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Abstract

For N ≥ 2, an N -qubit doily is a doily living in the N -qubit symplectic polar space.
These doilies are related to operator-based proofs of quantum contextuality. Following and
extending the strategy of Saniga et al. (Mathematics 9 (2021) 2272) that focused exclusively
on three-qubit doilies, we first bring forth several formulas giving the number of both linear
and quadratic doilies for any N > 2. Then we present an effective algorithm for the generation
of all N -qubit doilies. Using this algorithm for N = 4 and N = 5, we provide a classification
of N -qubit doilies in terms of types of observables they feature and number of negative lines
they are endowed with. We also list several distinguished findings about N -qubit doilies that
are absent in the three-qubit case, point out a couple of specific features exhibited by linear
doilies and outline some prospective extensions of our approach.

1 Introduction

The doily is a remarkable piece of finite geometry that occurs in a number of disguises. Here, we
mention the most prominent ones.

1. The doily as a duad-syntheme geometry. Let us recall a famous Sylvester’s construction of the
doily [1]. Given a six-element set M6 ≡ {1, 2, 3, 4, 5, 6}, a duad is an unordered pair (ij) ∈M6,
i 6= j, and a syntheme is a set of three pairwise disjoint duads, i. e. a set {(ij), (kl), (mn)}
where i, j, k, l,m, n ∈M6 are all distinct. The point-line incidence structure whose points are
duads and whose lines are synthemes, with incidence being inclusion, is isomorphic to the
doily, as also illustrated in Figure 1.
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Figure 1: A duad-syntheme model of the doily.

2. The doily as the Cremona–Richmond configuration. It is a particular 153-configuration, i. e. a
self-dual configuration of 15 points and 15 lines, with three points on a line and, dually, three
lines through a point such that it contains no triangles [2, 3]. Up to isomorphism, there are
altogether 245,342 153-configurations, of which only the doily enjoys the property of being
triangle-free.

3. The doily as a generalized quadrangle. A generalized quadrangle GQ(s, t) of order (s, t) is an
incidence structure of points and lines (blocks) where every point is on t+ 1 lines (t > 0), and
every line contains s + 1 points (s > 0) such that if p is a point and L is a line, p not on L,
then there is a unique point q on L such that p and q are collinear. The doily is isomorphic
to the unique generalized quadrangle with s = t = 2 [4].

4. The doily as a symplectic polar space. Given a d-dimensional projective space PG(d, 2) over
the two-elements field F2 = {0, 1} of modulo-2 arithmetic, a polar space P in this projective
space consists of the projective subspaces that are totally isotropic/singular with respect to
a given non-singular bilinear form [5, 6]; PG(d, 2) is called the ambient projective space of
P. A projective subspace of maximal dimension in P is called a generator; all generators
have the same (projective) dimension r − 1. One calls r the rank of the polar space. The
symplectic polar space W(2N − 1, 2), N ≥ 1, consists of all the points of PG(2N − 1, 2),
{(x1, x2, . . . , x2N ) : xj ∈ {0, 1}, j ∈ {1, 2, . . . , 2N}}\{(0, 0, . . . , 0)}, together with the totally
isotropic subspaces with respect to the standard symplectic form

σ(x, y) = x1yN+1 − xN+1y1 + x2yN+2 − xN+2y2 + · · ·+ xNy2N − x2NyN . (1)

Throughout the paper, the space name W(2N − 1, 2) is often shortened as WN . This space
features

|WN |p = 4N − 1

points and
|WN |g = (2 + 1)(22 + 1) · · · (2N + 1)

generators. The doily is isomorphic to the symplectic polar space of rank N = 2, W(3, 2).

5. Multi-qubit doilies. This paper is about doilies related to Kochen–Specker operator-based
proofs of quantum contextuality, to be called N -qubit doilies or multi-qubit doilies. We
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follow the terminology and notation of Section 2 of [7], to which the reader can refer for more
finite-geometric background. Let

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
and Z =

(
1 0
0 −1

)
be the Pauli matrices, I the identity matrix, ‘⊗’ the tensor product of matrices and IN ≡
I(1) ⊗ I(2) ⊗ . . . ⊗ I(N), and let SN = {G1 ⊗ G2 ⊗ · · · ⊗ GN : Gj ∈ {I,X, Y, Z}, j ∈
{1, 2, . . . , N}}\{IN}. The 4N −1 N -qubit observables of SN can be bijectively identified with
the 4N − 1 points of W(2N − 1, 2) in such a way that any two commuting observables are
represented by collinear points and the product of the three observables lying on a line of
W(2N − 1, 2) is +IN or −IN (see, for example, [8, Section 5.3.2]). If the symplectic form
in the ambient space PG(2N − 1, 2), defining W(2N − 1, 2), is given by Eq. (1), then the
corresponding bijection reads

Gj ↔ (xj , xj+N ), j ∈ {1, 2, . . . , N}, (2)

with the assumption that

I ↔ (0, 0), X ↔ (0, 1), Y ↔ (1, 1), and Z ↔ (1, 0). (3)

To briefly illustrate this property, let us consider the three-qubit W(5, 2) and one of its lines,
say (0, 1, 1; 1, 1, 0), (1, 0, 0; 0, 0, 1) and (1, 1, 1; 1, 1, 1). Using the correspondences (2) and (3)
we find that the corresponding observables are X ⊗ Y ⊗ Z, Z ⊗ I ⊗ X and Y ⊗ Y ⊗ Y ,
respectively; these observables indeed pairwise commute and their product is +I ⊗ I ⊗ I.

In what follows, WN will always be understood as having its points labeled by the N -qubit
observables as described above, and any doily lying in it, together with the inherited labeling,
will be called an N -qubit doily (N ≥ 2). Slightly rephrased, an N -qubit doily is a doily
whose points are bijectively identified with 15 specific observables from SN , such that any
two commuting observables share the same line, and, given any line, the product of (any) two
observables lying on it is, up to a sign, equal to the remaining observable on it. A line of an
N -qubit doily will be called positive (resp. negative) if the product of its three observables is
+IN (resp. −IN ). To avoid any possible misunderstanding, it is worth mentioning that the
product of observables is the (ordinary) matrix product, denoted by a dot (.), induced by the
following multiplication table of Pauli matrices.

. X Y Z
X I iZ −iY
Y −iZ I iX
Z iY −iX I

From here on, the geometrical points are considered to be finite words on the four-letter
alphabet {I,X, Y, Z} that encode the observables G1 ⊗ G2 ⊗ · · · ⊗ GN , while omitting the
symbol ⊗ for the tensor product and forgetting in the sequel about the matrix nature of I,
X, Y and Z.
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Contributions and paper outline. Our contributions start in Section 2, with a presentation of
several facts about N -qubit doilies that motivates the design of an effective algorithm to enumerate
N -qubit doilies for any rank N (Section 4). By geometric considerations, we first establish in
Section 3 closed formulas for the numbers of N -qubit doilies. As these numbers increase rapidly
with N , the enumeration algorithm can in practice only be executed for small numbers of qubits.
We use it in Section 5 to classify N -qubit doilies for N = 4 and N = 5, according to their types
of observables and their configurations of negative lines. We thus produce precise tables for the
number of doilies in each category/class, reproduced in the appendices of this paper. Section 5
also analyzes these results and points out various findings about N -qubit doilies that are absent in
the known three-qubit case. Section 6 concludes and outlines some prospective extensions of our
approach.

2 Some basic facts about multi-qubit doilies

2.1 Patterns formed by negative lines

It is a straightforward task to work out possible types of patterns of negative lines an N -qubit doily
can be endowed with. This classification follows readily from the facts that each grid in the doily
must contain an odd number of negative lines and that two different grids have two intersecting
lines in common. And as a grid has an even number of lines the types of configurations come in
complementary pairs, as depicted in Figure 2.

3 12

4 11

5 10

6 9

7A 8A

7B 8B

Figure 2: Generic representatives of the twelve different types of configurations of negative lines
(bold) that can be found in a multi-qubit doily.

Let us give a brief description of the individual types of configurations. In Type 3 the three
negative lines are pairwise disjoint and lie in a grid; that is, their dual is a tricentric triad. Type 4
features three pairwise disjoint lines not belonging to a grid and their unique transversal. In Type
5 the five negative lines form a pentagon. Type 6 contains the three lines from Type 3 plus three
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concurrent lines, whose point of concurrence is not lying on any of the three former lines. Type 7A
contains six lines forming a hexagon and a unique line disjoint from any of the six. Type 7B is a
particular union of two Types 4 and an extra line or, equivalently, is composed of the five lines of a
grid and two disjoint lines. A two-qubit doily features just a Type 3 pattern, while in a three-qubit
doily we can find all the patterns from Type 3 to Type 7A inclusive [7].

