . . , td−1, t. For the sake of clarity, this dependence is
not mentioned, as there is no possible ambiguity in the following.

Step 2: General properties of η1,ε
0

Let us now argument the fact that η1,ε
0 is independent from A and is distributed as

E(Q̄1(ε)) i.e.
P(η1,ε

0 ≥ x, A) = exp(−Q̄1(ε)x)P(A), ∀x ≥ 0. (53)

Recalling the definition of η1,ε
0 in (45), we have η1,ε

0 = U εDε − τm0 which can be written as

η1,ε
0 = T 1,ε

Dε − τm0
, since N 1,ε ≥ Dε and because of the definition of U εi in (34). Additionally,

the definition of Dε in (36) implies that {N1,ε
X (t) = d− 1} = {Dε = d} on τm0

∈ dt. Then,
we have for x ≥ 0,

{η1,ε
0 ≥ x, τm0

∈ dt,Dε = d} = {T 1,ε
d − t ≥ x, τm0

∈ dt,N1,ε
X (t) = d− 1}

= {N1,ε
X (t+ x)−N1,ε

X (t) = 0, τm0
∈ dt,N1,ε

X (t) = d− 1}. (54)

Since {N 1,ε = p} =
{∑p

i=1 ∆1,ε
i ≥ m0 >

∑p−1
i=1 ∆1,ε

i

}
and thanks to the definition (49) of

the event A, the left-hand side of (53) thus reads

P(η1,ε
0 ≥ x, A) = P

(
N1,ε
X (t+ x)−N1,ε

X (t) = 0, τm0 ∈ dt,N
1,ε
X (t) = d− 1,

p∑
i=1

∆1,ε
i ≥ m0 >

p−1∑
i=1

∆1,ε
i , T 1,ε

i ∈ dti, i = 1, . . . , d− 1
)
,

which can be written in integral form, with respect to the first d − 1 inter-arrival times
∆1,ε
i , . . . ,∆1,ε

d−1, as follows∫
z1,...,zd−1≥0

P
(
N1,ε
X (t+ x)−N1,ε

X (t) = 0, τm0 ∈ dt,N
1,ε
X (t) = d− 1,

d−1∑
i=1

zi+

p∑
i=N1,ε

X (t)+1

∆1,ε
i ≥ m0 >

d−1∑
i=1

zi+

p−1∑
i=N1,ε

X (t)+1

∆1,ε
i , T 1,ε

i ∈ dti,∆1,ε
i ∈ dzi, i = 1, . . . , d−1

)
.

(55)

We now observe for fixed z1, . . . , zd−1, that the event {τm0 ∈ dt,N1,ε
X (t) = d − 1, T 1,ε

i ∈
dti,∆

1,ε
i ∈ dzi, i = 1, . . . , d − 1} depends on X1

s for s ∈ [0, t], whereas {N1,ε
X (t + x) −

N1,ε
X (t) = 0,

∑d−1
i=1 zi +

∑p

i=N1,ε
X (t)+1

∆1,ε
i ≥ m0 >

∑d−1
i=1 zi +

∑p

i=N1,ε
X (t)+1

∆1,ε
i } depends on

the increments ∆X1
s for s ≥ t. Since X1 is a Lévy process, its increments after time t are
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independent from its history up to time t, we hence deduce that (55) can be written as∫
z1,...,zd−1≥0

P
(
N1,ε
X (t+ x)−N1,ε

X (t) = 0,

d−1∑
i=1

zi +

p∑
i=N1,ε

X (t)+1

∆1,ε
i ≥ m0 >

d−1∑
i=1

zi +

p−1∑
i=N1,ε

X (t)+1

∆1,ε
i

)
× P

(
τm0
∈ dt,N1,ε

X (t) = d− 1, T 1,ε
i ∈ dti,∆1,ε

i ∈ dzi, i = 1, . . . , d− 1
)
. (56)

Since N1,ε
X is a Poisson process, the random variables N1,ε

X (t + x) − N1,ε
X (t), N1,ε

X (t) are
independent. Additionally, since X1,ε is a compound Poisson process, the jump times are
independent from the jump size (∆1,ε

i )i=1,...,p (see Section 4.1). Consequently, (56) can be
written as∫
z1,...,zd−1≥0

P
(
N1,ε
X (t+ x)−N1,ε

X (t) = 0
)
× P

( d−1∑
i=1

zi +

p∑
i=N1,ε

X (t)+1

∆1,ε
i ≥ m0 >

d−1∑
i=1

zi +

p−1∑
i=N1,ε

X (t)+1

∆1,ε
i

)
× P

(
τm0
∈ dt,N1,ε

X (t) = d− 1, T 1,ε
i ∈ dti,∆1,ε

i ∈ dzi, i = 1, . . . , d− 1
)
. (57)

Since the intensity of the Poisson process N1,ε
X is Q̄1(ε), we have P

(
N1,ε
X (t+ x)−N1,ε

X (t) =

0
)

= e−Q̄
1(ε)x, so that we may write (57) as

e−Q̄
1(ε)x

∫
z1,...,zd−1≥0

P
( d−1∑
i=1

zi +

p∑
i=N1,ε

X (t)+1

∆1,ε
i ≥ m0 >

d−1∑
i=1

zi +

p−1∑
i=N1,ε

X (t)+1

∆1,ε
i

)
× P

(
τm0
∈ dt,N1,ε

X (t) = d− 1, T 1,ε
i ∈ dti,∆1,ε

i ∈ dzi, i = 1, . . . , d− 1
)

which is the right-hand side of (53). Similarly, one can easily argument that the vector
(η1,ε

0 , (η1,ε
j )d+1≤j≤p, (η

2,ε
i )1≤i≤n−p) is independent from A and has independent components.

Finally, the independence of processes X1 and X2 immediately implies that A is indepen-
dent from (η2,ε

1 , . . . , (η2,ε
i )n−d+1).

Step 3: End of proof

Let us assume Q̄2(ε) ≤ Q̄1(ε). This implies that (η1,ε
0 , (η1,ε

j )d+1≤j≤p) ≤st (η2,ε
1 , . . . , η2,ε

p−d+1).

