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It is usually admitted that the inverse Faraday effect (IFE) originates from the spin angular
momentum (SAM) of light. In this paper, we evidence that part of the IFE in a metal is induced
by the orbital angular momentum (OAM) of light. On the basis of a hydrodynamic model of
the conduction electron gas, we describe the dependence of the IFE on the spin and orbital angular
momenta as well as spin-orbit interaction in a non-paraxial light beam. We also numerically quantify
the relative contributions of the SAM and OAM of light to the IFE in a thin gold film illuminated
by different focused beams carrying SAM and/or OAM. The OAM of light provides a new degree
of freedom in the control of the IFE and resulting optomagnetic field, thus potentially impacting
various research fields including all-optical magnetization switching and spin-wave excitation.

I. INTRODUCTION

Light is known to possess polarization and spatial de-
grees of freedom, manifested by its linear momentum as
well as spin and orbital angular momenta[1]. Remark-
ably, the spin angular momentum (SAM) of light can be
transferred to electrons in matter, a phenomenon which
refers to as the inverse Faraday effect (IFE) [2–4]. The in-
verse Faraday effect (IFE) has attracted much attention
for its ability to generate light-induced magnetization,
thereby opening the prospect of an ultrafast magnetic
data storage [5–8] and a non-contact excitation of spin-
waves [9–13]. Plasmonic nanostructures have recently
been investigated to locally enhance and control the IFE
in non-magnetic metals [14–24] and in hybrid structures
including magnetic materials [25–30].

So far, the orbital counterpart of the spin-based IFE
has been hardly addressed. To our knowledge, an opto-
magnetism induced by the OAM of light has not been
reported yet. As a first evidence of the interaction of
magnetism and OAM of light, Sirenko et al showed a
vortex beam dichroism in a magnetized material at THz
frequencies [31]. Note that an OAM-dependent IFE has
been evidenced in the case of a paraxial vortex light beam
propagating in a plasma [32]. More generally, the trans-
fer of optical OAM to matter has been shown to create
a torque in absorbing micro-particles [33–36] and inor-
ganic ionic nanofilms [37], forces and torque in a dielec-
tric medium [38, 39], as well as spin and charge transport
in topological insulators [40]. The OAM of light can also
be coupled to the total angular momentum of an electron
vortex beam [41]. The OAM of light and its combination
to the optical SAM holds promise of new opportunities
and strategies in tailoring optomagnetic effects [42].

In this paper, we provide a spin and orbital angular
momentum representation of the IFE in a metal. In the
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case of axisymmetrical optical systems (including vortex
beams), we analytically show the role of the SAM and
OAM of light, as well as spin-orbit interaction (SOI), in
the generation of an opto-induced magnetization. We
find that the SAM contributes to the IFE only in non-
paraxial optical beams (carrying noticeable longitudinal
light fields), whereas the OAM has a non negligible con-
tribution even in the paraxial optical regime. Finally,
we numerically quantify the spin and orbital parts of the
IFE in a thin gold film under illumination with different
focused beams carrying SAM and/or OAM. We numer-
ically confirm the importance of the SOI of light in the
IFE and resulting optomagnetic field, which manifests
via SAM-to-OAM or OAM-to-SAM conversions at focus.

II. MODEL DESCRIPTION

In a hydrodynamic approach, the conduction electron
dynamics in a metal can be described from the Euler’s
equation [43, 44]:

me
∂v

∂t
+me(v·∇)v = −me

τ
v+eE+µ0ev×H−me

β2

n
∇n.
(1)

where me, n, τ and v are the effective mass, the conduc-
tion electron fluid density, the collision time and velocity
of the conduction electrons, respectively. E and H are
the applied electric and magnetic optical fields. The last
term in Eq. (1) is due to the electron gas pressure, with
β proportional to the Fermi velocity vF . µ0 and e are the
permeability of free space and the elementary charge, re-
spectively. E(r, t), H(r, t), v(r, t), n(r, t) are time and
space dependent variables. n and j satisfy the continuity
equation:

∇ · j = −e∂n
∂t
, (2)

where j = nev = ∂P/∂t is the current density and P is
the polarization density vector.

Eq. (2) can be rewritten as:

n(r, t) = n0 −
1

e
∇ ·P, (3)
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where n0 is the background, equilibrium charge density
in the absence of any applied fields.