2.2 Linear and quadratic doilies

Following [7], we will also distinguish between two kinds of doilies, referred to as linear and
quadratic. A linear N -qubit doily spans a PG(3, 2) of the ambient PG(2N −1, 2). This means that
the three lines of a perp-set of such a doily are coplanar, i. e. lie in a PG(2, 2) of the PG(3, 2), a
tricentric triad corresponds to a line of the PG(3, 2) and the plane defined by a unicentric triad of
the doily passes through its center. Figure 3 serves as a graphical illustration of these features for
N = 4. In the doily we selected a perp-set (blue) and colored the remaining lines red. The model
of PG(3, 2) is based on a 3-D tetrahedral model of Polster [9]; our version features all the points
but not all the lines of the model in order to avoid too crowded appearance of the figure. The two
red points at the side lie on the line passing via IY ZI that would be perpendicular to the plane of
the drawings. Each black line of the PG(3, 2) is non-isotropic and corresponds to a tricentric triad
in the doily.

IIIX

IYZX

IYZI

ZYXX

ZXXZ

IZIY

IZIZ

ZIYI

ZZYZ

IXZY

ZYXI

ZZYY ZIYX

ZXXY

IXZZ

(a)

IYZI

IZIZ IXZYIYZX

ZZYZZXXY

ZYXX

ZIYX

ZXXZ

IZIY

IIIX

IXZZ

ZZYY

ZYXI ZIYI

(b)

Figure 3: A linear four-qubit doily with one of its perp-sets highlighted in blue color (a) and the
corresponding PG(3, 2) of PG(7, 2) it spans (b). One can readily see that the three lines of the
perp-set lie in a plane of the PG(3, 2) and the three points on a non-isotropic line of the space
(black) correspond to a tricentric triad of the doily.

A quadratic N -qubit doily spans a PG(4, 2) of the ambient PG(2N − 1, 2), being, in fact,
isomorphic to the geometry formed by 15 points and 15 lines lying on a parabolic quadric Q(4, 2) in
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XYYX
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ZIXI

IZZI

XIZI

XZII ZZZI

XZXI

YIYI

(a)

IIXI

XZII ZIXIYZXI

YXXXIYIX

XXIX

XXXX

YXIX

ZIII

YZII

XZXI

IYXX

ZYXX ZYIX

(b)

Figure 4: An illustration of the fact that a perp-set of a quadratic (four-qubit) doily (a) spans a
PG(3, 2) (b) of the PG(4, 2) spanned by the doily.

this PG(4, 2). This quadric, as any other parabolic quadric in PG(4, 2), has a remarkable property
that all its tangent hyperplanes pass through the same point J , called the nucleus (see, e. g., [5]).
Any tricentric triad of such a doily defines a plane in the PG(4, 2) that contains J ; a unicentric triad
also defines a plane, this plane passing through the remaining third point lying on the line defined
by J and the (unique) center of the triad. Moreover, all the 15 PG(3, 2)s passing through J intersect
our quadric in three concurrent lines that form a perp-set of the doily. Figure 4 offers a pictorial
illustration of some of these properties. We again take a four-qubit doily, where we highlighted a
perp-set (blue). Now the three lines of the perp-set are not coplanar as in the case of linear doily,
but span a PG(3, 2). We colored the remaining eight points (and the totally-isotropic lines) of the
PG(3, 2) in yellow in order to stress the property that the only points shared by the doily and this
PG(3, 2) are the (blue) points of the perp-set. There are two “distinguished” points of the PG(3, 2),
namely ZY XX and ZY IX, which lie on the remaining seventh line passing via IIXI; the point
ZY XX is nothing but the nucleus of the parabolic quadric our particular doily is located on. Given
a perp-set, we know that there are four tricentric and four unicentric triads contained in it. In our
particular perp, the four tricentric triads are {XXIX,XZII, ZIXI}, {XXIX,XZXI,ZIII},
{XZXI,XXXX,ZIXI} and {XXXX,ZIII,XZII}; one can readily check that the product
of the three observables in any of them is ZY XX (the nucleus). The four unicentric triads of
our perp-set are {XZXI,XXXX,ZIII}, {XZXI,ZIXI,XXIX}, {ZIII,XZII,XXIX} and
{XXX,XZII, ZIXI}; the product of the observables in any of them is ZY IX, i. e. the second
distinguished point. By this construction we get a (different) PG(3, 2) for any of the 15 perp-sets of
the doily; and because in any of these perp-sets the four tricentric triads always define the nucleus,
ZY XX, we get altogether 15 PG(3, 2)s that share the point ZY XX, these 15 spaces lying in that

6



particular PG(4, 2) of the ambient PG(7, 2) that contains the quadric of our selected doily.
In a recent paper [7], four of the authors have thoroughly analyzed and classified three-qubit

doilies. To this end, they first explicitly computed all 63 perp-sets, 36 hyperbolic quadrics and
28 elliptic quadrics living in W(5, 2). Then, employing the fact that a linear doily is isomorphic
to the intersection of two perp-sets with non-collinear nuclei, they computed and classified all
63× 32/3! = 336 linear doilies of the W(5, 2). In the next step, making use of the property that a
quadratic doily is isomorphic to the intersection of an elliptic quadric and a hyperbolic quadric, they
generated and classified all 36×28 = 1 008 quadratic doilies of theW(5, 2). The procedure described
above is, however, not a viable one for N > 3, as we would first need to compute all W(5, 2)s living
in a particular W(2N − 1, 2), N > 3, and then in each of them compute 336 linear and 1 008
quadratic doilies following the strategy of [7]. Instead, we shall follow (in Section 4) a different, and
reasonably faster, approach that makes use of some properties of an ovoid of a doily. In particular,
we shall start with a particular N -qubit ovoid, i. e. a set of five mutually anticommuting N -qubit
observables whose product is ±IN , and introduce a unique algebro-geometrical recipe with the
help of which one can find all the N -qubit doilies having this particular ovoid in common. Before
embarking on this path, however, we shall introduce several general formulas for the number of
both linear and quadratic doilies of W(2N − 1, 2), valid for any N ≥ 2, so that we already have
certain important numbers at hand to validate some of our subsequent, mostly computer-assisted,
results.

2.3 Contextuality degree

All multi-qubit doilies are observable-based proofs of the Kochen–Specker theorem, that establishes
that no Non-Contextual Hidden Variables (NCHV) model can reproduce the outcomes of quantum
mechanics. This contextuality property is related to a linear problem, as follows. Let A be the
incidence matrix of the points on the lines of a finite geometry, such as the doily. Its coefficients
are in the two-elements field F2 = {0, 1}, its l rows correspond to the geometric lines and its p
columns to the geometric points (for the doily, l = p = 15). The positive (resp. negative) nature
of a line is encoded by a 0 (resp. 1) for the corresponding coefficient of the valuation vector E
in Fl

2. Then a quantum geometry is contextual iff there is no vector x such that Ax = E. The
contextuality degree is the minimal Hamming distance between a vector Ax and the vector E [10].
The contextuality degree is the minimal number of line valuations that one should change to make
the quantum geometry satisfiable by an NCHV model.

Proposition 1. All multi-qubit doilies have a contextuality degree of 3.

Proof. All multi-qubit doilies have the same incidence matrix A. Accordingly, the only parameter
that is changing between all the doilies is the vector E, which only depends on the configuration
of their negative lines. We have seen that there are only 12 such configurations. For each of these
12 configurations, we have computed the Hamming distance between Ax and E, for all vectors x
in F15

2 . It turns out that the minimal Hamming distance is always 3.

In practice, we did not write by hand the 12 possible E vectors, but we computed these vectors
from the 5-qubit doilies, because, as described later, we have checked by enumeration that these
doilies present all the configurations.
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3 Numbers of multi-qubit doilies

This section proposes and justifies closed formulas for the numbers of linear and quadratic doilies in
W(2N −1, 2). Before all we introduce some well-known formulas. First, we introduce the Gaussian
(binomial) coefficient [

n
k

]
q

=

k∏
i=1

qn−k+i − 1

qi − 1
=

(qn − 1) . . . (qn−k+1 − 1)

(qk − 1) . . . (q − 1)
(4)

where 0 ≤ k ≤ n and q is a power of a prime, which gives the number of subspaces of dimension1

k− 1 in a projective space PG(n− 1, q) of dimension n− 1 over Fq. More generally, the number of
(k − 1)-dimensional spaces of PG(n− 1, q) that pass through a fixed (l − 1)-dimensional space is[

n− l
k − l

]
q

. (5)

Next, for a symplectic polar space W(2N − 1, q) embedded in a projective space PG(2N − 1, q),
the number of its k-dimensional spaces is given by (see, e. g., [11, Lemma 2.10])[

N
k + 1

]
q

k+1∏
i=1

(
qN+1−i + 1

)
(6)

and the number of k-dimensional spaces through a fixed m-dimensional space [11, Corollary 2.11]
equals [

N −m− 1
k −m

]
q

k−m∏
i=1

(
qN−m−i + 1

)
. (7)

Further, let ⊥ be a symplectic polarity of PG(n, q) and let denote by S⊥ the polar space of a
subspace S. If S is of dimension k, then S⊥ has dimension n− k − 1. A projective subspace S of
PG(n, q) is called isotropic if S ∩ S⊥ 6= ∅ and non-isotropic if S ∩ S⊥ = ∅. An isotropic S is called
totally isotropic if S ⊆ S⊥. It is easy to see that if S is a totally isotropic subspace, then every
subspace contained in S is also totally isotropic. Moreover,

S ⊆ T⊥ ⇒ T ⊆ S⊥. (8)

In order to prove the two theorems below, we will need a couple of lemmas.