By independence of η1,ε
0 , (η1,ε

j )j∈N, (η2,ε
i )i∈N we thus obtain

(η1,ε
0 , (η1,ε

j )d+1≤j≤p, (η
2,ε
i )1≤i≤n−p))

L
= (η1,ε

0 , (η1,ε
j )d+1≤j≤p, (η

2,ε
i )p−d+2≤i≤n−d+1))

≤st (η2,ε
1 , . . . , η2,ε

n−d+1). (58)

The inequality Q̄2(ε) ≤ Q̄1(ε) entails that φε defined by (18) is increasing (see Remark 1)
which in turn implies that Ψ : (z1, . . . , zn−d+1) 7→ Ψ(z1, . . . , zn−d+1) (defined in (52)) is an
increasing function in each of the variables zi, i = 1, . . . , n−d+ 1. Hence, the independence
of (η1,ε

0 , (η1,ε
j )d+1≤j≤p, (η

2,ε
i )1≤i≤n−p) from A, argued at the end of Step 2, as well as the

stochastic order in (58) (see [22, Theorem 1.A.3 (b), p.6]) imply that (51) is upper bounded
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as follows

P(τ ε,δCUSUM ≥ n, A)

= 1{v(t1,...,td−1)<γ(ε)}P
(

Ψ(η1,ε
0 , (η1,ε

j )d+1≤j≤p, (η
2,ε
i )1≤i≤n−p)) < γ(ε), A

)
= 1{v(t1,...,td−1)<γ(ε)}P

(
Ψ(η1,ε

0 , (η1,ε
j )d+1≤j≤p, (η

2,ε
i )1≤i≤n−p)) < γ(ε)

)
× P(A)

≥ 1{v(t1,...,td−1)<γ(ε)}P
(

Ψ(η2,ε
1 , . . . , η2,ε

n−d+1) < γ(ε)
)
× P(A)

= P(τ ε,ηCUSUM ≥ n, A), (59)

where we recall that v(t1, . . . , td−1) = max
1≤k≤d−1

 max
1≤j≤k

k∑
i=j

φε(ti − ti−1)

 ∨ 0.

Using the inequality (59), we obtain by integrating in (48) that

P(τ ε,δCUSUM ≥ n, n ≥ D
ε, N 1,ε = p) ≥ P(τ ε,ηCUSUM ≥ n, n ≥ D

ε, N 1,ε = p).

Finally, using (46) and (47), we conclude that

P(τ ε,δCUSUM ≥ n, N
1,ε = p) ≥ P(τ ε,ηCUSUM ≥ n, N

1,ε = p) (60)

for all n ∈ N and p ∈ N.
If Q̄2(ε) > Q̄1(ε), one verifies this time that (η1,ε

0 , (η1,ε
j )d+1≤j≤p) ≥st (η2,ε

1 , . . . , η2,ε
p−d+1), so

that (58) is replaced by

(η1,ε
0 , (η1,ε

j )d+1≤j≤p, (η
2,ε
i )1≤i≤n−p)) ≥st (η2,ε

1 , . . . , η2,ε
n−d+1).

Coupled with the fact that Ψ : (z1, . . . , zn−d+1) 7→ Ψ(z1, . . . , zn−d+1) (defined in (52)) is
this time a decreasing function in each of the variables zi, i = 1, . . . , n− d+ 1, one deduces
that the (59) as well as the conclusion (60) still hold. This ends the proof.

As explained in the outline of the proof of theorems at the end of Section 4.1, we now
find the adequate candidate for detecting the index N 1,ε, defined in (35), of the jump time
where X1,ε exceeds m0.

Since the inter-arrivals (η1,ε
i )i≥0 and (η2,ε

i )i≥0 are independent fromN 1,ε, we first observe
that

E[(τ ε,δCUSUM −N
1,ε)+|N 1,ε = K] = E(K)[(τ ε,δ,?CUSUM −K)+] (61)

where τ ε,δ,?CUSUM refers to the stopping time of the CUSUM given by (3) associated to the se-
quence (Zi)i∈N in (1) such that the sequences (Z1

i )i∈N and (Z2
i )i∈N are respectively E(Q̄1(ε))

and E(Q̄2(ε)) distributed and for a threshold γ(ε) = log h(ε). Conditioning on Z1,...,ZK re-
sults on the following upper bound:

E(K)[(τ ε,δ,?CUSUM −K)+] = E(K)(E(K)[(τ ε,δ,?CUSUM −K)+|Z1, . . . , ZK ])

≤ E(K)

(
sup
p≥1

ess supE(p)[(τ ε,δ,?CUSUM − p)
+|Z1, . . . , Zp]

)
= E2

τε,δ,?CUSUM

, (62)
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where we recall that E2
τε,δ,?CUSUM

is the worst mean delay defined in (7). Equation (9) states

that

E2
τε,δ,?CUSUM

∼ log h(ε)

Iε
as h(ε)→∞ (63)

where h(ε) := exp(γ(ε)) and Iε refers to the KL distance defined in (11) and given by (24).

At this point, (63) does not provide much information. Indeed, E2
τε,δ,?CUSUM

behaves like log h(ε)
Iε

as h(ε) becomes large. However, this fact is not really useful as we wish to rather know
how this quantity behaves when ε→ 0. An upper bound is hence provided in the following
lemma:

Lemma 1. (a) For all ε > 0, the following inequality holds

E2
τε,δ,?CUSUM

≤
log h(ε) + max

(
log Q̄2(ε)

Q̄1(ε)
, Q̄

1(ε)
Q̄2(ε)

− 1
)

Iε
(64)

where Iε is given by (24).

(b) Under the assumption (A4), it holds that

lim inf
ε→0

Iε > 0 and lim sup
ε→0

max
(

log Q̄2(ε)
Q̄1(ε)

, Q̄
1(ε)

Q̄2(ε)
− 1
)

Iε
<∞.

Proof. We first prove (a). Let τ be the stopping variable of a one-sided sequential probability
ratio tests (SPRT) of F1 = E(Q̄1(ε)) (associated to a probability measure P1 and expectation
E1) vs F2 = E(Q̄2(ε)) (associated to a probability measure P2 and expectation E2) with
likelihood boundary ratio h(ε), given by

τ = inf{n ≥ 1|Sn ≥ log h(ε)} (65)

where Sn refers to the random walk defined by

Sn =

n∑
i=1

ξi =

n∑
i=1

(
log

Q̄2(ε)

Q̄1(ε)
+ (−Q̄2(ε) + Q̄1(ε))Yi

)
=

n∑
i=1

φε(Yi)

and (Yi)i∈N is i.i.d and follows an exponential distribution with parameter Q̄j(ε) under Pj ,
j = 1, 2.

We have P2(τ <∞) ≤ h(ε) (see [23]), so that [16, (11) Theorem 2] reads here

E2
τε,δ,?CUSUM

≤ E2(τ). (66)

We know from [23] that E2(τ) is equivalent to log(h(ε))/Iε when h(ε) is large, however this
information is not satisfactory at this point because we want an estimate for E2(τ) when ε
tends to 0, such that limε→0 h(ε) = +∞. Note however that this asymptotic implies that
E2(τ) is finite (see [24]) so that, since τ is a stopping time adapted to the sequence (Yi)i∈N,
Wald’s equation (see [25, Theorem 3.3.2 p. 105]) reads

E2(Sτ ) = E2(ξ1).E2(τ) = IεE2(τ), (67)

so that (66) implies the upper bound

E2
τε,δ,?CUSUM

≤ E2(Sτ )

Iε
. (68)

We now observe that,
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• if Q̄2(ε) ≥ Q̄1(ε), then ξi ≤ log Q̄2(ε)
Q̄1(ε)

and hence E1(Sτ ) ≤ log h(ε) + log Q̄2(ε)
Q̄1(ε)

,

• if Q̄2(ε) ≤ Q̄1(ε), then we have, by the memoryless property of the exponential distri-

bution, that E2(Sτ ) = log h(ε) + E2((−Q̄2(ε) + Q̄1(ε))Yi) = log h(ε) + Q̄1(ε)
Q̄2(ε)

− 1.