Assuming that the time variation of the conduction
electron fluid density is relatively small (i.e., ṅ << n),
the ratio ṅ/n may be expanded in powers of 1/(n0e):

ṅ(r, t)

n(r, t)
= − 1

n0e
∇ · Ṗ

(
1− 1

n0e
∇ ·P

)−1
≈

− 1

n0e
∇ · Ṗ

(
1 +

1

n0e
∇ ·P

)
.

(4)

Thus, we have:

ṅ(r, t)

n(r, t)
≈ − 1

n0e
∇ · Ṗ− 1

n20e
2

(∇ ·P)(∇ · Ṗ). (5)

By applying the above-described assumptions in Eq. (1),
we find [44, 45]:

∂j

∂t
+

j

τ
=
e2n0
me

E− eβ2∇n− e

me
(∇ ·P) E+

+
µ0e

me
j×H− 1

en0
[(∇ · j) j + (j · ∇)j]

(6)

.

III. TIME HARMONIC REGIME

In the time harmonic (i.e., monochromatic) regime,
the electric and magnetic optical fields become E =
Eω(r)e−iωt+c.c and H = Hω(r)e−iωt+c.c, where ω is the
angular frequency, t is time, c.c is the complex conjugate.
To predict both the linear and nonlinear responses of the
metal, we solve Eq. (6) using a perturbation approach.
To this end, the current density j is written as:

j = (jωe
−iωt + c.c) + jNL. (7)

jω and jNL are the linear and nonlinear contributions
to the current density, respectively. In the following, we
focus on the nonlinear optical process defined by the drift
current density jd = 〈jNL〉 where the operator 〈〉 denotes
time averaging. jd originates from an optical rectification
process [46]. Because jNL is small as compared to jω,
the perturbation method turns Eq (6) into the following
couple of equations:.

jω = γωEω − eβ2∇n, (8)

jd = − τ

n0e
Re

[
γ0i

ωτ
(∇ · jω)E∗ω+ (∇ · jω) j∗ω+

+(jω · ∇)j∗ω − µ0γ0jω ×H∗ω

]
,

(9)

where

γω =
γ0

1− iωτ
, (10)

and

γ0 =
n0e

2τ

me
, (11)

are the linear (i.e., dynamic) and DC conductivities,
respectively. This system of equations describes both the
linear and nonlinear (rectification) responses of a mate-
rial to an optical field. It can be numerically solved using
for instance the two-fluid plasma model solver [47]. How-
ever, these solvers require high computational power and
are time consuming.

IV. INVERSE FARADAY EFFECT

Assuming that the optical response of a metal is mainly
driven by its conduction electrons, the IFE can be de-
scribed by the orbital magnetization defined as:

M =
1

2V

∫
V

LdV, (12)

where:

L = r× jd, (13)

is the opto-induced local orbital angular momentum
in the conduction electron gas. In that case, the IFE di-
rectly depends on the opto-induced drift current density
in the metal.

A. IFE in the metal bulk

The last terms of Eqs. (1) and (8) both describe non-
local effects in the metal. In the case of smooth and
slowly varying charge densities n, it is possible to neglect
nonlocal effects (i.e., considering β → 0) and take into
account only the local response [45]. This local response
approximation simplifies the resolution of Eqs. (8) and
(9) [21, 48]. It is however only valid within the metal
bulk. The extension of the local approximation method
to metal surfaces will be addressed in section IV B.

In the framework of a local response approximation,
Eqs. (8) and (9) become:

jω = γωEω, (14)

and
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jd = − τ

n0e
Re

[
i

ωτ
(∇ · jω)j∗ω + (jω · ∇)j∗ω

−µ0γ0
τ

jω ×H∗ω

]
,

(15)

respectively. Using the following vector identity:

(jω · ∇)j∗ω = jω · ∇j∗ω − jω × (∇× j∗ω),

= jω · ∇j∗ω + iωµ0γ
∗jω ×H∗ω,

(16)

Eq. (15) becomes:

jd =− τ

n0e

(
1

ωτ
Im

[
(∇ · jω)j∗ω

]
+

+ Re

[
jω · ∇j∗ω

]
− µ0|γω|2

τ
Re

[
Eω ×H∗ω

])
.

(17)

When the spatial variation of γω are small enough to
be neglected, Eq. (17) reads:

jd =− |γω|
2

n0e

(
1

ω
Im

[
(∇ ·Eω)E∗ω

]
+

+ τRe

[
Eω · ∇E∗ω

]
− µ0Re

[
Eω ×H∗ω

])
.

