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Abstract

The design of functional elements for Bloch Surface Waves (BSW) is chal-
lenging because of the relatively low index contrast offered by the respective
platforms. Here, we design a supporting photonic nanostructure that extracts
as much light as possible from a quantum emitter into a waveguide in an
integrated BSW architecture. The inverse problem is solved using topol-
ogy optimization. Emphasis is put on discussing the algorithm’s emerging
strategies for the design to enhance the Purcell factor, the coupling efficiency,
or both for different index contrasts. Fully three-dimensional simulations
of an explicit device show the benefits of our devices and pave the way for
integrating such unconventional photonic elements into future fully-integrated
BSW devices.
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1. Introduction

Bloch Surface Waves (BSW) are evanescent eigensolutions to Maxwell’s
equations, propagating parallel to the interface between an isotropic medium
and a truncated one-dimensional photonic crystal (1DPC) [1, 2]. Interestingly,
they exhibit the highest amplitude close to the 1DPC surface and they can
be either TE or TM polarized [3]. The one-dimensional photonic crystal
is typically implemented as a layer stack of dielectric materials with an
alternating refractive index. In particular, BSWs are operated in the frequency
domain of the band gap of the one-dimensional photonic crystal. This
guarantees an exponentially decaying field in the homogeneous medium
(e.g. air, water, etc.) and an oscillating amplitude with an exponentially
decaying envelope in the layered medium, resulting in long propagation
lengths. Although the underlying physics is rather different, BSWs bear
many similarities to other guided surface modes, such as propagating surface
plasmon polaritons [4, 5], in that they are localized to the interface. The
field localization is less pronounced since the effective index of the guided
modes will not exceed those of the indices of the involved materials and
tends to be relatively small in practical situations. However, BSWs offer in
exchange the fantastic opportunity to reach propagation lengths in the order
of many hundreds of micrometers or even millimeters, while still having the
field largely extending in the outer medium [6, 7]. This is possible because
dissipation losses in the all-dielectric platform do not limit their propagation
lengths. Instead, the propagation length is frequently only limited by the
finite number of layers used to build the photonic crystal [8]. In fact, a limited
number of layers causes some leakage radiation due to evanescent tunneling
toward the substrate beneath the multilayer, but it can be considered as an
engineering problem to suppress it.

The ability to guide light over macroscopic distances in an integrated
architecture enables a plethora of applications that serve societal needs [9, 10].
Examples of functional devices explored in the past range from on-chip
information processing components [11] to sensing platforms [12, 13, 14].
Such sensors can even be deposited on the end-facets of fibers to be extremely
flexible [15, 16]. A crucial component to exploit BSWs in integrated circuits
is their confinement into a second dimension, i.e., the one tangential to the
substrate interface and normal to the propagation direction [17]. This is
usually achieved by patterning the terminating layer of the one-dimensional
photonic crystal, frequently called the functional layer, such that for the
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operational frequency, the BSWs experience slightly different effective indices
in the structured and unstructured functional layer, respectively [18]. This
permits to achieve waveguides and resonators with lateral confinement [19, 20],
but also more complicated functional devices that can be realized upon
exploitation of the generally small index contrast [21].

Nevertheless, the tiny index difference, which is frequently only in the
order of ∆n ≈ 0.1, constitutes a prime design challenge [22, 23]. It implies
that the direct application of conventional optical components, e.g., even
just a lens, is not straightforward, as the design of these components usually
hinges on a larger index contrast. Consequently, and entirely in the spirit of
the current special issue to which this article aims to contribute, the design
of functional components for an integrated BSW architecture is a wonderful
playground to explore the application of novel computational approaches for
inverse design [24]. Only with such strategies, it is possible to identify feasible
designs that serve a well-defined purpose while fully respecting the constraints
imposed by the limited index contrast. While a large variety of different
methodologies exist to solve the inverse problem [25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42], we exploit topology optimization
here.