Lemma 2. If a PG(3, 2) of the ambient PG(5, 2) equipped with a symplectic polarity ⊥ contains a
totally-isotropic PG(2, 2), then it contains exactly three such PG(2, 2)s, passing through a common
(totally-isotropic) PG(1, 2).

Proof. First, there are no totally-isotropic PG(3, 2)s in the PG(5, 2). Given a totally-isotropic
PG(1, 2) of PG(5, 2), S, there are (see Eq. (7) for q = 2, N = 3, k = 2 and m = 1) three totally-
isotropic PG(2, 2)s passing through it. Denoting these as T⊥i (i = 1, 2, 3), the lemma then follows
from the fact that S⊥ ∼= PG(3, 2), T⊥i = Ti, and property (8).

1All dimensions in this section are projective dimensions.
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Remark 3. For N > 3, PG(2N − 1, 2) features also totally-isotropic PG(3, 2)s; any other of its
PG(3, 2)s endowed with totally-isotropic PG(2, 2)s has the property as described in Lemma 2.

Lemma 4. If a PG(4, 2) of the ambient PG(7, 2) equipped with a symplectic polarity ⊥ contains a
totally-isotropic PG(3, 2), then it contains exactly three such PG(3, 2)s, passing through a common
(totally-isotropic) PG(2, 2).

Proof. The proof parallels that of the preceding lemma. First, there are no totally-isotropic
PG(4, 2)s in the PG(7, 2). Given a totally-isotropic PG(2, 2) of PG(7, 2), S, there are (see Eq. (7)
for q = 2, N = 4, k = 3 and m = 2) three totally-isotropic PG(3, 2)s passing through it. Denoting
these as T⊥i (i = 1, 2, 3), the lemma then follows from the fact that S⊥ ∼= PG(4, 2), T⊥i = Ti, and
property (8).

Remark 5. For N > 4, PG(2N − 1, 2) features also totally-isotropic PG(4, 2)s; any other of its
PG(4, 2)s endowed with totally-isotropic PG(3, 2)s has the property as described in Lemma 4.

Next, through a (totally-isotropic) point of PG(5, 2), S, there pass 15 totally-isotropic PG(1, 2)s,
T⊥j (j = 1, 2, 3, . . . , 15) and the same number of PG(2, 2)s. Given the facts that S⊥ ∼= PG(4, 2)
and Tj ∼= PG(3, 2), a PG(4, 2) of PG(5, 2) will contain 15 PG(3, 2)s of type defined by Lemma 2
concurring at a point, namely the pole of this particular PG(4, 2). As PG(4, 2) contains altogether
31 PG(3, 2)s, each of the remaining 16 PG(3, 2)s does not contain totally-isotropic PG(2, 2)s and
so hosts a unique linear doily. As each such doily can be viewed as a projection of a quadratic doily
from the pole, a PG(4, 2) is found to be spanned by 16 quadratic doilies.

Remark 6. If a PG(4, 2) of the ambient PG(2N − 1, 2), N > 3, is devoid of totally-isotropic
PG(3, 2)s, then it is of the type described above, i. e. it entails 16 quadratic doilies.

3.1 Number of linear doilies

Theorem 7. For any N ≥ 2 the number of linear doilies in W(2N − 1, 2) is

Dl(N) =

[
2N
4

]
2

−
[
N
4

]
2

4∏
i=1

(
2N+1−i + 1

)
− 7

[
N
3

]
2

22N−6
3∏

i=1

(
2N+1−i + 1

)
/3. (9)

Proof. A linear doily of W(2N − 1, 2) spans a particular PG(3, 2) of the ambient PG(2N − 1, 2)
that does not contain any totally-isotropic PG(2, 2). And since any such PG(3, 2) is spanned by
a single linear doily, the number of linear doilies of W(2N − 1, 2) is thus equal to the number of
PG(3, 2)s that are devoid of totally-isotropic planes. To find this number, from Eq. (4) we first note
that there are altogether [

2N
4

]
2

(10)

PG(3, 2)s in PG(2N − 1, 2), out of which[
N
4

]
2

4∏
i=1

(
2N+1−i + 1

)
(11)

(Eq. (6) with k = 3 and q = 2) are totally isotropic.
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To ascertain the cardinality of the remaining PG(3, 2)s that feature totally-isotropic PG(2, 2)s,
we proceed as follows. We first observe that by Eq. (6) with k = 2 and q = 2 there are[

N
3

]
2

3∏
i=1

(
2N+1−i + 1

)
(12)

totally-isotropic PG(2, 2)s in PG(2N − 1, 2). Next, with k = 3 and m = 2 in (7), it follows that
there are [

N − 3
1

]
2

(
2N−3 + 1

)
= 22(N−3) − 1 (13)

totally-isotropic PG(3, 2)s passing through a totally-isotropic PG(2, 2). And since the total number
of PG(3, 2)s passing via a PG(2, 2) of PG(2N − 1, 2) is[

2N − 3
4− 3

]
2

= 22N−3 − 1 (14)

(as stemming from Eq. (5) for n = 2N , k = 4, l = 3 and q = 2), through a totally-isotropic PG(2, 2)
there pass

22N−3 − 1−
(

22(N−3) − 1
)

= 7 × 22N−6 (15)

isotropic PG(3, 2)s apart from those that are totally isotropic. Hence, the number of those PG(3, 2)s
of PG(2N − 1, 2) that are endowed with totally-isotropic PG(2, 2)s – with the exclusion of totally
isotropic ones – amounts to (12) × (15)/3, where we also took into account (see Remark 3) that
any such PG(3, 2) features just three totally-isotropic PG(2, 2)s. All in all, there are[

2N
4

]
2

−
[
N
4

]
2

4∏
i=1

(
2N+1−i + 1

)
− 7

[
N
3

]
2

22N−6
3∏

i=1

(
2N+1−i + 1

)
/3

PG(3, 2)s in the ambient PG(2N − 1, 2) that are devoid of totally-isotropic PG(2, 2)s, and so the
same number of linear doilies in W(2N − 1, 2).

Given the fact that the three lines of a perp-set of a linear doily span a PG(2, 2), and namely that
PG(2, 2) that features just three totally-isotropic PG(1, 2)s, we arrive at the interesting expression

Dl(N) =
4

15
4N−3Θ2(N), (16)

for the number of linear doilies in W(2N − 1, 2), where

Θ2(N) =
1

16
22N

2∏
i=1

2N−2+i − 1

2i − 1

2∏
i=1

(2N+1−i + 1) (17)

is the number of those PG(2, 2)s of the ambient PG(2N − 1, 2) each of which features just three
totally-isotropic PG(1, 2)s.
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3.2 Number of quadratic doilies

Theorem 8. For any N ≥ 3 the number of quadratic doilies in W(2N − 1, 2) is

Dq(N) = 16

([
2N
5

]
2

−
[
N
5

]
2

5∏
i=1

(
2N+1−i + 1

)
− 15

[
N
4

]
2

22N−8
4∏

i=1

(
2N+1−i + 1

)
/3

)
. (18)

Proof. A quadratic doily ofW(2N −1, 2) spans a particular PG(4, 2) of the ambient PG(2N −1, 2)
that does not contain any totally-isotropic PG(3, 2). And since any such PG(4, 2) is spanned by
(see Remark 6) 16 such doilies that are all unique to this space, the number of quadratic doilies of
W(2N − 1, 2) is thus equal to 16 times the number of PG(4, 2)s that are devoid of totally-isotropic
PG(3, 2)s. To find the latter number, we again start with Eq. (4) that tells us that there are
altogether [

2N
5

]
2

(19)

PG(4, 2)s in PG(2N − 1, 2), out of which[
N
5

]
2

5∏
i=1

(
2N+1−i + 1

)
(20)

(Eq. (6) with k = 4 and q = 2) are totally isotropic.
To ascertain the cardinality of the remaining isotropic PG(4, 2)s, we proceed as follows. We first

observe that by Eq. (6) with k = 3 and q = 2 there are[
N
4

]
2

4∏
i=1

(
2N+1−i + 1

)
(21)

totally-isotropic PG(3, 2)s in PG(2N − 1, 2). Next, with k = 4, m = 3 and q = 2 in (7) it follows
that there are [

N − 4
1

]
2

(
2N−4 + 1

)
= 22(N−4) − 1 (22)

totally-isotropic PG(4, 2)s passing through a totally-isotropic PG(3, 2). And since the total number
of PG(4, 2)s passing via a PG(3, 2) of PG(2N − 1, 2) is

22N−4 − 1 (23)

(as stemming from Eq. (5) for n = 2N , k = 5, l = 4 and q = 2), through a totally-isotropic PG(3, 2)
there pass

22N−4 − 1−
(

22(N−4) − 1
)

= 15 × 22N−8 (24)

PG(4, 2)s that feature totally-isotropic PG(3, 2)s apart from those that are totally isotropic. Hence,
the number of those PG(4, 2)s of PG(2N − 1, 2) that contain totally-isotropic PG(3, 2)s – with the
exclusion of totally isotropic ones – amounts to (21)× (24)/3, where we also took into account (see
Remark 5) that any such PG(4, 2) features just three totally-isotropic PG(3, 2)s. All in all, there
are [

2N
5

]
2

−
[
N
5

]
2

5∏
i=1

(
2N+1−i + 1

)
− 15

[
N
4

]
2

22N−8
4∏

i=1

(
2N+1−i + 1

)
/3 (25)
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PG(4, 2)s in the ambient PG(2N − 1, 2) that are not endowed with any totally-isotropic PG(3, 2)s,
the number of quadratic doilies of W(2N − 1, 2) being just 16 times this number.