(18)

Using vector identities and Maxwell’s equations, Eq.
(18) can be rewritten as:

jd =
|γω|2

n0eω

(
− τω

2
∇
(
|Eω|2

)
+ Im [E∗ω · ∇Eω]

+
1

2
∇× Im[E∗ω ×Eω]

) (19)

According to Refs. [49, 50], the last two terms of Eq.
(19) represent the orbital and spin parts of the time-
averaged Poynting vector Π = Re [Eω ×H∗ω], respec-
tively. We have:

Π = Πorb + Πspn, (20)

where Πorb = Im [E∗ω · ∇Eω] and Πspn = ∇×S. Vec-
tor S = Im[E∗ω×Eω] is proportional to the SAM density
of light [49, 51–53]. The opto-induced drift current den-
sity in the metal bulk becomes:

jd = jigd + jorbd + jspnd , (21)

where,

jigd = −τ |γω|
2

2n0e
∇|Eω|2, (22)

jorbd =
|γω|2

n0eω
Πorb, (23)

jspnd =
|γω|2

2n0eω
Πspn =

|γω|2

2n0eω
∇× S. (24)

The opto-induced drift current density thus combines

three source terms (Eq. (21)). Term jigd is linked to the
so-called intensity-gradient force [54, 55] that is central in
optical tweezing applications [56]. The other two source
terms are related to the orbital and spin parts of the
Poynting vector.

In the monochromatic regime, the linear momentum
of light is proportional to the time averaged Poynting
vector [49, 51]. Eqs. (23) and (24) thus describe momen-
tum transfer from light to the conduction electrons in a
metal, leading to an optical drag effect [57]. Πorb and
Πspn are thus proportional to the canonical (orbital) and
spin momentum densities of light, respectively. When
vector-multiplied by r, the source terms of Eqs (23) and
(24) give the orbital and spin contributions to the angular
momentum L of the conduction electron gas, respectively
[49, 50]. The local angular momentum (Eq. (13)) and
resulting orbital magnetization (Eq. (12)) of the conduc-
tion electrons then read:

L = r× jigd + r× jorbd + r× jspnd , (25)

and

M = Mig + Morb + Mspn, (26)

respectively. Mig, Morb and Mspn are the intensity-
gradient, spin and orbital contributions to the IFE, re-
spectively. We have Mid = 1/(2V )

∫
V

r × jidd dV , where
”id” stands for ”ig”, ”orb” and ”spn”. Therefore, the
IFE does not solely originate from the SAM of light. Eq.
(26) shows that part of the IFE in the metal bulk relies
on the transfer of OAM from a light beam to the conduc-
tion electron gas of a metal. It appears from Eqs. (23)
and (26) that the orbital part of the IFE relies on an axis-
symmetrical optical drag effect induced and controlled by
the OAM of light.

B. IFE at metal surfaces

As previously stated, the local approximation ap-
proach used to analytically solve Eqs. (8) and (9) is only
valid within the metal bulk. To overcome ambiguities of
this simplified model at metal interfaces (where strong
variations of the electron fluid density occur), an analyt-
ical method has been proposed to describe opto-induced
surface currents [23, 24, 45, 58–60]. This method brings a
non-local correction to the local response approximation
at metal surfaces.
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The idea is to define a thin metal layer beneath in-
terfaces, whose thickness matches Thomas-Fermi length
(λTF ' 0.1 nm for noble metals). This layer is consid-
ered to be a ”surface layer”, where the electron gas pres-
sure and the spatial variations of the conductivity are
not negligible. Out of this layer, in the metal bulk, the
local model applies (β → 0). Within the interface layer,
the component jTω of the linear current density that is lo-
cally parallel to the surface preserves whereas the normal
component jNω decays to zero. This additional boundary
condition on jNω , which is required to solve the nonlocal
problem, is attributed to a neglected electron ”spill-out”
at interfaces [45].

We define ρ as the spatial coordinate normal to the
surfaces so that the metal bulk is located at ρ < 0 and
the surface layer corresponds to 0 < ρ < λTF . In that
case, we have in the surface layer jTω (ρ) ≈ jTω (0−) and
jNω = jNω (0−)σ(ρ), where σ is a decaying function defined

by
∫ λTF

0
σ′(ρ)dρ = −1 [45]. σ′ is the derivative with

respect to ρ. The σ(ρ) function has the following useful
properties:

∫ λTF

0

σ(ρ)mσ′(ρ)dρ = − 1

m+ 1
, (27)

∫ λTF

0

σ(ρ)mdρ = 0. (28)

This non-local correction is applied by redefining the
linear conductivity of the metal as a tensor. The linear
current density (cf. Eq. (14)) then becomes:

jω =

 γω 0 0
0 γω 0
0 0 γωσ(ρ)

 ET1
ET2
EN

 (29)

where ET1 , ET2 and EN are the vector components of the
optical electric field that are transverse and normal to the
interfaces. Finally, the opto-induced drift current density
at metal surfaces is deduced by replacing jω in Eq. (17)
by its expression given in Eq. (29).