In both cases, we have

E2(Sτ ) ≤ log h(ε) + max

(
log

Q̄2(ε)

Q̄1(ε)
,
Q̄1(ε)

Q̄2(ε)
− 1

)
, (69)

so that (68) implies (64).
We now come to prove (b). Let us denote

ϕ(x) = − log x+ x− 1,∀x > 0, (70)

so that Iε = ϕ(Q̄1(ε)/Q̄2(ε)) by (24). Note that ϕ is a convex function and it admits a

unique minimum for x = 1 with ϕ(1) = 0. Assumption (A4) means that Q̄2(ε)
Q̄1(ε)

belongs to

H := (0, 1 − c)
⋃

(1 + c,+∞) for some small c ∈ (0, 1), and for ε ≤ ε0 small enough. This
implies Iε ≥ infx∈H ϕ(x) := d > 0 for ε ≤ ε0, proving that lim infε→0 I

ε > 0.

Then, we show that lim supε→0

max

(
log

Q̄2(ε)

Q̄1(ε)
,
Q̄1(ε)

Q̄2(ε)
−1

)
Iε <∞. For that purpose, for ε ≤ ε0, we

consider the following cases:

• If Q̄2(ε)
Q̄1(ε)

< 1− c, then log Q̄2(ε)
Q̄1(ε)

< 0 and Q̄1(ε)
Q̄2(ε)

− 1 > 0. Consequently, we obtain that

max
(

log Q̄2(ε)
Q̄1(ε)

, Q̄
1(ε)

Q̄2(ε)
− 1
)

Iε
=

Q̄1(ε)
Q̄2(ε)

− 1

ϕ
(
Q̄1(ε)
Q̄2(ε)

) ≤ sup
x∈(0,1−c)

1/x− 1

ϕ(1/x)
< +∞.

• If Q̄2(ε)
Q̄1(ε)

> 1 + c, then log Q̄2(ε)
Q̄1(ε)

> 0 and Q̄1(ε)
Q̄2(ε)

− 1 < 0. Hence, this yields to

max
(

log Q̄2(ε)
Q̄1(ε)

, Q̄
1(ε)

Q̄2(ε)
− 1
)

Iε
=

log Q̄2(ε)
Q̄1(ε)

ϕ
(
Q̄1(ε)
Q̄2(ε)

) ≤ sup
x>1+c

log x

ϕ(1/x)
< +∞.

This ends the proof of the Lemma.

4.3. Proof of Theorem 1

Theorem 1 aims to study the properties of Mε defined in (20). The latter can be rewritten
as

Mε =

τε,ηCUSUM∑
i=1

∆ε,η
i where ∆ε,η

i =

{
∆1,ε
i , i ≤ Dε − 1,

∆2,ε
i−Dε+1, i ≥ Dε

(71)

where we recall that Dε is defined in (36).
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Proof. Using the basic inequality (a+ b)+ ≤ a+ + b+, we obtain the following upper bound:

E([Mε −m0]+) = E

Mε −
N 1,ε∑
i=1

∆ε,η
i +

N 1,ε∑
i=1

∆ε,η
i −

N 1,ε∑
i=1

∆1,ε
i +

N 1,ε∑
i=1

∆1,ε
i −m0

+
≤ E

Mε −
N 1,ε∑
i=1

∆ε,η
i

++ E

N 1,ε∑
i=1

[∆ε,η
i −∆1,ε

i ]+

+ E

N 1,ε∑
i=1

∆1,ε
i −m0

+
= Aε +Bε + Cε. (72)

In the above decomposition,
∑N 1,ε

i=1 ∆1,ε
i = Xε

τεm0
is the level of the process Xε at the

instant where its behavior changes. Thus Cε refers to the overshoot of the latter process

while it crosses m0. As for the quantities Aε and Bε that involve
∑N 1,ε

i=1 ∆ε,η
i , it is somehow

difficult to provide an intuitive interpretation. The idea is to be able to exploit the fact that
τ ε,ηCUSUM enables to detect the index N 1,ε where the distribution of the jumps Xε changes
(as mentioned in the outline of the theorems proof in Section 4.1). Firstly, we look at Aε:

Aε = E

τε,ηCUSUM∑
i=1

∆ε,η
i −

N 1,ε∑
i=1

∆ε,η
i

+
= E

 τε,ηCUSUM∑
i=N 1,ε+1

∆2,ε
i−Dε+1

1{τε,ηCUSUM≥N 1,ε+1}


=

∞∑
d=1

∞∑
p=d

E

τε,ηCUSUM∑
i=p+1

∆2,ε
i−d+1

1{τε,ηCUSUM≥p+1}1{Dε=d,N 1,ε=p}

 . (73)

Since N 1,ε, Dε and τm0 depend on the process X1 and since τ ε,ηCUSUM depends on (η1,ε
i )i∈N,

τm0 and (η2,ε
i )i∈N, then ∆2,ε

i−d+1 is independent form N 1,ε, Dε and τ ε,ηCUSUM . Consequently,
we can write (73) as follows

Aε = E
[
∆2,ε

] ∞∑
d=1

∞∑
p=d

E
(

[τ ε,ηCUSUM − p]
+ 1{Dε=d,N 1,ε=p}

)
= E

[
∆2,ε

]
E
([
τ ε,ηCUSUM −N

1,ε
]+)

= E
[
∆2,ε

] ∞∑
p=1

E
(

[τ ε,ηCUSUM − p]
+ | N 1,ε = p

)
× P(N 1,ε = p). (74)

By using Proposition 1, Aε in (74) can be upper bounded by

Aε ≤ E
[
∆2,ε

] ∞∑
p=1

E

([
τ ε,δCUSUM − p

]+∣∣∣∣ N 1,ε = p

)
× P(N 1,ε = p). (75)

Additionally, the combination of (61) and (62) yields that

E

([
τ ε,δCUSUM − p

]+∣∣∣∣ N 1,ε = p

)
≤ E2

τε,δ,?CUSUM
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from which, thanks to Lemma 1 (a) and (75), one can easily obtain the following upper
bound for Aε:

Aε ≤ E
[
∆2,ε

] log h(ε) + max
(

log Q̄2(ε)
Q̄1(ε)

, Q̄
1(ε)

Q̄2(ε)
− 1
)

Iε

∞∑
p=1

P(N 1,ε = p)

≤ E
[
∆2,ε

] log h(ε) + max
(

log Q̄2(ε)
Q̄1(ε)

, Q̄
1(ε)

Q̄2(ε)
− 1
)

Iε
. (76)