We apply topology optimization to contribute to an essential step for the
further development of a BSW-based integrated photonic architecture. Our
exploration concerns the extraction of light emitted from an embedded source
into a BSW-integrated circuit. The circuit consists of, for simplicity, the
form of a waveguide. The embedded source, considered as an electric dipolar
emitter, is assumed to be externally pumped and shall release as much energy
as possible into the waveguide. The structure at stake in our consideration
is a finite domain surrounding the emitter that can be structured and shall
direct as much light as possible into the waveguide. Two aspects must be kept
in mind that deny simple solutions and prompt the application of advanced
tools to solve the inverse design problem. First, the coupling efficiency needs
to be maximized. The coupling efficiency is the fraction of the emitted light
that finds its way into the waveguide. Second, the supporting structure can
contribute to a Purcell enhancement, i.e. the dipole-waveguide coupler must
be resonant. The Purcell enhancement measures the increased local density
of states to extract the radiation from the emitters. It is defined as the power
extracted from the source in the presence of the supporting photonic structure
normalized to the power extracted from the source in free space (or some other
referential structure). The higher the Purcell enhancement [43] and the quicker
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the light is extracted, the faster the emitter can be excited again to release
a further photon. The scientific challenge that we wish to explore concerns
the discussion of how a suitable supporting photonic structure should look
to transfer as much light from a quantum emitter into a waveguide through
coupling to the supported BSWs assuming a dipole excitation in saturation
regime. Emphasis is put on studying that effect depending on the index
contrast the BSW platform offers to shed light on the interplay between the
two effects that dominate the response. Topology optimization is used for
the inverse design of the supporting photonic structure.

The article is structured into three sections. In Section 2, we discuss
the setting of our inverse design problem and detail the used computational
techniques. In Section 3, we present the results and discussion. We systemat-
ically study the details of the optimized devices initially in a 2D setting but
verify the optimizations in full 3D simulations. The discussion orients on the
question of how the details of the optimized structure vary by changing the
possible index contrast. In Section 4, we conclude on our results.

2. Optimization setup

We aim to optimize functional photonic devices that can extract light
emitted by a dipole-like source that couples into a surface mode sustained by
a dielectric multi-layer stack into a waveguide (see Fig. 1) such that it can be
used for, e.g., on-chip light sources. However, the system under consideration
is relatively large, rendering an optimization using full-wave 3D simulations
impractical. Instead, we transform the problem into a 2D one by using an
effective index method, which has been applied successfully in the past to the
simulation and design of functional devices for manipulating BSWs [44, 45, 46]
due to the low refractive index contrast of such systems.

In the proposed setup, the dipole source is oriented along the x direction
and emits light with a Gaussian spectrum centered at a wavelength of λ0 =
570 nm placed at the center of the spacer region (black circle). We define a
circular design region as shown in Fig. 1 with a radius of 5.7 µm and define
our objective function F as

F = |α0|2 , (1)

where α0 is the mode coefficient of the fundamental forward-propagating
TM-polarized mode (in-plane electric field) of the waveguide, normalized such
that |α0|2 corresponds to the power carried in that mode.
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Figure 1: Full sketch of a prototypical material platform that supports BSWs (left). A
functional layer is patterned on top of a dielectric multi-layer structure sitting on a substrate
in this conceptual setting. The optimization setup for the 2D effective index simulation
(right) consists of a circular design region with a radius of 5.7 µm and a central spacer region
with a radius of 0.4 µm and fixed material distribution. The x-polarized dipole source is
embedded in the center of the spacer region. A waveguide with a width of 0.3 µm extends
out from the lower edge of the design region. The optimization aims to maximize the
power coupled from the dipole into the fundamental TM-polarized mode of the connected
waveguide.

We use a standard filter-and-project parametrization [47, 48, 49] and use
the method of moving asymptotes (MMA) [50] as implemented in nlopt [51]
(version 2.7.1) for constrained, nonlinear topology optimization. The designs
are discretized on a 2D grid with a resolution of 100 px

µm . To parametrize

the designs, the dimensionless design variables ρ ∈ [0, 1] are first low-pass
filtered using a Gaussian kernel to impose a minimum feature size of 50 nm.
Afterward, a soft-thresholding function is applied to promote binary solutions
in the optimization:

ρ̂ =
tanh(β/2) + tanh(β (ρ− 0.5))

2 tanh(β/2)
. (2)

The parameter β dictates the strength of the binarization and is increased in
multiple steps during the optimization process to yield final, binary designs.
To prevent the optimization from reverting to less binary designs, we constrain
the gray indicator

cg(ρ̂) =
1

n

n∑
i=1

4ρ̂i (1− ρ̂i) (3)
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suggested in [52] to be smaller than a threshold γ, which is determined from
the design directly after increasing β. After projection, a circular mask
is applied to the design variables such that the device is constrained to a
circular geometry. The device geometries are then linearly interpolated to
their respective refractive indices, and the simulations are performed using
Meep [53]. The sensitivities of the objective function w.r.t. the parametriza-
tion are obtained using Meep’s adjoint module [54], and the sensitivities of
the parametrization w.r.t. the optimization variables ρ are obtained using
autograd [55].