V. IFE IN AXISYMMETRICAL OPTICAL
SYSTEMS

We now focus on axisymmetrical optical systems where
both the metal structure and light intensity are axially
symmetric. In that case, the IFE mainly involves a mag-
netization oriented along the symmetry axis [21, 23, 48].
The azimuthal component [jd]ξ of the drift current den-

sity (in the cylindrical coordinates (r, ξ, z)) then becomes
the main contributor to the IFE (see Eqs. (12) and (13)).

Since ∇ξ|Eω|2=0 in light beams showing axis-

symmetrical intensity, jigd has no contribution to the IFE

in axis-symmetrical optical systems (i.e., [jigd ]ξ = 0).
Only the orbital and spin parts of the opto-induced drift
current density are now involved (cf. Eqs. (23) and (24),
respectively). The angular momentum of the conduction
electron gas now reads:

L = r× jorbd + r× jspnd ,

=
|γω|2

n0eω

[
r×Πorb + r×Πspn

]
.

(30)

In the following, we consider the incoming light to be a
Laguerre-Gauss vortex beam described by a polarization
helicity s (−1 ≤ s ≤ 1) and a topological charge l [61–63],
respectively. Laguerre-Gauss beams fulfill the cylindrical
symmetry condition required to cancel the contribution

of the intensity-gradient source term jigd .

A. IFE in the metal bulk

From Eq. (19), we find that the azimuthal component
of the drift current density within the metal bulk reads:

[jd]
bulk
ξ = κ

[
l + s

r
|Eω|2 −

2

r
Sz

]
+ κ

[
∂Sr
∂z
− ∂Sξ

∂r

]
(31)

=
[
jorbd

]bulk
ξ

+ [jspnd ]
bulk

ξ
, (32)

where κ = |γω|2/(n0eω). Sr, Sξ, Sz are the compo-
nents of the SAM density S of light in cylindrical coor-
dinates. We have Sr = Im[E∗ξEz], Sξ = Im[E∗zEr] and

Sz = Im[E∗rEξ].
The first term of Eq. (31), namely:

[
jorbd

]bulk
ξ

= κ

[
l + s

r
|Eω|2 −

2

r
Sz

]
(33)

=
κ

r

(
l|Eω|2 +

[
s|Eω|2 − 2Sz

])
(34)

refers to the azimuthal component of jorbd (cf. Eq.
(23)). This part of the opto-induced drift current density
evidences the contribution to the IFE of the OAM of the
light within the metal.

The second term of Eq. (31):

[jspnd ]
bulk

ξ
= κ

[
∂Sr
∂z
− ∂Sξ

∂r

]
. (35)

describes the spin part of the IFE.
Therefore, in an axis-symmetrical optical problem, our

model suggests that the IFE in the metal bulk relies on
both the SAM and OAM of light. From Eq. (34), the
OAM manifests itself via the topological charge l of the
incoming vortex beam and as an intermediate between
the SAM of light and the OAM of the electron gas, via
optical SOI (see section V C).
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B. IFE at metal surfaces

In the following, we consider the opto-induced drift
current density at the surfaces perpendicular to (0z). We
thus have ρ = ±z, where ρ is defined in section (IV B).
From section (IV B) and Eqs. (33) and (35), the orbital
and spin parts of the azimuthal drift current density at
metal surfaces read:

[
jorbd

]surf
ξ

= κ

(
l + s

r
|E‖|2 −

2

r
Sz(0

−)

)
, (36)

and

[jspnd ]
surf

ξ
= κ

(
∂σ(ρ)Sr(0

−)

∂ρ
− ∂σ(ρ)Sξ(0

−)

∂r

)
, (37)

respectively. We have |E‖|2 = Er(0
−)E∗r (0−) +

Eξ(0
−)E∗ξ (0−). The definition of the optical electric field

within the surface layer follows that of the linear current
density (see section IV B). We have ETω (ρ) ≈ ETω (0−) and
ENω (ρ) = ENω (0−)σ(ρ).