Employing further the fact that the three lines of a perp-set of a quadratic doily span a PG(3, 2),
in particular that PG(3, 2) that contains just three totally-isotropic PG(2, 2)s, we find the compact
formula

Dq(N) =
48

15
4N−3Θ3(N) (26)

for the number of quadratic doilies in W(2N − 1, 2), where

Θ3(N) =
7

3
22N−6

3∏
i=1

2N−3+i − 1

2i − 1

3∏
i=1

(
2N+1−i + 1

)
(27)

is the number of those PG(3, 2)s of the ambient PG(2N − 1, 2) each of which features just three
totally-isotropic PG(2, 2)s.

N Dl(N) Dq(N) D(N)
2 1 1
3 336 1 008 1 344
4 91 392 1 370 880 1 462 272
5 23 744 512 1 495 904 256 1 519 648 768
6 6 100 942 848 1 555 740 426 240 1 561 841 369 088
7 1 563 272 675 328 1 599 227 946 860 544 1 600 791 219 535 872
8 400 289 425 260 544 1 639 185 196 441 927 680 1 639 585 485 867 188 224
9 102 479 956 839 235 584 1 678 929 132 897 196 572 672 1 679 031 612 854 035 808 256

Table 1: First numbers D(N) (resp. Dl(N), Dq(N)) of (resp. linear, quadratic) N -qubit doilies.

Comparing expressions (9) and (18), one gets

Dq(N) = (4N−2 − 1)Dl(N). (28)

Consequently, the total number of doilies is

D(N) = 4N−2Dl(N). (29)

For 2 ≤ N ≤ 9 the numbers of N -qubit doilies are collected in Table 1. Since the quadratic doilies
of W(2N − 1, 2) span a PG(4, 2), it has no geometrical meaning to consider quadratic doilies for
N = 2. It can nevertheless be noticed that Eq. (18) also holds for N = 2, and consistently gives
Dq(2) = 0.

4 Generation of all N-qubit doilies

An N -qubit doily can be represented by an isomorphism f , sometimes called a (doily) labeling,
mapping the points ofW2 to distinct points ofWN , preserving commutations and anticommutations,
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and such that f(a.b) = ±f(a).f(b) for any two commuting points/observables a and b (the dot (.)
denotes the matrix product). This section describes an algorithm for the enumeration of all N -qubit
doilies, for any N ≥ 2, by construction of one of their labelings.

Let us start with some definitions. An N -qubit ovoid is a 5-set of mutually anticommuting N -
qubit observables whose product is the identity IN . A triad is a 3-set of mutually anticommuting
N -qubit observables. A center of a triad is a point commuting with the three points of the triad. A
unicentric triad is a triad that has only one center. Let ε denote the empty word. The lexicographic
order < on words is such that ε < u for all non-empty word u, and a.u < b.v if and only if either
a < b, or a = b and u < v, for any letters a and b and words u and v.

In order to avoid to consider several times objects that are similar but differently ordered, we
define as follows a total order among letters and words, and then extend it to all tuples and sets of
objects of the same nature, such as lines, sets of lines, etc. Pauli observables, encoded as words on
the alphabet {I,X, Y, Z}, are totally ordered by the lexicographic order < induced by the order on
letters, also denoted <, such that I < X < Z < Y . These orders are chosen so that their binary
counterpart through the encoding I → 00, X → 01, Z → 10, Y → 11 is the lexicographic order on
bit vectors (aka. bytes or binary words) induced by the order 0 < 1 on bits. This order < extends
further to tuples (a1, a2, . . . , an) of words, by considering them as words a1a2 · · · an and re-using the
former lexicographic order on words. It also extends to sets of words, by associating canonically to
each set the tuple (a1, a2, . . . , an) of its elements written in increasing order (ai < aj when i < j),
and so on at any level of the hierarchy of objects of the same nature, such as a point-line geometries,
seen as sets of lines, that are sets of points.

XI

XY

IY3

XX1

ZY
YZ4

ZZ7

IZ

ZI6

YX5

IX

YI9 XZ2

YY
ZX8

Figure 5: The 2-qubit doily W2, the ovoid O2 (framed), the triad T2 (framed and dashed), its center
c2 (circled and dashed) and the completion order (subscripted). The negative lines are doubled.

The algorithm relies on the following predefined elements, depicted in Fig. 5: the 2-qubit doily
W2, the ovoid O2 ≡ {IX, IZ,XY,ZY, Y Y } in W2, the unicentric triad T2 ≡ {IX, IZ,XY } in O2,
the center c2 ≡ XI of T2, and the sequence of lines

S ≡ (XI, IX,XX), (XI, IZ,XZ), (XI,XY, IY ), (ZY,XX, Y Z), (ZY,XZ, Y X), (ZY, IY, ZI),

(Y Y,XX,ZZ), (Y Y,XZ,ZX), (Y Y, IY, Y I).

In the figure the third element of the tuples in this completion order is numbered from 1 to 9.
The algorithm itself is presented in Algorithm 1, where f(a) ← b denotes the assignment of b

as the image of a by f .
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Algorithm 1 Doily generation algorithm.

1: for each ovoid O = {o1, o2, o3, o4, o5} in WN , with o1 < o2 < o3 < o4 < o5 do
2: f(IX)← o1 || f(IZ)← o2 || f(XY )← o3 || f(ZY )← o4 || f(Y Y )← o5
3: for each center c of {o1, o2, o3} in WN that anticommutes with o4 and o5 do
4: f(c2)← c
5: for each line (p, q, r) in the order of the sequence S do f(r)← |f(p).f(q)| end for
6: if O is not the smallest ovoid of f then discard f end if
7: . . . . location for a potential treatment of f
8: end for
9: end for

On Line 2 a doily labeling f is partially defined by the choice of images for the 5 points of
the ovoid O2 of W2. These images are the points of some ovoid O = {o1, o2, o3, o4, o5} of N -qubit
observables. The points are assigned in increasing order so that to avoid duplicates. As these five
assignments are independent, they can be performed in parallel.

Then (on Line 3) the algorithm looks for a point c that commutes with the first three points
of O and that anticommutes with its last two points o4 and o5. On Line 4 this point becomes the
image by f of the center c2 of the triad T2 of O2.

The completion step on Line 5 computes one by one the images of all the other points of W2

by f , in the order described by the sequence of lines S. At each iteration of this loop, for the line
(p, q, r), the values f(p) and f(q) are known. By definition of a doily line, the image by f of the
third point r is the product of the images f(p) and f(q) of the first two points, up to a possible
minus sign, removed by the operation | | that denotes absolute value.

Knowing that each doily features 6 ovoids, the same doily is generated 6 times before Line 6,
whose statement keeps only one of them, namely the doily d generated from the ovoid that is the
smallest (according to the lexicographic order) among the 6 ovoids in d.

On Line 7 various treatments of the generated doilies f can be added, such as a storage, or the
computation of classification criteria defined in Section 5.

4.1 Justification of the generation algorithm

First of all, the fact that doily labelings encode multi-qubit doilies is a direct consequence of the
definition of a multi-qubit doily. Then, the properties of correctness and completeness for the doily
enumeration algorithm mainly come from the following definition and proposition, whose proof is
illustrated by Figure 6.

Definition 9 (Doily Root). Any pair (O, c) such that O is an ovoid of WN and c is a point of WN

that commutes with exactly three points of O and anticommutes with the other two points is called
a (multi-qubit) doily root.

Proposition 10. Any doily root (O, c) of WN determines exactly one N -qubit doily.