Secondly, we deal with the term Bε. We observe that, from (71), ∆ε,η
i = ∆1,ε

i for all
i = 1, . . . ,Dε − 1, so that

Bε = E

N 1,ε∑
i=1

[∆ε,η
i −∆1,ε

i ]+

 = E

N 1,ε∑
i=Dε

[∆2,ε
i−Dε+1 −∆1,ε

i ]+


≤ E

N 1,ε∑
i=Dε

∆2,ε
i−Dε+1

 ≤ E

N 1,ε∑
i=1

∆2,ε
i


= E

(
N 1,ε

)
E
(
∆2,ε

)
, (77)

the last equality stemming from the independence between N 1,ε and the ∆2,ε
i , i ∈ N. By

Lorden’s inequality (see e.g. [26, Proposition 6.2 p.160]), we have

E
(
N 1,ε − 1

)
≤ m0

E (∆1,ε)
+

E
[(

∆1,ε
)2]

(E [∆1,ε])
2 , (78)

which, plugged into (77), yields

Bε ≤ m0

E
[
∆2,ε

]
E [∆1,ε]

+
E
[(

∆1,ε
)2]

(E [∆1,ε])
2 E

[
∆2,ε

]
+ E

[
∆2,ε

]
. (79)

Finally, we end up by looking to the term Cε. Since
∑N 1,ε

i=1 ∆1,ε
i is larger than m0, it simplifies

as

Cε = E

N 1,ε∑
i=1

∆1,ε
i −m0

 .

Wald’s equality (see [25, Theorem 3.3.2 p. 105]) and (78) provide

Cε = E
[
N 1,ε

]
× E[∆1,ε

i ]−m0

≤
E
[(

∆1,ε
)2]

E [∆1,ε]
+ E(∆1,ε). (80)

Gathering (76), (79) and (80), we obtain from (72) that E([Mε−m0]+) ≤ cε1 and then (P ε
1 )
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is satisfied, where

cε1 :=

6∑
i=1

Ti(ε),

T1(ε) := E
[
∆2,ε

] log h(ε) + max
(

log Q̄2(ε)
Q̄1(ε)

, Q̄
1(ε)

Q̄2(ε)
− 1
)

Iε
, T2(ε) := m0

E
[
∆2,ε

]
E [∆1,ε]

,

T3(ε) :=
E
[(

∆1,ε
)2]

(E [∆1,ε])
2 E

[
∆2,ε

]
, T4(ε) := E

[
∆2,ε

]
T5(ε) :=

E
[(

∆1,ε
)2]

E [∆1,ε]
, T6(ε) := E

[
∆1,ε

]
.

Let us now prove (P ε
2 ). For that purpose , we set

cε2 := h(ε)E
[
∆1,ε

]
(81)

where we recall that h(ε) is defined by (23). When m0 = +∞ then the process X is equal

to X1, τ ε,δCUSUM = τ ε,ηCUSUM , and the expression of Mε in (71) is simplified to

Mε =

τε,δCUSUM∑
i=1

∆1,ε
i .

The independence of τ ε,δCUSUM from the sequence (∆1,ε
i )i∈N yields

E∞(Mε) = E∞

τε,δCUSUM∑
i=1

∆1,ε
i

 = E∞(τ ε,δCUSUM )E(∆1,ε) ≥ h(ε)E(∆1,ε) = cε2 (82)

by (8).
Finally, we prove the last property (P3) or (P ′

3). First, the expression (30) of the distribution
of ∆j,ε, j = 1, 2, and in view of assumption (A2), yields the following estimates for their
first and second order moments:

E[∆j,ε] =
1

Q̄j(ε)

∫
(ε,∞)

xQj(dx) ∼ε→0
1

Q̄j(ε)

∫
(0,∞)

xQj(dx),

E[(∆j,ε)2] =
1

Q̄j(ε)

∫
(ε,∞)

x2Qj(dx) ∼ε→0
1

Q̄j(ε)

∫
(0,∞)

x2Qj(dx).
(83)

We then consider the different cases given in the statement of the Theorem. In each case,
we consider the behaviour as ε → 0 of each term Ti(ε), i = 1, . . . 6 in the definition of cε1.
We note that for i = 4, 5, 6, it holds that lim supε→0 Ti(ε) is finite, so that we will mainly
focus on the terms T1(ε), T2(ε) and T3(ε) in the following.

Case 1: Q̄2(0) = +∞ and lim supε→0
Q̄1(ε)
Q̄2(ε)

<∞.

In this case, we have h(ε) = [Q̄2(ε)Iε]2 and thus E[∆2,ε] log h(ε)
Iε = O( log(Q̄2(ε)Iε)

Q̄2(ε)Iε
) −→ 0 as

ε→ 0. Hence, thanks to the bound (b) in Lemma 1, we obtain that

lim sup
ε→0

T1(ε) ≤ lim sup
ε→0

E[∆2,ε]
log h(ε)

Iε
+ lim sup

ε→0
E[∆2,ε]

max
(

log Q̄2(ε)
Q̄1(ε)

, Q̄
1(ε)

Q̄2(ε)
− 1
)

Iε
= 0,
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as indeed Q̄2(0) = +∞ and so limε→0 E[∆2,ε] = 0. We check easily from (83) that T2(ε)

and T3(ε) are O
(
Q̄1(ε)
Q̄2(ε)

)
, hence lim supε→0 T2(ε) and lim supε→0 T3(ε) are finite under the

present assumption. Thus, we have lim supε→0 c
ε
1 <∞. As for cε2, we write from (81) that

cε2 = [Q̄2(ε)Iε]2
1

Q̄1(ε)

∫
(ε,∞)

xQ1(dx) = Q̄2(ε)[Iε]2
Q̄2(ε)

Q̄1(ε)

∫
(ε,∞)

xQ1(dx),

so that

lim inf
ε→0

cε2 ≥ lim inf
ε→0

Q̄2(ε) lim inf
ε→0

[Iε]2 lim inf
ε→0

Q̄2(ε)

Q̄1(ε)
lim inf
ε→0

∫
(ε,∞)

xQ1(dx)

= lim inf
ε→0

Q̄2(ε) lim inf
ε→0

[Iε]2 lim inf
ε→0

Q̄2(ε)

Q̄1(ε)

∫
(0,∞)

xQ1(dx) = +∞

as we used the property that lim supε→0
Q̄1(ε)
Q̄2(ε)

<∞ implies that lim infε→0
Q̄2(ε)
Q̄1(ε)

> 0 as well

as Lemma 1 (b). Finally, we verified that (P′3) holds.

Case 2: Q̄2(0) = +∞ and lim supε→0
Q̄1(ε)
Q̄2(ε)

=∞.