We now define isξ as the linear density of the surface
current. We have:

isξ =

∫ λTF

0

[jspnd ]
surf

ξ
+
[
jorbd

]surf
ξ

dρ (38)

Using Eqs. (27) and (28), we find:

isξ = κ

[
l + s

r
|E‖|2λTF −

2λTF
r

Sz(0
−)− Sr(0−)

]
. (39)

The terms containing λTF being negligible, we finally
obtain:

isξ ' −κSr(0−), (40)

where Sr(0
−) = Im[E∗ξ (0−)Ez(0

−)]. At metal sur-
faces, the IFE is mainly driven by the radial component
of the SAM of light.

C. Paraxial approximation, spin-orbit interaction

In the paraxial approximation, the optical field is con-
sidered to be purely transverse (Ez = 0) and the SAM
of light reduces to Sz = s/2|Eω|2 (Sr = Sξ = 0) [51].
In that case, the second term (in brackets) of Eq. (34)
vanishes, leading to:

[
jorbd

]bulk
ξ

=
κ

r
l|Eω|2. (41)

The second term of Eq. (34) thus analytically de-
scribes the spin-dependence of the OAM of light in non-
paraxial beams, by virtue of SOI (SAM-to-OAM conver-
sion) [64, 65]. We will numerically see in section VI that
SOI (OAM-to-SAM conversion) is also inherent in the
spin part of the IFE (cf. Eq. (35)).

The spin part of the IFE being dependent on Sρ and Sξ
(see Eqs. (35) and (40)), the contribution of the SAM of
light to the IFE vanishes in the paraxial optical regime.
According to our model, the IFE induced by paraxial
optical beams is solely driven by the OAM of light, which
manifests via the topological charge l.

Such a property is consistent with the fact that in the
paraxial approximation, the orbital momentum of light
(proportional to Πorb; at the origin of the OAM) is the
only observable contribution to the optical momentum
[49, 51]. The orbital momentum is here proportional to
the wave vector of the optical field and is solely responsi-
ble for energy transport[49]. The spin momentum (pro-
portional to Πspn; at the origin of the SAM) represents
a solenoidal current, which does not contribute to energy
transport [49, 51]. In paraxial approximation, the spin
momentum has no observable contribution to the IFE in
a metal.

VI. OPTOMAGNETISM IN A THIN GOLD
LAYER

To estimate the relative contributions of the SAM and
OAM in the IFE and resulting optomagnetic field, we
simulate the optomagnetic response of a thin gold film
under illumination with single focused light beams car-
rying SAM and/or OAM.

A. Design and theory

The configuration under study is shown in Fig. 1. A
20-nm thick gold layer lies on a semi-infinite glass sub-
strate. An incoming vortex beam of topological charge
l, polarization helicity s, and of Gaussian or Laguerre-
Gaussian profile is focused onto the backside of the gold
film, in the substrate. The 1/e width of the beam waist
coincides with the pupil diameter of the microscope ob-
jective. Operating in the immersion regime, the objective
shows a numerical aperture NA of 1.3. On the basis of
the theory established by Richards and Wolf [66, 67], the
optical electric field at focus can be written as:
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E(r, ξ, z) = − ik1f exp[−ik1f ]

2π

1
√
n1
×
∫ θM

0

cos
1
2 (θ) sin(θ)F (θ)

∫ 2π

0

e(θ, ψ, z) exp [iαr cos(ψ − ξ)] dθdψ, (42)

where (r, ξ, z) are cylindrical coordinates, f is the fo-
cal length of the microscope objective, θ and ψ are di-
rectional angles and α is a function of θ. We have
θM = arcsin(NA/n1), where n1 is the refractive index
of the substrate. The (0z)-axis matches the symmetry
axis of the microscope objective and is perpendicular to
the metal surfaces (see Fig. 1).

Vector e(θ, ψ, z) takes the form:

e(θ, ψ, z) = exp[ilψ]

 Ests(z) sinψ − Eptrp(z) cos θ cosψ
−Ests(z) cosψ − Eptrp(z) cos θ sinψ

Ept
z
p(z) sin θ


(43)

For circular polarization (s = ±1), we have:

Es = −is(
√

2/2) exp[isψ], (44)

Ep = − (
√

2/2) exp[isψ], (45)

The apodization function at the exit pupil plane of the
microscope objective reads:

F (θ) =
2

w0

√
Z0P0

π|l|!