Proof. Let O = {o1, o2, o3, o4, o5} and c be such that (O, c) is a multi-qubit doily root. The fact
that c commutes with o1, o2 and o3 implies that there exist three multiplicative factors a1, a2 and
a3 ∈ {−1, 1} such that {c, oi, ai c.oi} are isotropic lines of WN , for i = 1, 2, 3. This is depicted
in Figure 6 by the 3 points ±c.oi. But because c anticommutes with o4 and o5 we also have
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c

o3

±c.o3

±c.o1

o4

±(c.o1).o4

±(c.o1).o5

o2

±(c.o3).o4

±(c.o2).o4

o1

±(c.o3).o5 ±c.o2

o5

±(c.o2).o5

Figure 6: Expression of each observable according to the completion order followed by the generation
algorithm, from the doily root ({o1, o2, o3, o4, o5}, c). The thick lines are the lines used to compute
these expressions.

that the observables ai c.oi commute with o4 and o5. Therefore there exist multiplicative factors
aij ∈ {−1, 1} such that {ai c.oi, oj , aij (c.oi).oj} are isotropic lines, for i = 1, 2, 3 and j = 4, 5. This
is depicted in Figure 6 by the 6 points of the form ±(c.oi).oj . These 9 points are computed by the
completion step of the generation algorithm, in the order a1 c.o1, a2 c.o2, a3 c.o3, a14 (c.o1).o4,
a24 (c.o2).o4, a34 (c.o3).o4, a15 (c.o1).o5, a25 (c.o2).o5, a35 (c.o3).o5. The 9 geometric lines thus
identified are depicted by thick lines in Figure 6. Finally, it is easy to check that the six 3-sets
represented by the thin lines in Figure 6 indeed are geometric lines. A noticeable property is that
the product of the three points on each of these lines contains twice the center c and once each
point of the ovoid O. By applying the known commutation and anticommutation relations between
these points, it comes that the product of both centers annihilates. So, modulo a possible minus
sign, it remains the product of all observables of the ovoid, known to equal identity. Therefore, the
product of the three observables on each line equals ±IN . Consequently, these 15 points and 15
lines form a doily, shown in Figure 6, so the algorithm is correct.

Each multi-qubit doily features at least one ovoid and the first loop explores all ovoids in WN .
So, each doily is found six times before Line 6, since each multi-qubit doily features exactly six
ovoids. As the statement on this line always keeps one of them (the one that has been produced
from the smallest of its ovoids), the algorithm is also complete.
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4.2 Algorithmic complexity and implementation details

The enumeration algorithm explores all 4-tuples of observables likely to form an ovoid (the fifth
point in the ovoid is computed as the product of the previous four), and then explores all observables
to find c (on Line 3 of Algorithm 1). Therefore, the complexity of the algorithm is estimated to be
O
(
45N

)
, when the time unit is the duration to check whether two observables commute.

For efficiency reasons, we have implemented the algorithm in the C language, which allows for
many optimizations. The total code is composed of about 2 300 lines and 50 functions, some of which
implementing the classification process presented in Section 5. Some factors make the algorithm
implementation more efficient than the former one presented in [7]: The new algorithm has a
lower complexity; compared to the previously used language Magma [12], the low-level language
C allows to perform fast operations on bit vector representations of the observables, using as few
CPU instructions as necessary, and to split the workload into multiple threads.

The calculations were run on Linux Ubuntu, on a PC equipped with an Intel (R) Core(TM)
i7-8665U 1.90 GHz and 15 GB RAM. The code was compiled with gcc 9.3.0 with optimization Ofast
and is multi-threaded with OpenMP.

5 Multi-doily classification process and results

This section presents our classification criteria of N -qubit doilies and the classification results for
N = 4 and N = 5.

5.1 Classification criteria

The classification parameters adopted are the same as in [7]. The classification of an N -qubit doily
is based on: 1) its signature, i. e. the number of its observables containing a given number of I :
N − 1, N − 2, N − 3, . . . respectively named types A, B, C, . . . ; 2) the configuration of its negative
lines, as described in Section 2; and 3) its linear or quadratic character.

To find the line configuration of a doily, the first discriminatory factor is the number of negative
lines, since for each number of negative lines except 7 and 8, there is only one configuration possible.
Then the property used to distinguish configurations 7A from 7B and 8A from 8B is to count the
number of observables contained in at least one negative line, since this number is different between
A and B.

We use the following property to check whether a doily is linear or quadratic. Given an N -qubit
doily, we pick up in it a tricentric triad (here we take the image of {XY,ZY, Y I}). If the product
of the corresponding three observables is ±iIN , then the doily is linear, otherwise it is quadratic.
This is because any tricentric triad is a line in the ambient PG(3, 2) if a doily spans a PG(3, 2).

5.2 Database of numerical results

Using the program described in Section 4, we were able to classify all doilies for N = 3 (2 016
ovoids), N = 4 (548 352 ovoids) and N = 5 (142 467 072 ovoids). This classification is a treatment
added on Line 7 of the algorithm presented in Algorithm 1, that determines the complete type of
each generated doily, counts the number of doilies for each type, and registers it in a result table.

The sums of the numbers of linear and quadratic doilies found in each of the above-mentioned
cases correspond exactly to those stemming from eqs. (9) and (18), respectively, summarized in
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Table 1. The results of our classification are collected in Appendix A (three qubits), Appendix B
(four qubits) and Appendix C (five qubits). The data for three qubits are in complete agreement
with those of [7]; we found 11 different types of doilies of which five are linear and six quadratic. The
95 distinct types of four-qubit doilies split into 24 linear and 71 quadratic ones, whereas amongst
447 types of five-qubit doilies one finds 89 linear and 358 quadratic.

The structure of the classification table in each appendix is the same: the first column gives the
type, the next N columns feature the numbers of observables of the corresponding types in a doily
of the given type, the ν column shows the doily’s character, and the remaining columns contain
information about how many doilies of the given type are endowed with a particular number of
negative lines (the blank space stands for zero here). The types are ordered in decreasing order of
the number of observables containing no Is, in case of equality in decreasing order of the number
of observables containing one I, and so on up to the number A of observables containing N − 1
Is. For instance, for 4 qubits, the type 1 contains the maximal number 12 of D-type observables,
and the last type 95 contains only A- and B-type observables. For a given signature, the type of
quadratic doilies precedes that of linear ones.

The result tables are stored in https://quantcert.github.io/.
The C code for classification runs in 0.3 s for 4 qubits with 1.4 MB of memory and 12 min with

1.8 MB of memory for 5 qubits. The memory usage is low because the doilies are not stored, all
the measurements are performed on the fly.

5.3 Remarks about five-qubit doilies

Let us have a closer look at the five-qubit case. The 32 ×
(
5
2

)
= 90 observables of type B and

34 ×
(
5
4

)
= 405 observables of type D lie on an elliptic quadric Q−(Y Y Y Y Y )(9, 2) of W(9, 2). This

special quadric Q−(Y Y Y Y Y )(9, 2), like any non-degenerate quadric, is a geometric hyperplane of

W(9, 2). As a doily is also a subgeometry ofW(9, 2), it either lies fully in Q−(Y Y Y Y Y )(9, 2) (in which

case B ∪D = 15, such a doily will be called special), or shares with Q−(Y Y Y Y Y )(9, 2) a set of points

that form a geometric hyperplane, in particular an ovoid (B ∪ D = 5), a perp-set (B ∪ D = 7)
and/or a grid (B ∪D = 9) and being referred to as ovoidal, perpial and/or gridal, respectively.

From Appendix C one can infer a number of interesting properties. We first notice that sig-
natures with B ∪ C being even or odd are endowed with even or odd numbers of negative lines,
respectively.

We also observe that there are 12 different signatures with A = C = E = 0, i. e., signatures
featuring solely special doilies.

Further, there are 17 particular signatures such that each features observables of every type and
no two types have the same cardinality. Out of them, six are ovoidal (e. g., 2-1-3-4-5), seven perpial
(e. g., 1-3-2-4-5) and four gridal (e. g., 2-4-3-5-1).

If all doilies of a particular signature have just five or just six negative lines, then each doily is
ovoidal; if a signature features just seven negative lines, then all of its doilies are perpial.

Among 33 distinct signatures with four negative lines only, one finds 12 ovoidal, 11 perpial and
9 gridal ones; doilies of the remaining signature, viz. 0-8-0-7-0, are special.

Next, there are 15 different signatures whose doilies are endowed with 12 (i. e., the maximum
number of) negative lines. Out of them, five are ovoidal, five perpial and four gridal; the doilies of
the remaining signature, namely 0-0-0-15-0, are special. Similarly, there are 35 distinct signatures
whose doilies contain 11 (i. e., the maximum odd number of) negative lines; out of them, 10 are
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ovoidal, 11 perpial and 12 gridal, with the remaining two signatures, viz. 0-1-0-14-0 and 0-3-0-12-0,
featuring solely special doilies.

5.4 Specific behavior of linear doilies

Finally, this section and the next one briefly mention some properties of linear doilies. Like the
three- and four-qubit cases, a linear five-qubit doily can be either ovoidal or gridal and always
contains an odd number of negative lines. Also, 75 types of linear doilies share their signatures
with their quadratic siblings. However, there are 14 different signatures that are genuinely linear,
of which eight cases are ovoidal.

From our results on three-, four- and five-qubit cases it follows that a linear doily (a) always
features an odd number of negative lines, and (b) does not share a perp-set with the distinguished
quadric.