We then formulate the optimization problem as:

max
ρ

|α0|2 (4a)

s.t. α0 =

∫
S

[
Ẽ∗(r)× H̃0(r) + Ẽ0(r)× H̃∗(r)

]
· n̂ dA (4b)

cg(ρ̂)− γ ≤ 0 (4c)

0 ≤ ρ ≤ 1 , (4d)

where Ẽ, H̃ in Eq. 4b are the Fourier-transformed fields at the target wave-
length of 570 nm at the mode monitor (c.f. Fig. 1) and Ẽ0, H̃0 are the fields
corresponding to the fundamental mode in the waveguide (obtained using the
eigenmode solver MPB [56]).

The effective index of the surface mode without the functional layer is
assumed to be neff,0 = 1.019, and we perform the optimization for different
effective index contrasts ∆neff ranging from 0.01 to 0.13 in increments of
0.01. For the device with the highest index contrast ∆neff = 0.13, the surface
mode with the functional layer has an effective index of neff,1 = 1.149, which
corresponds to the material platform presented in [46].

The 2D simulations in the optimization are performed using MPI-parallel
Meep (version 1.23.0) on a desktop computer with a 10-core CPU (Intel Core
i9-10900 @ 2.80GHz) at a resolution of 50 px

µm .

3. Results and discussion

3.1. Optimization and evaluation in 2D

By running multiple optimizations for different effective refractive index
contrasts in the range of ∆neff = 0.01 to 0.13, we can numerically study
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Figure 2: Optimized device designs (top row) and corresponding electric field intensities
(bottom row) in log scale at the target wavelength of 570 nm. Shown here are four selected
devices designed for different effective index contrasts (columns). Note that a short length
of waveguide is included for clarity but it is not part of the design region.

the implications on achievable device performance resulting from different
conceivable surface-wave sustaining material platforms.

The results of the optimization for four selected devices and the corre-
sponding electric field intensities (log scale) are shown in Fig. 2.

For all designs, we observe that the optimization forms a kind of distributed
Bragg reflector (DBR), most notably in the upper half-space of the design.
Such a solution to the optimization problem is reasonably intuitive, as the
absolute power coupled into the waveguide, regardless of any additional
coupling elements, is directly proportional to the power emitted by the source.
It is thus a natural and expected solution that the optimization would converge
towards designs that, at least in part, form an electromagnetic cavity. The
coupling of the power emitted by the source to the waveguide is, of course,
not only governed by the total power emitted but also by the efficiency with
which the device can guide the field towards the waveguide. This efficiency,
in turn, is limited by the refractive index contrast available for steering the
electromagnetic fields. As the refractive index contrast becomes larger, the
device can more efficiently make use of finer spatial variations in the patterned
layer to guide the light, an observation that is evident when examining the
different devices in Fig. 2.
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The device for ∆n = 0.01 features a mostly adiabatic transition from the
DBR in the upper half-space of the design to a tapered waveguide-like element.
That is a clear indication that light emitted in the upper half-space should
be back-reflected, but otherwise it is primarily of importance to increase the
coupling efficiency towards the waveguide by steering the light into the right
direction. A possible enhancement of the emission due to some cavity effect
is not really visible. But that is also not surprising considering the very low
index contrast that leads to cavities with small quality factors.

The device for ∆n = 0.13 exhibits a more intricate and non-intuitive
design. The central part of its design consists of multiple sub-wavelength
elements, and the waveguide-like structure in the lower half-space has made
way for a more intricate design. In the essence the upper part continues to
leave the impression as acting like a DBR but the lower part, i.e. the part
between the source the waveguide, clearly balances our requirements now in
terms of a good coupling efficiency and a high enhancement of the extracted
power.