(√
2f sin θ

w0

)|l|
exp

[
−f2 sin2 θ

w2
0

]
,

(46)
with :

w0 = f sin θM , if l=0, (47)

w0 =
f sin θM

(2|l|) 1
2

, if |l| ≥1. (48)

P0 and w0 are the power and 1/e width of the incoming
beam and Z0 is the vacuum impedance.

20nm

Glass

Gold

Air

Pupil

Obj.
θM

z

xy

FIG. 1. Schematic diagram of the focusing system which in-
volves a microscope objective of circular pupil.

In the case of a radially-polarized vector vortex beams
of the first order (l = 1, s = 0), the optical field at focus
is defined by:

Ep = 1, Es = 0, (49)

and we assume the Gaussian apodization function at
the pupil plane given by Eq. (46) for l=0.

For all the above-described vortex beams, the opti-
cal magnetic field is calculated by replacing e(r, ξ, z) by
h(r, ξ, z) = k× e(r, ξ, z)/ωµ0 in Eq. (42).

Predicting the IFE in a metallic structure requires the
calculation of the optical field inside the metal (see Eqs.
(19) and (40)). In the basic configuration treated here,
the optical field in the metal layer is described by co-
efficients ts, t

r
p and tzp under the form C+ exp[iw2z] +

C− exp[−iw2z] where w2 is the component of the wave
vector normal to the surfaces (i.e., along (0z)). Co-
efficients C+ and C−, which are obtained by apply-
ing boundary conditions of the optical fields onto the
film interfaces, can be found for instance in Ref. [68].
The dispersion properties of gold at λ=800nm are de-
fined by the Drude model with εr = −24.76 + 0.88i and
γ0 = 1.5718 · 107S.m−1. From the calculated optical field
in the metal, we anticipate the distribution of optically-
induced drift current density using the formalism detailed
in section V.

B. OAM and SAM-driven optomagnetism

In the following, we consider four different light beams
carrying SAM or OAM, or a combination of SAM and
OAM. We examine the circularly polarized beam (l =
0, s = 1), the radially polarized vortex beam (l = 1, s =
0) leading for instance to optical skyrmions [69], and two
circularly polarized vortex beams of opposite topolog-
ical charges (l = ±1, s = 1) [70, 71]. The incoming
light waves are characterized by a maximum intensity
of 1012W.cm−2 at focus and a wavelength (λ) of 800 nm.
The waist of the incident beam coincides with the pupil
plane of the microscope objective. Its 1/e-width matches
the pupil diameter.

Fig. 2 shows cross-sections of the bulk and surface
currents generated in the metal film under illumination
with the above-described light beams. The drift currents
are calculated by numerically integrating the azimuthal
components of the bulk and surface current densities (cf.
Eqs. (31) and (40), respectively ) over areas of 0.1×0.1
nm2. The optomagnetic fields originating from the SAM
and OAM-driven loops of drift current are represented in
Fig. 3 together with the overall optomagnetic field.

SOI [72] is known to tailor the helicity of focused light.
As an example, in the focal region of a circularly po-
larized beam, the SAM is partly converted into OAM
[71]. A reciprocal OAM-to-SAM conversion occurs at
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FIG. 2. Opto-induced current loops (a-d) at the bottom surface and (e-p) in the bulk of a thin gold film illuminated with
(a,e,i,m) a circularly polarized light beam (s=1, l=0), (b,f,j,n) a radially polarized vortex beam (s=0, l=1), (c,g,k,o) a circularly
polarized vortex beam (s=1, l=1), and (d,h,l,p) the same circularly polarized vortex with an opposite topological charge (s=1,
l=-1). The helicity of each beam is shown with the l and s numbers on top of each column of the figure. The bottom surface
((xOy)-plane, see (d)) of the thin gold film matches the focal plane of the incoming light. The orientation of the surface
currents in (a-d) is represented with white arrows. Eq. (37) is used to calculate the surface currents as it is assumed to be
solely driven by the SAM of light (cf. Table I). Currents in the metal bulk are represented along the longitudinal (x0z)-plane
(see (e)) and are decomposed in their (e-h) spin and (i-l) orbital parts (cf. Eqs. (35) and (33), respectively). The overall bulk
current combining spin and orbital contributions is shown as well in (m-p) (cf. Eq. (32)). The color code used to represent
these out-of-plane currents is defined in (e). All currents are given in nA.

the focus of vector vortex beams [69, 73]. An immedi-
ate consequence of the SOI of light on the IFE is that
opto-induced drift currents show both orbital and spin
components even when the incoming beam solely carries
SAM or OAM. We see from Figs. 2(e) and 2(i) for the
circularly polarized beam (carrying SAM) and Figs. 2(f)
and 2(j) for the radially polarized vortex beam (carrying
OAM) that in the metal bulk both the orbital and spin
parts of the drift currents are non negligible. The SAM
dependence of the orbital part is analytically evidenced in
Eqs. (33) and (36), whereas the OAM dependence of the
spin part is contained in the spatial derivatives of Eqs.
(35) and (37). As anticipated in Eq. (40), the orbital
part of the drift current at metal surfaces is negligible.
This property is numerically verified in Table I using Eq.
(39).