We conjecture that Property (a) holds for any number of qubits N ≥ 2, but we have not yet
found of proof of it; we surmise that it has something to do with the fact that a linear doily is
“squeezed” into a PG(3, 2), compared to a quadratic doily that enjoys more degrees of freedom
being stretched out in a PG(4, 2). Property (b) can readily be proved to hold for any N ≥ 3, as
follows.

Proof. Let us consider a linear doily with one of its perp-set; on Figure 7a, this perp-set is illustrated
in bold font. Any perp-set of any doily features four tricentric triads; in our perp-set these triads
are: {1, 2, 3}, {3, 4, 5}, {1, 5, 6} and {2, 6, 4}. Now, we know that any tricentric triad of a linear
doily corresponds to a non-isotropic line in the ambient projective space, the four lines plus the
three (totally isotropic) lines of the perp-set forming a Fano plane in this space, which is illustrated
in Figure 7b. The assumption that our perp-set also lies on the distinguished quadric would mean
that the whole plane would lie in the distinguished quadric and so would be totally isotropic, a
contradiction.

0

6

3

4

21

5

(a)

0

1 23

45

6

(b)

Figure 7: Graphical arguments for the property that a linear doily cannot share a perp-set with
the distinguished quadric.
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5.5 A distinguished hexad of (linear) doilies

One knows that given an ovoid, there is a unique linear doily containing this ovoid. Now, take any
quadratic doily. As each of its six ovoids defines a unique linear doily, we have a unique hexad of
doilies tied to each quadratic doily. This holds for any N ≥ 3. Figure 8 illustrates this property
for N = 3. It features a quadratic doily in the middle, its six ovoids depicted explicitly as pentads
of points located on bold gray lines and the corresponding six linear doilies; for better readability,
the points of the corresponding ovoids are illustrated by double-circles.
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Figure 8: A particular hexad of linear doilies in the three-qubit symplectic polar space.

6 Conclusion

There are a number of intriguing extensions and generalizations of the ideas and findings presented
in this paper. We shall mention a few of them.

An interesting situation that will be worth addressing occurs in the case of N = 4. Given a
PG(3, 2) of the ambient PG(7, 2) ofW(7, 2), its polar space is another PG(3, 2). Hence, PG(3, 2)s in
PG(7, 2) come in polar pairs. Taking into account the fact that a non-isotropic PG(3, 2) features a
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unique linear doily of W(7, 2), the above property means that also linear doilies of W(7, 2) occur in
pairs. That is, picking up any linear four-qubit doily, there exists a unique linear doily such that each
of its 15 observables commutes with each observable of the selected doily. This observation raises
several interesting questions. For example, it would be interesting to ascertain which signatures
are/can be paired, or which cardinalities of negative lines can occur in such self-polar pairs; we
have already checked by hand a few examples where both doilies in a pair have the same signature
and feature the same number of negative lines. There are (see Appendix B) altogether 24 different
signatures featured by linear four-qubit doilies. We can then create a graph on 24 vertices such
that its two edges are connected if there exists a pair of linear doilies exhibiting the corresponding
signatures; we can even add a weight to an edge showing how many pairs of doilies feature this
particular pair of signatures. This graph, as it follows from the examples checked, will also have
edges joining a vertex to itself when the two paired signatures are identical. So, being an interesting
graph of its own, it will also reveal some finer traits of the relation between individual linear doilies
in W(7, 2)!

A particular case deserving closer attention is N = 6. Here, let us formally view any six-qubit
observable as a ‘syntheme’ partitioned into three two-qubit observables (‘duads’). Given a partition,
we find a set of linear doilies such that any doily in the set features 15 particular observables such
that when restricted to the same duad we get a two-qubit doily; that is, any such doily can formally
be regarded as being composed of three two-qubit doilies. Moreover, each partition features a
prominent doily having all the three duads identical. The next worth-exploring case in this respect
is N = 9, asW(17, 2) hosts not only composites comprising three doilies having the same number of
qubits (namely three), but also those whose compounds feature different numbers of qubits (namely
four, three and two).

Another prospective, but much more challenging, task will be to count and classify all rank-three
spaces,W(5, 2)s, living in a particular WN , for N ≥ 4. The case N = 4 was already briefly examined
in [7]. To address higher rank cases, we plan to employ the strategy that is the direct and natural
generalization of the ovoid-based algorithm for doilies described in this paper. Geometrically, an
N -qubit ovoid is a set of five points lying on a certain elliptic quadric of a PG(3, 2) in the ambient
PG(2N − 1, 2). Hence, its analogue will be a set of 27 N -qubit observables lying on an elliptic
quadric of PG(5, 2) in the ambient PG(2N −1, 2), and a triad of the ovoid will have its counterpart
in a quadratic doily located on the quadric. A root of an N -qubit W(5, 2) will thus comprise an
elliptic quadric and an off-quadric point such that its associated observable commutes with each
of the 15 observables of a doily located in the quadric and anticommutes with the remaining 12
observables. It is obvious that this task will require a more elaborate generation algorithm and a
more complex computer code to be successfully accomplished.
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A Taxonomy of 3-qubit doilies

Observables Configuration of negative lines
Type A B C ν 3 4 5 6 7A 7B 8A 8B 9 10 11 12

1 1 5 9 q 108
2 0 7 8 q 81
3 2 5 8 l 162
4 3 5 7 q 324
5 0 9 6 l 9 27
6 2 7 6 q 216 162
7 4 5 6 l 54
8 2 9 4 l 81
9 4 7 4 q 81
10 0 15 0 q 36
11 6 9 0 l 3

B Taxonomy of 4-qubit doilies

Observables Configuration of negative lines
Type A B C D ν 3 4 5 6 7A 7B 8A 8B 9 10 11 12

1 0 3 0 12 q 216 648 648
2 0 4 0 11 q 3888 3888
3 0 5 0 10 q 972 1944 4860 1944 1944
4 1 0 5 9 q 648 648
5 3 0 3 9 l 144
6 0 6 0 9 q 1296 5184
7 0 1 6 8 q 972 3888 972
8 1 1 5 8 q 7776
9 2 1 4 8 q 1944 1944
10 2 1 4 8 l 972 972
11 0 7 0 8 q 1944 972
12 0 2 6 7 q 15 552 11 664 19 440
13 1 2 5 7 q 7776 13 608 15 552 1944
14 1 2 5 7 l 3888 7776
15 2 2 4 7 q 11 664 3888
16 3 2 3 7 q 1944 1944
17 0 8 0 7 q 3888
18 0 1 8 6 q 648 3888 1944 15 552 11 664
19 1 1 7 6 q 19 440 18 144 11 664
20 0 3 6 6 q 7452 21 384 30 132 46 656 8424
21 0 3 6 6 l 2592 1944 4860 11 664 648 324
22 2 1 6 6 q 3888 9720 1944
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Observables Configuration of negative lines
Type A B C D ν 3 4 5 6 7A 7B 8A 8B 9 10 11 12

23 1 3 5 6 q 46 656 32 400 11 664
24 2 3 4 6 q 11 016 11 664 4860
25 2 3 4 6 l 3888
26 3 3 3 6 q 3888
27 4 3 2 6 l 324
28 0 9 0 6 q 2700 1944 324
29 0 0 10 5 q 1296 3888
30 1 0 9 5 q 5832 1944
31 1 0 9 5 l 648 1944
32 0 2 8 5 q 7776 23 328 15 552 19 440
33 1 2 7 5 q 15 552 46 656 19 440 3888
34 0 4 6 5 q 11 664 19 440 7776
35 2 2 6 5 q 31 104 3888
36 1 4 5 5 q 7776 11 664 3888
37 1 4 5 5 l 7776
38 2 4 4 5 q 7776
39 0 1 10 4 q 1944 3888
40 0 1 10 4 l 1944 1944
41 1 1 9 4 q 7776 7776 3888
42 0 3 8 4 q 6480 17 496 23 328 15 552 3888
43 2 1 8 4 q 1944 1944
44 2 1 8 4 l 1944
45 1 3 7 4 q 27 216 7776 3888
46 0 5 6 4 q 23 328 23 328 14 580 13 608
47 0 5 6 4 l 972 7776 2916
48 2 3 6 4 q 8424 15 552
49 1 5 5 4 q 31 104 3888
50 3 3 5 4 q 7776
51 2 5 4 4 q 3888 3888
52 2 5 4 4 l 1458
53 4 5 2 4 q 486
54 0 11 0 4 q 972
55 0 2 10 3 q 3888 6480 3888 3888
56 1 2 9 3 q 4536 3888
57 1 2 9 3 l 7776
58 0 4 8 3 q 15 552 24 624 3888
59 2 2 8 3 q 15 552
60 1 4 7 3 q 28 512 27 216 3888
61 3 2 7 3 l 648
62 0 6 6 3 q 19 440 3888
63 2 4 6 3 q 19 440
64 1 6 5 3 q 7776 3888
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Observables Configuration of negative lines
Type A B C D ν 3 4 5 6 7A 7B 8A 8B 9 10 11 12