In this case, h(ε) has the same form as in Case 1. We note that this case necessarily
implies that Q̄1(0) = +∞. As in the previous case, the property lim supε→0 T1(ε) <∞ can

be proved similarly. As to T2(ε) and T3(ε), both of those terms are O
(
Q̄1(ε)
Q̄2(ε)

)
, hence we

have

cε1 = O

(
Q̄1(ε)

Q̄2(ε)

)
. (84)

Contrary to the Case 1, lim supε→0 T2(ε) and lim supε→0 T3(ε) are infinite in the present

case. To prove that limε→0 c
ε
2 = +∞, we recall that Iε = ϕ( Q̄

1(ε)
Q̄2(ε)

) where ϕ is defined in

(70). We note that limx→∞ ϕ(x)/x = 1, which implies in particular that ϕ(x) ≥ x/2 for
x ≥ K large enough. Recalling that Iε ≥ d > 0 for ε ≤ ε0 small enough (see proof of Lemma
1), we then have, for ε ≤ ε0,

cε2 =


Q̄2(ε)

ϕ

(
Q̄1(ε)

Q̄2(ε)

)
Q̄1(ε)

Q̄2(ε)

Iε
∫

(ε,∞)
xQ1(dx) ≥ Q̄2(ε) 1

2d
∫

(ε0,∞)
xQ1(dx) if Q̄1(ε)

Q̄2(ε)
≥ K,

Q̄2(ε) Q̄
2(ε)

Q̄1(ε)
[Iε]2

∫
(ε,∞)

xQ1(dx) ≥ Q̄2(ε) 1
K d

2
∫

(ε0,∞)
xQ1(dx) if Q̄1(ε)

Q̄2(ε)
< K,

so that, all in all, we have cε2 ≥ Q̄2(ε) min( 1
2d,

1
K d

2)
∫

(ε0,∞)
xQ1(dx) −→ +∞ as ε → 0.

Furthermore, the definition (81) of c2ε combined with (84) implies
cε1
cε2

= O
(

1
[Q̄2(ε)Iε]2

[Q̄1(ε)]2

Q̄2(ε)

)
.

Now, remembering that ϕ(x) ≥ x/2 for x ≥ K, we have, for ε small enough

1

[Q̄2(ε)Iε]2
[Q̄1(ε)]2

Q̄2(ε)
≤ 1

Q̄2(ε)d2
K21[Q̄1(ε)/Q̄2(ε)≤K] +

4

Q̄2(ε)
1[Q̄1(ε)/Q̄2(ε)>K],

so that lim supε→0
1

[Q̄2(ε)Iε]2
[Q̄1(ε)]2

Q̄2(ε)
≤ lim supε→0

1
Q̄2(ε)d2K

2 + lim supε→0
4

Q̄2(ε)
= 0. This

entails that cε1 = o(cε2). Hence (P3) holds.
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Case 3: Q̄1(0) = +∞ and Q̄2(0) <∞.

In this case, h(ε) = [Q̄1(ε)]
β
. Let us first note that, since ϕ(x) ∼ x as x → ∞, Iε =

ϕ
(
Q̄1(ε)
Q̄2(ε)

)
∼ Q̄1(ε)

Q̄2(0)
as ε→ 0. Hence, log h(ε)/Iε is equivalent to βQ̄2(0) log Q̄1(ε)/Q̄1(ε) −→

0 as ε→ 0. Furthermore, we have from Lemma 1 that
max

(
log

Q̄2(ε)

Q̄1(ε)
,
Q̄1(ε)

Q̄2(ε)
−1

)
Iε <∞ as ε→ 0.

Both facts, along with the boundedness of E[∆2,ε], implies that lim supε→0 T1(ε) < +∞.
Again, we check easily from (83) that T2(ε) and T3(ε) are O(Q̄1(ε)) as ε→ 0. All in all, we
have that cε1 is a O(Q̄1(ε)). Hence

cε1
cε2

= O

(
Q̄1(ε)

[Q̄1(ε)]β/Q̄1(ε)

)
= O

(
[Q̄1(ε)]2−β

)
−→ 0, ε→ 0.

Furthermore, it can be easily verified that limε→0 c
ε
2 = +∞ and consequently (P3) holds.

4.4. Proof of Theorem 2

We denote throughout this section the processes Xj,ε− = (Xj,ε−
t )t≥0, j = 1, 2 as well as

Xε− = (Xε−
t )t≥0 obtained from Xj, j = 1, 2 and X by discarding the jumps of height larger

than ε. Using the Poisson random measure Nj introduced in Section 3, and with a similar

expression as those in (14) and (29) for Xj
t and Xj,ε

t , this reads

Xj,ε−
t :=

∫
[0,t]

∫
(0,ε]

xNj(ds× dx) =
∑
s≤t

∆Xj
s1[∆Xjs≤ε], j = 1, 2, (85)

Xε−
t :=

∑
s≤t

∆Xs1[∆Xs≤ε] = Xt −Xε
t , (86)

so that one has, similarly to (12):

Xε−
t = X1,ε−

t 1[t≤τm0 ] + (X1,ε−
τm0

+X2,ε−
t−τm0

)1[t>τm0 ]. (87)

Thus, one can point out that the difference between the detection level Lε and the pseudo-
level Mε expressed in (22) and (33) respectively, is given by

Lε −Mε = Xε−
dε

where we recall that dε is the detection time defined by (21). Indeed, Lε is the detection
level, i.e. the level of the process X at time dε, and Mε is the sum of all jumps larger than
ε of the process Xt between t = 0 and t = dε. So that, by distinguishing the two cases
(dε ≤ τm0 and dε > τm0), this difference may also be written thanks to (87) as

0 ≤ Lε −Mε = X1,ε−
dε∧τm0

+X2,ε−
dε−dε∧τm0

. (88)

We next show that the expectation of each term on the right-hand side of (88) tends to 0
when ε→ 0. Before showing the latter, we start by mentioning an important result related to
martingales associated to the processes X1 and X2. Note first that

∫
(0,ε)

xQj(dx), j = 1, 2

is finite for ε small enough (see Assumption (A1)). Hence the following process(∫
[0,t]

∫
(0,ε]

xNj(ds× dx)− t
∫

(0,ε)

xQj(dx)

)
t≥0

=

(
Xj,ε−
t − t

∫
(0,ε)

xQj(dx)

)
t≥0

(89)

is a martingale adapted to Xj , j = 1, 2. This fact may be verified by applying [19, Corollary
4.6 p.97 ] with function φ used in that reference given by φ(s, x) := x1(0,ε)(x).
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Term X1,ε−
dε∧τm0

We first observe that, (X1,ε−
t )t≥0 in (86) is increasing so that

X1,ε−
dε∧τm0

≤ X1,ε−
τm0

.

Furthermore, for m0 < +∞, τm0
in (13) is a stopping time adapted to X1 of finite expecta-

tion, so that according to Doob’s optional stopping time theorem (see [27, p.4]) applied to
the martingale (89) we have for all N ∈ N that

E
(
X1,ε−
τm0∧N

)
= E(τm0 ∧N)×

∫
(0,ε)

xQ1(dx),

which, by letting N → +∞ and using the monotone convergence theorem, yields

E
(
X1,ε−
τm0

)
= E(τm0

).