The effect of the SOI in the IFE is also visible in the
case of circularly polarized vortex beams (carrying both
SAM and OAM; cf. the two last columns of Fig. 2).
By comparing Figs. 2(c) and 2(d), and Figs. 2(k) and
2(l), we see that the spin part of the drift current in the

metal bulk and at metal surfaces is reversed and shows
a different morphology when the sign of the topological
charge l (i.e. the OAM) of the incoming beam is flipped
while the polarization helicity s (i.e., the SAM) remains
unchanged.

To quantify the relative contributions of the SAM and
OAM of light to the IFE, we consider coefficients βspn
and βorb, respectively, defined as:

βspn =
µspnz

µspnz + µorbz
, (50)

βorb =
µorbz

µspnz + µorbz
. (51)

µspnz and µorbz are the z-component of vectors µspn

and µorb defined as being derived from the spin and or-
bital parts of the opto-induced magnetization (Mspn and
Morb, respectively).
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We first focus on the ability of the SAM and OAM
of light to create local orbital angular momentum in the
electron gas (e-OAM), i.e., to move conduction electrons
in the form of drift current loops. To this end, we define

µid =
1

2V

∫
V

r× |jidd |dV, (52)

with |jidd | = |[jidd ]surf |+ |[jidd ]bulk|, ”id” stands for ”orb”
or ”spn”. Here, µz = µspnz + µorbz quantifies the total
amount of opto-induced e-OAM. We thus avoid angular
momentum compensation effects that could be induced
by current loops of opposite handedness to focus on how
much of the total opto-induced e-OAM comes from the
SAM and OAM of light.

From these considerations, it appears that the OAM
of light is the main source of e-OAM in the metal bulk
for three of the four helicities of the incoming light (see
Table I). In contrast, the SAM of light is the main con-
tributor to e-OAM at metal surfaces (calculated from
Eq. (39)), which confirms the simplification made in Eq.
(40). Table I also shows that the overall e-OAM (com-
bining surface and bulk contributions) is mainly driven
by the SAM of light. The existence of a non-negligible
OAM-driven magnetization (SAM-driven magnetization,
respectively) for an incoming beam solely carrying SAM
(OAM, respectively) highlights the crucial role of the SOI
of light in the IFE. In the case of the radially polarized
vortex beam solely carrying OAM (l = 1, s = 0), the
contribution of the SAM to the total generated e-OAM
is even three times as high as the contribution of the
OAM. OAM-to-SAM conversion in such a beam has al-
ready been evidenced in Ref [69], leading to the concept
of an optical skyrmion. When the incoming beam car-
ries both OAM and SAM (l = ±1 and s = 1), the OAM
and SAM contributions to the overall e-OAM are almost
balanced.

l=0,s=1 l=1,s=0 l=1,s=1 l=-1,s=1
Bulk βspn 73% 55% 45% 55%

βorb 27% 45% 55% 45%

Surface βspn 99.8% 99.5% 99.3% 99.2%
βorb 0.2% 0.5% 0.7% 0.8%

Overall βspn 88% 76% 69% 71%
βorb 12% 24% 31% 29%

TABLE I. βspn and βorb coefficient for four different combi-
nations of the l and s parameters defining the incoming beam
entering the microscope objective. βspn and βorb are defined
from Eqs. (50) and (51), where µorb and µspn are given in
(52) (total amount of e-OAM).

We now study the observable magnetization associated
to the IFE. µ is then defined as the amplitude of the
magnetization.:

µid = |M| = 1

2V

∣∣∣∣∫
V

r× jidd dV

∣∣∣∣ , (53)

”id” stands for ”orb” or ”spn”. The e-OAM compen-
sation effects induced by current loops of opposite hand-
edness are now taken into account. We see for instance
by comparing Figs. 2 (b-d) and 2 (j-l)) that the SAM-
driven drift currents at metal surfaces and bulk can be
of opposite handedness.