65 1 6 5 3 l 3888
66 3 4 5 3 q 3888
67 0 3 10 2 q 3888
68 0 3 10 2 l 648 1944
69 1 3 9 2 q 7776 1296
70 0 5 8 2 q 9720 11 664 3888
71 2 3 8 2 q 5832 3888
72 2 3 8 2 l 1944
73 1 5 7 2 q 7776
74 0 7 6 2 q 8748 5832 972
75 0 7 6 2 l 1944
76 2 5 6 2 q 5832
77 2 7 4 2 q 1944
78 1 4 9 1 q 3888 3888
79 1 4 9 1 l 1944
80 0 6 8 1 q 3888
81 1 6 7 1 q 3888
82 3 4 7 1 q 1944
83 0 5 10 0 q 2592
84 1 5 9 0 q 432
85 0 7 8 0 q 6480 324
86 2 5 8 0 l 648
87 3 5 7 0 q 1296
88 0 9 6 0 q 4266
89 0 9 6 0 l 36 108
90 2 7 6 0 q 864 648
91 4 5 6 0 l 216
92 2 9 4 0 l 324
93 4 7 4 0 q 324
94 0 15 0 0 q 144
95 6 9 0 0 l 6
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C Taxonomy of 5-qubit doilies

Observables Configuration of negative lines
TypeAB C D E ν 3 4 5 6 7A 7B 8A 8B 9 10 11 12

1 0 0 1 5 9 q 58 320 19 440
2 1 0 0 5 9 q 12 960
3 0 1 1 4 9 q 58 320 233 280 233 280 116 640 19 440
4 0 2 1 3 9 q 68 040 174 960 116 640 466 560 262 440 116 640
5 1 2 0 3 9 q 12 960
6 0 3 1 2 9 q 116 640 421 200 116 640 174 960 116 640
7 0 4 1 1 9 q 29 160 58 320 29 160
8 0 5 1 0 9 q 9720
9 0 0 0 7 8 q 19 440 58 320
10 0 1 0 6 8 q 58 320 238 140 247 860 145 800
11 0 0 2 5 8 q 291 600 233 280 233 280 58 320
12 1 0 1 5 8 q 58 320 58 320
13 0 2 0 5 8 q 116 640 291 600 174 960 233 280 116 640
14 0 1 2 4 8 q 58 320 349 920 495 720 787 320 816 480 58 320
15 1 1 1 4 8 q 58 320 233 280 58 320
16 0 3 0 4 8 q 82 620 58 320 277 020 422 820 145 800 43 740
17 2 1 0 4 8 l 19 440
18 0 2 2 3 8 q 174 960 816 480 291 600 583 200 116 640
19 1 2 1 3 8 l 38 880
20 0 4 0 3 8 q 58 320 58 320
21 0 3 2 2 8 q 29 160 349 920 116 640 58 320 29 160
22 0 5 0 2 8 q 29 160 53 460 29 160 14 580
23 0 5 2 0 8 q 14 580
24 0 7 0 0 8 q 7290
25 0 0 1 7 7 q 349 920 174 960 174 960
26 0 1 1 6 7 q 174 960 991 440 524 880 758 160 291 600 58 320
27 0 0 3 5 7 q 68 040 670 680 641 520 1 399 680 816 480 408 240
28 1 0 2 5 7 q 291 600 583 200 291 600
29 0 2 1 5 7 q 116 640 758 160 874 800 1 458 000 1 166 400 58 320
30 0 1 3 4 7 q 1 574 640 3 888 000 1 458 000 3 382 560 1 341 360 174 960
31 1 1 2 4 7 q 233 280 1 049 760 583 200 233 280
32 1 1 2 4 7 l 174 960 58 320
33 0 3 1 4 7 q 233 280 583 200 291 600 524 880
34 2 1 1 4 7 q 213 840 58 320
35 0 2 3 3 7 q 554 040 1 195 560 845 640 2 682 720 729 000 58 320
36 0 2 3 3 7 l 320 760 145 800
37 1 2 2 3 7 q 388 800 233 280 233 280
38 0 4 1 3 7 q 58 320 116 640 58 320
39 2 2 1 3 7 q 58 320 116 640 58 320
40 3 2 0 3 7 q 38 880
41 0 3 3 2 7 q 758 160 583 200 233 280 58 320
42 0 5 3 0 7 q 29 160
43 0 1 0 8 6 q 43 740 58 320 335 340 131 220 233 280 14 580
44 0 0 2 7 6 q 524 880 1 516 320 1 224 720 2 507 760 758 160 77 760
45 1 0 1 7 6 q 136 080 466 560 466 560 136 080
46 0 2 0 7 6 q 174 960 174 960 233 280 291 600 58 320
47 2 0 0 7 6 q 58 320 19 440
48 0 1 2 6 6 q 1 156 680 2 012 040 4 753 080 7 231 680 3 625 560 1 341 360
49 1 1 1 6 6 q 874 800 349 920 641 520
50 0 3 0 6 6 q 97 200 174 960 184 680 58 320 272 160 29 160
51 0 3 0 6 6 l 8100 24 300 14 580 4860
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Observables Configuration of negative lines
TypeAB C D E ν 3 4 5 6 7A 7B 8A 8B 9 10 11 12