∫
(0,ε)

xQ1(dx) (90)

which tends to 0 as ε→ 0. Hence, we deduce that

X1,ε−
dε∧τm0

L1

−→ 0 as ε→ 0. (91)

Term X2,ε−
dε−dε∧τm0

Let us introduce the process (Vi)i∈N as a time shifted version of the CUSUM statistic
(Gηi )i∈N as V0 = Gε defined in (43) and Vn = GηDε+n−1 for n ≥ 1, so that (Vi)i∈N satisfies

from (44), (17) as well as the relation ηεDε+n = η2,ε
n+1 (see Figure 3 for the illustration of this

latter fact) the recursive equation{
Vn+1 =

(
Vn + φε(η

2,ε
n+1)

)+

, n ≥ 0

V0 = Gε.
(92)

Let us associate to this CUSUM statistic the corresponding first passage time above the
threshold γ(ε) = log h(ε) given by

τVCUSUM :=

{
inf{n ≥ 0| Vn ≥ log h(ε)} if τ ε,ηCUSUM ≥ Dε,

0 otherwise.

We observe in particular, thanks to the relation between the process (Vi)i∈N and (Gηi )i∈N,
that their corresponding CUSUM statistics verify τVCUSUM = τ ε,ηCUSUM−Dε when τ ε,ηCUSUM ≥
Dε. We also define the random walk (S

(2)
n )n≥0 by S

(2)
n =

∑n
k=1 φε(η

2,ε
k ), where φε is defined

in (18), with first passage time above the threshold log h(ε) given by

τS
(2)

:= inf{n ≥ 0| S(2)
n ≥ log h(ε)}. (93)

It can be easily verified by induction that Vn ≥ S(2)
n for all n, hence the corresponding first

passage time verifies τVCUSUM ≤ τS
(2)

. Recalling the properties ηεDε+n−1 = η2,ε
n for n ≥ 1

and τVCUSUM = τ ε,ηCUSUM −Dε when τ ε,ηCUSUM ≥ Dε, this results, thanks to the definition of
dε in (21), in

dε − dε ∧ τm0
=

τVCUSUM∑
k=1

η2,ε
k ≤

τS
(2)∑

k=1

η2,ε
k := dε,2. (94)
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which in turns results in
X2,ε−
dε−dε∧τm0

≤ X2,ε−
dε,2 . (95)

Since dε,2 is a stopping time adapted to X2, a similar martingale argument to the one leading
to (90) leads to the following

E
(
X2,ε−
dε,2

)
= E(dε,2)×

∫
(0,ε)

xQ2(dx). (96)

We then proceed to study the behaviour of E(dε,2) as ε → 0. Following (94) and by using
Wald’s equation (see [25, Theorem 3.3.2 p. 105])), we obtain

E(dε,2) = E
(
τS

(2)
)
× E(η2,ε). (97)

One can easily see the following equality

E
(
τS

(2)
)

= E2(τ)

with the right-sided term which was defined in the proof of Lemma 1, with τ defined by
(65). By using (67) and (69), we consequently obtain

E
(
τS

(2)
)
≤

log h(ε) + max
(

log Q̄2(ε)
Q̄1(ε)

, Q̄
1(ε)

Q̄2(ε)
− 1
)

Iε
.

Let us suppose that Q̄2(0) =∞ (see (23)), so that the threshold in (93) is given by log h(ε)
where h(ε) = [Q̄2(ε)Iε]2. Multiplying both sides of the above inequality by E(η2,ε) =
O
(
1/Q̄2(ε)

)
, we thus get from (97) and (96), that

E
(
X2,ε−
dε,2

)
= O

 log(Q̄2(ε)Iε)

Q̄2(ε)Iε

∫
(0,ε)

xQ2(dx) +
max

(
log Q̄2(ε)

Q̄1(ε)
, Q̄

1(ε)
Q̄2(ε)

− 1
)

Q̄2(ε)Iε

∫
(0,ε)

xQ2(dx)

 .

(98)
Assumption (A2) ensures that

∫
(0,ε)

xQ2(dx) tends to 0 as ε tends to 0, and Lemma 1 (b)

ensures that max
(

log Q̄2(ε)
Q̄1(ε)

, Q̄
1(ε)

Q̄2(ε)
− 1
)
/Iε is bounded when ε tends to 0. Consequently, the

term (98) tends to 0 when ε tends to 0.
Finally, this implies thanks to (95) that

X2,ε−
dε−dε∧τm0

L1−→ 0, ε→ 0. (99)

One can easily show the same results when Q̄2(0) <∞ and h(ε) = [Q̄1(ε)]
β

(see (23)).

End of proof

Combining (88), (91) and (99), we then deduce (26). By observing that

E([Lε −m0]+) ≤ E(Lε −Mε) + E([Mε −m0]+),

and by recalling the form of cε1 in the proof of Theorem 1, the property (P ε
1 ) holds by

replacing the quantity cε1 by E(Lε −Mε) + cε1. As for the property (P ε
2 ), it holds because

the following holds
E∞(Lε) ≥ E∞(Mε) ≥ cε2,

where the last inequality stems from Theorem 1. Finally, one can verify that (P3) (or (P ′
3)

when (25) is satisfied) holds because of (26).
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4.5. Proof of Theorem 3

The idea of the proof is to take ε = 0 in the construction of the approximated process
defined in (31), so that both processes X and Xε now coincide. The situation is hence
less complicated than in Section 4.1 as here τm0

is equal to TD0 for some (random) index
Dε = D0 defined in (36) with ε = 0. Likewise, when ε = 0, the index N 1,ε coincides with
D0, the crossing time τ εm0

is now equal to τm0
and the quantity η1,ε

0 defined in (45) with
ε = 0 is equal to 0. We may then drop the dependence in ε = 0 now and denote by (∆1

i )i∈N

and (∆2
i )i∈N the respective jumps of the compound Poisson processes X1 and X2 and M

as the pseudo level. We note that, now that ε = 0 and X = X0, the pseudo-level M is now
the same as L defined in (28), which is nicely illustrated in Figure 1. This latter quantity
may also be expressed as

L =

τηCUSUM∑
i=1

∆η
i where ∆η

i =

{
∆1
i , i ≤ D0,

∆2
i−D0+1, i > D0.