The SAM and OAM contributions to the overall IFE
(combining surface and bulk contributions) are given in
Table II. We find that except for an incoming circularly
polarized beam (l = 0, s = 1), the contribution of the
OAM of light dominates the IFE. The spin part of the
IFE undergoes compensation effects due to surface and
bulk currents of opposite handedness, which reduces the
resulting optomagnetization. The SAM of light thus in-
duces a larger amount of e-OAM, but due to compensa-
tion effects between surfaces and bulk contributions (elec-
trons move in opposite directions), the SAM of light can
be less efficient than its orbital counterpart to generate
an observable magnetization. This surface-to-bulk com-
pensation effect can be almost perfect, leading to a near
zero contribution of the SAM to the IFE (as observed
from Tables I and II with the radially polarized vortex
beam (l = 1, s = 0)).

l=0,s=1 l=1,s=0 l=1,s=1 l=-1,s=1
βspn 78% 0.2% 36% 49%
βorb 22% 99.8% 64% 51%

TABLE II. βspn and βorb coefficient for four different combi-
nations of the l and s parameters defining the incoming beam
entering the microscope objective. βspn and βorb are defined
in Eqs. (50) and (51), where µorb and µspn are given in (53)
(observable magnetization).

The resulting optomagnetic field is calculated from the
drift currents shown in Fig. 2 using Biot and Savart
law. We show in Fig. 3 the optomagnetic field gener-
ated from the spin and orbital parts of the drift currents
(Figs. 3(a-d) and 3(e-h), respectively) as well as the over-
all magnetic field combining these two parts (Figs.3(i-l)).
Figs. 3(i-l) reveal that the distribution of the overall op-
tomagnetic field strongly depends on the OAM of the
incoming beam. When l = 1 and s = 1, the optomag-
netic field forms a ring-like pattern and points upward
at the center of the light beam (Fig. 3(k)). The ampli-
tude of the static magnetic field reaches 1.2 mT. When
the sign of l is reversed, the optomagnetic field is both
flipped and confined at the beam center (Fig. 3(i)) and
it peaks at 1.8 mT. The topological charge (i.e., OAM)
of the collimated light entering the microscope objective
thus provides a new degree of freedom in the control of
the optomagnetism.
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FIG. 3. Optically induced static magnetic field in a (x0z)-plane perpendicular to the metal surfaces. The black arrows show
the local orientation of the magnetic field. (a-d) Optomagnetic field (in linear scale) from the contribution of the OAM of light
to the IFE. (e-h) Optomagnetic field (in logarithmic scale) from the contribution of the SAM of light to the IFE. (i-l) Overall
optomagnetic field (in logarithmic scale). In all figures, the horizontal yellow lines are used to localize the 20nm thick gold
layer. The gold film is illuminated from the substrate (see indications in (a)).

VII. CONCLUSION

On the basis of a hydrodynamic model of the conduc-
tion electron gas, we give a spin and orbital angular mo-
mentum representation of the IFE in a metal. Both SAM
and OAM contributions to the IFE in the metal bulk rely
on an optical drag effect [57, 74]: the underlying opto-
induced current densities are proportional to the Poynt-
ing energy flow (optical momentum) inside the metal. In
the case of an axisymmetrical optical system, we show
a direct proportionality between the opto-induced drift
current at metal surfaces and the radial component of
the SAM of light. In the paraxial approximation, the
contribution of the SAM vanishes and the IFE is solely
driven by the OAM of light, which is consistent with the
interpretation of the spin and orbital angular momenta
of purely transverse light fields [49, 51]. We also evi-
dence that the SOI of light plays a significant role in the
IFE. Finally, we numerically quantify the relative contri-
butions of the SAM and OAM to the IFE in a thin gold
film illuminated with four different focused beams carry-
ing SAM and/or OAM. We find that the SAM of light

is the main source of drift current density regardless of
the helicity of the incident light. However, compensation
effects between SAM-driven surface and bulk currents
of opposite handedness reduces the contribution of the
SAM to the observable opto-induced magnetization. Ex-
cept for circular polarization, the OAM of light is found
to be the main contributor to the IFE. We also numer-
ically confirm the importance of the SOI of light in the
IFE, which manifests both via SAM-to-OAM and OAM-
to-SAM conversions at focus. The OAM of light thus
opens new degrees of freedom in the control of the IFE in
metals, thus potentially impacting various research fields
including all-optical magnetization switching and spin-
wave excitation.
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