To quantify the performance of the optimized devices, we investigate the
Purcell enhancement of the source in the spacer region and the coupling
efficiency into the waveguide. We obtain spectra in the range (570± 30) nm
for all optimized devices in Fig. 3 and we show the obtained values at the
target wavelength of 570 nm separately in Fig. 4. The Purcell enhancement
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Figure 3: Spectra of Purcell enhancement (left) and coupling efficiencies (right) for all
designs as obtained from the 2D effective index setup in which the devices were optimized.
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Figure 4: Purcell enhancement and coupling efficiency for all designs at the target wave-
length of 570 nm obtained from 2D effective index simulations.

is calculated as the ratio of power flow from the source in the device (“cavity”)
and a homogeneous medium (neff,1). The power flow is obtained by placing
a box of flux monitors with an edge length of 0.5 µm around the source
and accumulating the appropriate Fourier-transformed fields. Similarly, the
coupling efficiency is obtained as the ratio of the power contained in the
fundamental mode of the waveguide with

Pmode = |α0|2 (5)

and the power emitted by the source.
The optimized devices clearly show a Purcell enhancement at the target

wavelength, with the ∆n = 0.01 device having a Purcell factor of approx-
imately 2, increasing exponentially with increasing ∆n (c.f. Fig. 4) up to
the ∆n = 0.13 device with a Purcell enhancement of around 70. We also
see that the designs with higher index contrast exhibit better coupling effi-
ciency, with the ∆n = 0.13 design achieving the highest coupling efficiency
at 54%. Notably, the higher index contrast designs exhibit much more sig-
nificant wavelength specificity than the lower index designs, which show a
more broadband response. This reinforces the previous consideration that
due to the higher index contrast, the optimization can more specifically tailor
the “guiding performance” of the device to the target wavelength, which at
very low index contrasts yields only diminishing returns. Further, we observe
that the coupling efficiency increases substantially between ∆n = 0.01 and
∆n = 0.04 and then slowly saturates at higher contrasts at values around
0.5. This is likely owed to the fact that, while there is a significant gap in
performance between the devices optimized for extremely low index contrasts
(∆n ≈ 0.01) and those at moderate contrasts (∆n ≈ 0.1), the index contrast
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of all optimized devices is still relatively low. Thus, a significant portion
of the radiation emitted by the dipole is lost in the upper half-space of the
design. These insights mirror the discussion that was phenomenologically
made when looking into the different designs obtained for a different index
contrast.

3.2. Comparison between 2D and 3D

So far, we have examined the performance of the optimized devices in
2D, i.e., in the setting of the effective index approximation of the surface
mode that they were optimized for. However, it is crucial to test whether
this approximation holds for the optimized devices in the 3D setting that was
envisioned. To do this, we adopt the dielectric multi-layer stack from [46].
The material platform consists of a sequence of Silica and Tantalia slabs
deposited on a glass substrate (nglass = 1.5), with a final layer of PMMA
into which the device geometry is patterned. The layer stack consists of
ten alternating layers of Ta2O5 (nTa2O5

= 2.08, dTa2O5
= 95nm) and SiO2

(nSiO2
= 1.46, dSiO2

= 137 nm), an additional layer of Ta2O5, and a layer of
SiO2 with a thickness of 127 nm. The final PMMA layer has a refractive index
of nPMMA = 1.48 with a thickness of 75 nm. All materials are assumed to be
free of dispersion across the wavelength range in question ((570 ± 30) nm).
The effective index of the surface mode at 570 nm supported by this system
without the PMMA layer is neff,0 = 1.019 and neff,1 = 1.149 with the PMMA
layer. This corresponds to the effective indices for which the ∆n = 0.13
device was designed. We extrude the optimized 2D design 75 nm in the
z-direction to use it as the functional PMMA layer. The x-polarized dipole
source is embedded at the center of the spacer region inside of the PMMA
layer 35 nm beneath the surface. The 3D simulation is then run using FDTD
(Meep) at a resolution of 80µm−1 parallelized over 76 CPU cores (2x Intel
Xeon Platinum 8368 @ 2.4GHz), taking 16.5 hours. Analogous to the 2D
simulations previously, the power flow from the dipole is monitored in all
spatial directions using flux monitor planes with an edge length of 0.5 µm for
both the homogeneous bulk PMMA as well as the patterned medium and
both the Purcell enhancement as well as the coupling efficiency are calculated
as before.