(100)

As in (72), we upper bound the expected delay as

E([L−m0]+) = E([M −m0]+) ≤ E

M − D0∑
i=1

∆η
i

++ E

 D0∑
i=1

∆1
i −m0

+
= A0(h) + C0 := ch1 (101)

where h > 1 is the threshold for the CUSUM rule defined in (27). Similarly to (73) and
(74), one obtains

A0(h) = E(∆2) E
(
[τηCUSUM −D

0]+
)
. (102)

Moreover, Lemma 1 is still valid when ε = 0 by substituting h(ε) by h, so that one can easily
derive that, similarly to (75),

A0(h) ≤ E(∆2)
log h+ max

(
log Q̄2(0)

Q̄1(0)
, Q̄

1(0)
Q̄2(0)

− 1
)

I0
. (103)

with I0 = log Q̄2(0)
Q̄1(0)

− 1 + Q̄1(0)
Q̄2(0)

. As for C0, a similar analysis as in (80) yields that

C0 = E
[
D0
]
.E[∆1

i ]−m0

≤
E
[(

∆1
)2]

E [∆1]
+ E(∆1). (104)

Thus, (P 0
1 ) is satisfied. Now, we turn to prove (P 0

2 ). For that purpose, one gets similarly
to (82) that

E∞(L) = E∞(τηCUSUM ) E(∆1) ≥ h E(∆1) := ch2

with E(∆1) a finite quantity thanks to Assumption (A1) as well as Q̄1(0) < +∞. Finally,
since ch1 = O(log h) as h → ∞ because of (103) and (104), one easily verifies that (P4)
holds. This ends the proof of Theorem 3.
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5. Numerical illustrations on case study: standard gamma processes with level
switching

As previously explained, the process X defined as in equation (12) changes from X1

(called in the sequel Regime 1) to X2 (called in the sequel Regime 2) when it crosses the
level m0. In this section, we consider more specifically gamma processes with corresponding
shape functions Ai : t 7→ γit, i = 1, 2 and scale parameter b = 1. That means

Xi = (Xi
t)t≥0 with Xi

t ∼ Γ(γ1t, 1), i = 1, 2.

The objective of this experiment is to illustrate the ε-detection rule (19) proposed in this
paper and to compare its performances with those of the classical CUSUM rule, applied on
the increments (Xti+1

−Xti)i∈N of the process X, for some temporal discretization (ti)i∈N

of [0,+∞) with constant size ti+1 − ti = s > 0. Indeed, conditionally to the change time,
one may think that the increments of the process are independent and gamma distributed
random variables Γ(γ1s, 1) or Γ(γ2s, 1) before and after the regime change which may lead
us to believe that a classic CUSUM rule is well adapted. However, not only this latter fact
is not true, but in our case, the change time is not deterministic, but random; Worse, it
is a stopping time that depends on the trajectory X. Moreover the crossing of level m0

can happen between two ”inspections” ti and the distribution of the resulting increment is
therefore unknown (neither Γ(γ1s, 1) or Γ(γ2s, 1)). Consequently, the particular situation
considered in this paper does not correspond to the conditions for applying the classic
CUSUM rule.

Figure 4 illustrates a sample path of the process X with threshold m0 = 10 as well as
the trajectories for the ε-detection rule and classical CUSUM statistics.

The process X (top of Figure 4) is supposed to be observed continuously. To apply the
classic CUSUM rule (bottom of Figure 4), and as explained earlier on, a time-discretization
step-size s is considered, so that ti = is, i ∈ N. For each incrementXis−X(i−1)s, i = 1, 2, . . . ,
a likelihood ratio is computed between Regime 1 and Regime 2 by noting that, intuitively,
Xis −X(i−1)s is distributed according to a gamma Γ(γ1s, 1) as long as is < τm0

, and to a
gamma Γ(γ2s, 1) as soon as (i − 1)s > τm0

, with τm0
the crossing time of level m0 defined

in (13). The likelihood ratios can then be used sequentially to compute the test statistic
(4) of the CUSUM rule. The implementation of the ε-detection rule (middle of Figure 4) is
different. By construction, a new increment of the rule is computed as soon as the process,
which is a pure-jump process, observed a jump greater than a fixed value ε. The number of
increments of the ε-detection rule is therefore random and depends also on the functioning
mode: in the gamma case considered in this section (see Section 3.3), the expected delay
before a new increment is equal to:

E[ηεi ] =
1

Q̄i(ε)
=

1

γi
∫ +∞
ε

1
y e
−y dy

, (105)

for i = 1 or 2 depending on whether the process is under Regime 1 or Regime 2.
For each of the two change detection rules, it is necessary to determine a threshold γ(ε)

(for the ε-detection rule) or γ(s) (for the classic CUSUM rule). In a classic way in statistical
process control, the threshold is chosen in practice such that the false alarm ”rate” can be
controlled. More precisely, the threshold γ(ε) of the ε-detection rule is chosen such that the
Average Run Level under Regime 1 E∞(Lε) (and denoted ARLev∞, see Remark 2) is equal
to a specific value chosen here equal to 30. It is obtained empirically by a dichotomous
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Figure 4: Top: Process X with a change from a gamma process Γ(t, 1) to a gamma process Γ(1.5t, 1) at
level m0 = 10 ; Middle: The corresponding ε-detection rule statistic (plain line) with ε = 7.2 × 10−4 for a
theoretical Average Run Level (E∞(Lε)) equal to 30, leading to a threshold equal to γ(ε) = 2.599 (dotted
line) ; Bottom: The classical CUSUM statistic (plain line) with s = 0.1 for a theoretical Average Run Level
equal to 30, leading to a threshold equal to γ(s) = 2.963 (dotted line).
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approach on γ(ε) based on the test statistics of 10000 trajectories of X simulated under
Regime 1 (by adapting Algorithm 1 of [28] to our context). The same approach is followed
for γ(s).

As expected, the test statistic in Figure 4 is close to zero when the system is under
Regime 1 and it increases as soon as the system is under Regime 2. Indeed, the logarithm
of the likelihood ratio (18) tends to be negative before the change and positive after the
change. The regime change is therefore quickly detected.

To go further, the performances of the ε-detection and classic CUSUM rules are com-
pared. For the same ARLev∞, fixed to the value 30, and leading to the determination of
the threshold γ(ε) and γ(s), we compare the mean overshoot of the process X at detection
time above the threshold m0, defined by Em0([Lε−m0]+) for the ε-detection rule (see again
Remark 2). In the sequel, we use m0 = 0 for the mean overshoot, that means that the
system is under Regime 2 at the beginning of the monitoring. It allows to obtain what is
called, in the control chart community, the zero-state ARL (as opposed to the steady-state
ARL with a non-null m0). The corresponding quantity will be denoted ARLev0. Obviously,
for the same ARLev∞, the best rule is the one with the smallest ARLev0. These ARLev
will be obtained by Monte Carlo simulations.

For the classic CUSUM, and since we only need the increment values for this approach,
the gamma processes are simulated by the ”increment” approach (see [1]), which is an exact
and efficient simulation technique. For the ε-detection rule, and since it is necessary to
observe the jumps of the process, we used a series representation of the gamma process
(see [29, Section 6], or [30, Proposition 2]) and simulate the processes with the rejection
approach (with B = 30 for the truncation of the series, see [30, Algorithm 2]).

To make the comparison between the classic CUSUM and the ε-detection rule relevant,
the number of increments of a run must be approximately the same. Remind that the
number of increments of the ε-detection rule is random (of which expectation is given by
(105)). For a value s, we then determine the value of ε which gives, in mean, the same
number of increments. For one value for s, we obtain two values for ε, ε1 and ε2 depending
on whether the process is under Regime 1 or Regime 2. The ε-detection rule was then
applied with two configurations: either we used the greater value for ε (that means we
consider the least advantageous case for the ε-detection rule), or we used the mean between
the two epsilon values.

The Monte Carlo approximations of the ARLev are based on 10000 repetitions. We
use for the simulations of the gamma processes, γ1 = 1 and several values for γ2 (1.1,
1.2 and 1.5). The time-discretization step-size s for the classic CUSUM is varying from
2 to 0.05. For each value, ε1 and ε2 are computed, and then ε is chosen. For example, if
s = 0.5, that means that we consider two increments per unit of time for the classic CUSUM
and γ2 = 1.1, then we have to use ε1 = 8.2 × 10−2 to obtain, for the ε-detection rule, two
increments per unit of time in mean when the system is under Regime 1 and ε2 = 10−1 when
the system is under Regime 2. We then test two values for ε : ε = 10−1 which corresponds
to the ”worst-case scenario” and ε = 9.1 × 10−2, the ”medium scenario”. The results are
presented, for the classic CUSUM, in Table 1 and for the ε-detection rule, in Table 2 for the
”worst-case scenario” and Table 3 for the ”medium scenario”. In each table are reported the
threshold (γ(s) for the classic CUSUM and γ(ε) for the ε-detection rule) of the rules leading
to an empirical ARlev∞ close to 30 when the system is under Regime 1, the corresponding
observed ARLev∞ and the empirical standard deviation of the Run Level SDRLev∞. For
the comparison of the rules when the system is under Regime 2, we find in Table 1 to 3, the
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Table 1: Empirical Average Run Levels for the classic CUSUM for a change from a gamma process Γ(t, 1)
to a gamma process Γ(γ2t, 1) obtain from 10000 repetitions.

s γ2 γ(s) ARLev∞ SDRLev∞ ARLev0 SDRLev0 RLevMax0
2.00 1.1 0.371 29.99 20.26 23.31 13.25 142.97
2.00 1.2 0.638 29.96 21.13 19.21 10.22 106.56
2.00 1.5 1.110 29.89 23.13 13.54 6.01 70.29
0.50 1.1 0.601 30.05 21.58 21.15 12.76 110.56
0.50 1.2 1.022 29.86 22.28 16.55 9.15 102.78
0.50 1.5 1.773 30.28 24.10 10.81 4.64 45.82
0.10 1.1 1.200 30.07 24.68 14.47 9.56 82.62
0.10 1.2 1.897 29.98 25.59 9.35 5.74 51.35
0.10 1.5 2.963 29.92 27.18 5.03 2.78 26.86
0.05 1.1 1.592 30.00 26.24 11.14 7.57 82.79
0.05 1.2 2.424 29.81 26.74 6.58 4.32 38.87
0.05 1.5 3.592 30.02 28.05 3.19 2.05 18.34

Table 2: Empirical Average Run Levels for the ε-detection rule for a change from a gamma process Γ(t, 1)
to a gamma process Γ(γ2t, 1) obtain from 10000 repetitions. The value for ε is computed from the less
favourable functioning mode (ε = max(ε1, ε2), ”worst-case scenario”).

s ε γ2 γ(ε) ARLev∞ SDRLev∞ ARLev0 SDRLev0 RLevMax0
2.00 6.00 × 10−1 1.1 0.247 34.90 29.00 28.98 23.11 249.41
2.00 6.45 × 10−1 1.2 0.384 31.39 27.34 22.73 18.30 178.32
2.00 7.60 × 10−1 1.5 0.642 30.88 28.24 17.52 14.23 168.00
0.50 1.00 × 10−1 1.1 0.508 29.12 23.24 20.11 15.00 146.02
0.50 1.19 × 10−1 1.2 0.855 30.05 25.49 16.00 11.40 97.33
0.50 1.75 × 10−1 1.5 1.389 30.30 26.55 10.40 6.86 55.42
0.10 6.50 × 10−5 1.1 1.121 29.33 25.44 13.26 9.88 88.42
0.10 1.40 × 10−4 1.2 1.773 30.04 27.20 8.83 6.43 69.79
0.10 7.20 × 10−4 1.5 2.599 29.62 27.49 4.46 3.19 35.09
0.05 7.20 × 10−9 1.1 1.501 29.14 26.28 10.26 7.73 69.82
0.05 3.20 × 10−8 1.2 2.262 29.81 28.11 6.11 4.61 43.71
0.05 9.10 × 10−7 1.5 3.208 29.15 28.08 2.82 2.23 26.22

empirical ARLev0, but also the empirical standard deviation SDRLev0 and the maximal
level of degradation accumulated before the detection over the 10000 repetitions, denoted
RLevMax0.

Table 3: Empirical Average Run Levels for the ε-detection rule for a change from a gamma process Γ(t, 1)
to a gamma process Γ(γ2t, 1) obtain from 10000 repetitions. The value for ε is the mean between ε1 and ε2
(ε = (ε1 + ε2)/2, ”medium scenario”).

s ε γ2 γ(ε) ARLev0 SDRLev0 ARLev1 SDRLev1 RLevMax1
2.00 5.775 × 10−1 1.1 0.233 30.48 25.19 25.69 20.44 193.71
2.00 6.000 × 10−1 1.2 0.409 31.30 27.13 22.40 17.74 183.73
2.00 6.575 × 10−1 1.5 0.725 31.18 27.99 16.47 13.06 142.20
0.50 9.100 × 10−2 1.1 0.510 27.78 22.55 19.22 14.27 133.55
0.50 1.005 × 10−1 1.2 0.876 29.02 24.61 15.18 10.81 151.06
0.50 1.285 × 10−1 1.5 1.505 30.18 26.73 9.56 6.29 69.39
0.10 4.550 × 10−5 1.1 1.137 29.20 25.42 13.06 9.96 112.37
0.10 8.300 × 10−5 1.2 1.780 29.16 26.52 8.32 6.07 55.89
0.10 3.730 × 10−4 1.5 2.685 30.48 28.44 4.19 3.03 35.09
0.05 4.200 × 10−9 1.1 1.566 30.95 27.75 10.64 7.99 69.82
0.05 1.660 × 10−8 1.2 2.283 29.29 27.40 5.93 4.42 40.78
0.05 4.556 × 10−7 1.5 3.263 30.30 29.41 2.74 2.16 26.22

Obviously, for each rule, we can see that more the number of increments per unit of
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time is high (a small s for the classic CUSUM and a small ε for the ε-detection rule), more
efficient is the detection rule. It is an illustration of the results obtained in the previous
sections, which show that the ε-detection rule is efficient as ε tends to 0.

Another interesting point is that, for a comparable number of increments per unit of time,
the ε-detection rule gives better results (a smaller ARLev0) than the the classic CUSUM,
even in the ”worst-case scenario”, as soon as ε is sufficiently small (ε ≤ 0.1). The difference
is even more pronounced when the classic CUSUM is compared to the medium scenario.
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