The comparison between the full-wave 3D simulation and that of the
corresponding 2D effective index simulation is shown in Fig. 5. While there
are apparent differences between both approaches, we see a marked increase in
the Purcell enhancement and the coupling efficiency at the target wavelength
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Figure 5: Comparison of the Purcell enhancement (left) and the coupling efficiency (right)
between the 2D effective index simulation and a 3D full-wave simulation. The device was
optimized for an effective index contrast of ∆n = 0.13, which corresponds to the material
platform presented in [46].

of the optimization in the 3D results. While the Purcell factor in 2D was
calculated to be 70, the Purcell enhancement in 3D is reduced to a factor of
23. This is not surprising, as the effective index simulations entirely neglect
out-of-plane scattering losses. A large part of the radiation emitted by the
source is emitted out-of-plane, which is neither captured by the patterned
PMMA layer in 3D nor accounted for in the 2D simulations. However, the
analytically constructed DBR structure from [46] achieves a Purcell factor of
32. As our optimized device represents a compromise between the Purcell
enhancement and the coupling efficiency, it is expected that such a device will
exhibit a lower enhancement since energy is continually extracted from the
system. This indicates that while there is a mismatch in terms of absolute
numbers between the 2D and 3D simulations, the devices optimized using
the effective index method achieve reasonably good performance in 3D. A
similar argument can be made for the observed coupling efficiency, which is
0.54 in 2D and 0.28 in 3D, in that a significant portion of the light emitted
from the dipole is lost to out-of-plane scattering, i.e not coupled to BSW,
which in turn limits the amount of power that can be coupled into the BSW
waveguide. However, since the structure is only patterned in the PMMA layer,
the degrees of freedom even in the 3D setup are effectively two-dimensional
as there is no patterning in the z-direction. As such, the additional losses
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incurred in the 3D case can be assumed to be of similar magnitude between
different devices when switching between the 2D effective index setup and
the full 3D geometry, indicating that the optimized structures are still close
to optimal even in the 3D case.

There is also the aspect of practicality – a single 3D simulation at
sufficiently high resolution takes around 16 hours to complete on a high-
performance computer. To calculate the sensitivities via the adjoint method,
an additional simulation is needed at every iteration, increasing the time
for a single gradient-based update step to around 32 hours if done with a
3D full-wave simulation. A typical optimization of the presented devices
needs a few hundred such iterations, rendering a full optimization entirely
infeasible. On the other hand, the effective index simulations take roughly
30 seconds per simulation on a mid-range desktop computer while yielding
designs that still exhibit good performance. A possible compromise could
be the optimization of devices using the effective index method and refining
the converged solution for a few steps using a full-wave simulation. However,
even just ten of such refinement steps would take on the order of weeks in
the demonstrated setup and would be beyond the scope of this work.

There exists also the possibility of tackling the stated design problem
with different approaches, as there has been much exciting work on the
inverse design of photonic devices, both in 2D and 3D, in recent years.
However, we note that the computational cost in our optimization stems
almost exclusively from the cost of performing the simulations. While many
alternative optimization schemes exist, none of them (to our knowledge)
remove the cost of numerical simulations.

Gradient-free methods such as swarm or evolutionary optimization rely on
extensive sampling of the solution space, which means doing many numerical
simulations [28, 57, 34, 38]. These methods can perform very well when
gradients are not unavailable (e.g., for discrete optimization problems), but
generally need to sample the objective function more often than gradient-
based methods simply due to having less information about the objective
function.

Data-driven approaches, such as machine learning, tend to “front-load”
the computational cost of performing the simulations into the generation of a
dataset with which, e.g., a fast surrogate solver is trained [58, 59, 60]. This
can be useful when one needs to perform similar tasks many times, or when
the dataset can be repurposed for a variety of tasks, but the trade-off is that
the number of samples required for generating a sufficiently large dataset
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usually exceeds the number of simulations one would need to perform to solve
only one, or a few, of these tasks.

Thus, we argue that all such methods are fundamentally bound by the
speed with at which one can perform the relevant simulations. In our work,
we propose using effective index simulations in 2D instead of full-wave 3D
simulations as a means to speed up the optimization process by orders of
magnitude, at the cost of sacrificing some accuracy in the simulation results.

4. Conclusions

We have demonstrated the use of topology optimization for the inverse
design of devices that efficiently extract light from a dipole source into a
waveguide in a low index contrast setting, as is typical for dielectric systems
with surface modes. In our approach, we approximate the 3D system with
an effective index method and numerically compare the performance of one
of the optimized devices with its expected performance in an established
experimental platform, showing a significant increase in both the Purcell
enhancement and the coupling efficiency in the 3D case. The proposed
devices open the door to the integration of spontaneous light emission with
integrated photonic circuits and present a new way of manipulating the
propagation of BSWs.
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Wittwer, O. Razskazovskaya, T. Südmeyer, H. P. Herzig, Centimeter-scale
propagation of optical surface waves at visible wavelengths, Advanced
Optical Materials 10 (10) (2022) 2102854.
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