52 2 1 0 6 6 q 64 800 87 480 29 160
53 0 0 4 5 6 q 1 691 280 3 965 760 1 574 640 4 490 640 1 283 040 369 360
54 1 0 3 5 6 q 729 000 2 012 040 1 953 720 437 400
55 1 0 3 5 6 l 349 920 77 760
56 0 2 2 5 6 q 2 566 080 5 890 320 2 099 520 4 782 240 758 160
57 2 0 2 5 6 q 291 600 58 320
58 1 2 1 5 6 q 272 160 563 760 233 280 58 320
59 3 0 1 5 6 l 6480
60 0 1 4 4 6 q 972 000 3 265 920 2 624 400 6 619 320 2 935 440 437 400
61 0 1 4 4 6 l 87 480 583 200 145 800 437 400 466 560 29 160
62 1 1 3 4 6 q 3 849 120 1 769 040 2 216 160
63 0 3 2 4 6 q 1 182 600 1 837 080 1 078 920 2 653 560 806 760 58 320
64 2 1 2 4 6 q 204 120 495 720 174 960
65 2 1 2 4 6 l 29 160 29 160
66 0 5 0 4 6 q 58 320 87 480 29 160 58 320
67 2 3 0 4 6 q 21 060 19 440
68 0 2 4 3 6 q 2 449 440 2 896 560 466 560 2 216 160 174 960
69 1 2 3 3 6 q 291 600 1 253 880 699 840 204 120
70 1 2 3 3 6 l 64 800 116 640
71 0 4 2 3 6 q 583 200 544 320 233 280
72 2 2 2 3 6 q 758 160 174 960
73 3 2 1 3 6 q 29 160 29 160
74 0 3 4 2 6 q 97 200 116 640 145 800 320 760 38 880
75 0 3 4 2 6 l 29 160 9720
76 1 3 3 2 6 q 58 320 116 640 58 320
77 0 5 2 2 6 q 204 120 233 280 29 160 116 640
78 2 3 2 2 6 q 29 160 58 320 29 160
79 2 3 2 2 6 l 29 160
80 3 3 1 2 6 q 29 160
81 4 3 0 2 6 l 1620
82 0 6 2 1 6 q 58 320
83 0 5 4 0 6 q 4860
84 0 7 2 0 6 q 19 440 14 580
85 0 9 0 0 6 q 810 2430
86 0 0 1 9 5 q 9720 116 640 524 880 379 080 388 800 58 320
87 1 0 0 9 5 q 58 320 194 400 58 320
88 0 1 1 8 5 q 583 200 2 682 720 1 574 640 1 866 240 583 200 174 960
89 1 1 0 8 5 q 116 640 233 280 116 640
90 0 0 3 7 5 q 1 010 880 3 557 520 3 440 880 7 290 000 6 006 960 1 749 600
91 1 0 2 7 5 q 2 157 840 2 799 360 1 807 920
92 0 2 1 7 5 q 408 240 1 982 880 1 399 680 2 741 040 1 545 480 204 120
93 0 2 1 7 5 l 29 160 233 280 116 640 87 480 233 280
94 0 1 3 6 5 q 6 415 200 13 996 800 6 765 12014 463 360 3 265 920 349 920
95 1 1 2 6 5 q 2 274 480 4 257 360 3 265 920 816 480
96 0 3 1 6 5 q 933 120 2 157 840 816 480 758 160 116 640
97 2 1 1 6 5 q 699 840 233 280
98 0 0 5 5 5 q 1 166 400 4 694 760 4 257 360 9 185 400 6 356 880 1 399 680
99 0 0 5 5 5 l 87 480 355 752 204 120 554 040 437 400 87 480
100 1 0 4 5 5 q 5 423 760 2 566 080 3 324 240
101 0 2 3 5 5 q 2 624 400 6 298 560 3 265 920 7 989 840 2 449 440 116 640
102 2 0 3 5 5 q 87 480 145 800
103 1 2 2 5 5 q 1 399 680 816 480 349 920
104 0 4 1 5 5 q 291 600 408 240 320 760 612 360
105 2 2 1 5 5 q 174 960 233 280 58 320
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Observables Configuration of negative lines
TypeAB C D E ν 3 4 5 6 7A 7B 8A 8B 9 10 11 12
106 0 1 5 4 5 q 7 290 000 9 477 000 2 974 320 8 164 800 1 516 320 58 320
107 1 1 4 4 5 q 1 807 920 3 965 760 2 507 760 524 880
108 1 1 4 4 5 l 116 640 233 280
109 0 3 3 4 5 q 2 916 000 2 274 480 116 640 1 108 080
110 2 1 3 4 5 q 1 137 240 58 320 233 280
111 1 3 2 4 5 q 262 440 320 760 58 320
112 0 5 1 4 5 q 58 320 174 960
113 0 2 5 3 5 q 1 399 680 3 819 960 1 020 600 3 674 160 758 160 58 320
114 0 2 5 3 5 l 116 640 116 640 349 920
115 1 2 4 3 5 q 2 332 800 933 120 699 840
116 0 4 3 3 5 q 524 880 816 480 58 320 349 920
117 2 2 3 3 5 q 233 280 291 600 58 320
118 0 3 5 2 5 q 758 160 583 200 174 960
119 1 3 4 2 5 q 58 320 116 640 58 320
120 1 3 4 2 5 l 58 320
121 0 5 3 2 5 q 116 640
122 2 3 3 2 5 q 58 320
123 0 4 5 1 5 q 58 320 58 320
124 0 0 2 9 4 q 1 224 720 2 332 800 1 574 640 3 615 840 1 166 400 349 920
125 1 0 1 9 4 q 291 600 495 720 670 680 233 280
126 1 0 1 9 4 l 174 960 58 320
127 0 1 2 8 4 q 1 472 580 3 645 000 4 432 320 9 127 080 4 403 160 1 210 140
128 0 1 2 8 4 l 102 060 466 560 306 180 714 420 466 560 43 740
129 1 1 1 8 4 q 1 224 720 1 166 400 524 880
130 2 1 0 8 4 q 116 640
131 2 1 0 8 4 l 14 580 14 580
132 0 0 4 7 4 q 5 598 720 11 586 240 5 598 72014 288 400 4 607 280 933 120
133 1 0 3 7 4 q 2 410 560 6 356 880 5 190 480 1 516 320
134 0 2 2 7 4 q 4 315 680 6 706 800 2 449 440 4 665 600 291 600
135 2 0 2 7 4 q 174 960 58 320
136 1 2 1 7 4 q 233 280 233 280 116 640
137 1 2 1 7 4 l 77 760 58 320
138 0 1 4 6 4 q 6 371 460 15 163 200 10 249 74026 448 120 9 856 080 1 501 740
139 1 1 3 6 4 q 7 290 000 4 121 280 3 324 240
140 0 3 2 6 4 q 1 258 740 2 595 240 1 822 500 2 813 940 787 320 14 580
141 0 3 2 6 4 l 174 960 102 060 466 560 14 580
142 2 1 2 6 4 q 690 120 1 078 920 466 560
143 1 3 1 6 4 q 174 960 58 320
144 2 3 0 6 4 q 43 740 14 580
145 0 0 6 5 4 q 4 782 240 7 678 800 3 557 520 9 506 160 2 041 200 349 920
146 1 0 5 5 4 q 1 458 000 3 440 880 2 157 840 524 880
147 1 0 5 5 4 l 145 800 262 440
148 0 2 4 5 4 q 11 838 960 14 171 760 2 099 520 7 523 280 583 200
149 1 2 3 5 4 q 2 157 840 4 082 400 2 041 200 233 280
150 0 4 2 5 4 q 1 574 640 583 200 291 600
151 2 2 2 5 4 q 816 480 174 960
152 3 2 1 5 4 q 58 320 58 320
153 0 1 6 4 4 q 2 945 160 7 771 140 4 228 200 10 585 080 3 207 600 204 120
154 0 1 6 4 4 l 194 400 116 640 204 120 699 840 58 320 29 160
155 1 1 5 4 4 q 6 356 880 2 361 960 1 866 240
156 0 3 4 4 4 q 2 930 580 4 432 320 1 851 660 4 126 140 437 400 14 580
157 2 1 4 4 4 q 335 340 408 240 145 800
158 2 1 4 4 4 l 43 740
159 1 3 3 4 4 q 1 399 680 583 200 233 280
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Observables Configuration of negative lines
TypeAB C D E ν 3 4 5 6 7A 7B 8A 8B 9 10 11 12
160 0 5 2 4 4 q 364 500 349 920 160 380 174 960
161 0 5 2 4 4 l 7290 21 870
162 2 3 2 4 4 q 233 280 160 380 58 320
163 2 5 0 4 4 l 2430
164 0 2 6 3 4 q 3 849 120 2 332 800 349 920 1 341 360 58 320
165 1 2 5 3 4 q 1 108 080 1 749 600 729 000 87 480
166 1 2 5 3 4 l 116 640
167 0 4 4 3 4 q 1 924 560 466 560 174 960
168 2 2 4 3 4 q 524 880 58 320
169 1 4 3 3 4 q 19 440 58 320
170 0 6 2 3 4 q 116 640
171 0 3 6 2 4 q 272 160 466 560 87 480 174 960
172 0 3 6 2 4 l 58 320
173 1 3 5 2 4 q 379 080 116 640
174 0 5 4 2 4 q 306 180 145 800 160 380 131 220
175 2 3 4 2 4 q 58 320
176 2 3 4 2 4 l 14 580
177 3 3 3 2 4 q 58 320
178 0 7 2 2 4 q 58 320 58 320
179 2 5 2 2 4 q 29 160 29 160
180 4 5 0 2 4 q 2430
181 0 7 4 0 4 q 7290
182 0 9 2 0 4 q 7290
183 0 0 3 9 3 q 907 200 3 032 640 1 720 440 5 452 920 3 936 600 1 720 440
184 0 0 3 9 3 l 113 400 194 400 612 360 194 400
185 1 0 2 9 3 q 2 216 160 1 185 840 1 982 880
186 0 1 3 8 3 q 6 881 760 11 547 360 4 782 24012 013 920 1 924 560 174 960
187 1 1 2 8 3 q 933 120 2 332 800 1 516 320 233 280
188 1 1 2 8 3 l 116 640 233 280
189 2 1 1 8 3 q 524 880 174 960
190 0 0 5 7 3 q 2 021 760 7 115 040 4 315 680 14 929 920 7 153 920 1 982 880
191 1 0 4 7 3 q 4 782 240 3 304 800 2 799 360
192 0 2 3 7 3 q 3 674 160 7 727 400 4 082 400 9 593 640 2 536 920 145 800
193 0 2 3 7 3 l 408 240 174 960 233 280 1 108 080 58 320
194 2 0 3 7 3 q 116 640 233 280
195 1 2 2 7 3 q 2 157 840 758 160 641 520
196 2 2 1 7 3 q 58 320 58 320
197 0 1 5 6 3 q 13 471 920 20 256 480 6 590 16015 396 480 1 458 000 174 960
198 1 1 4 6 3 q 3 946 320 8 019 000 5 015 520 699 840
199 0 3 3 6 3 q 4 918 320 4 335 120 174 960 1 749 600 58 320
200 2 1 3 6 3 q 1 166 400 233 280
201 1 3 2 6 3 q 437 400 524 880 116 640
202 1 3 2 6 3 l 116 640
203 0 0 7 5 3 q 1 205 280 3 586 680 2 507 760 6 006 960 2 225 880 174 960
204 0 0 7 5 3 l 58 320 174 960 116 640 291 600 136 080
205 1 0 6 5 3 q 1 399 680 1 283 040 583 200
206 0 2 5 5 3 q 5 365 440 10 847 520 3 849 120 9 622 800 1 458 000
207 1 2 4 5 3 q 5 307 120 1 632 960 1 224 720
208 0 4 3 5 3 q 1 078 920 1 778 760 116 640 524 880
209 0 4 3 5 3 l 349 920
210 2 2 3 5 3 q 408 240 816 480 174 960
211 1 4 2 5 3 q 291 600
212 3 2 2 5 3 q 116 640
213 0 1 7 4 3 q 6 123 600 6 862 320 1 807 920 3 615 840 116 640
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Observables Configuration of negative lines
TypeAB C D E ν 3 4 5 6 7A 7B 8A 8B 9 10 11 12
214 1 1 6 4 3 q 1 253 880 2 216 160 933 120 116 640
215 1 1 6 4 3 l 291 600
216 0 3 5 4 3 q 5 715 360 3 265 920 174 960 1 108 080
217 2 1 5 4 3 q 758 160 58 320
218 1 3 4 4 3 q 884 520 1 399 680 349 920
219 3 1 4 4 3 l 9720
220 0 5 3 4 3 q 1 166 400 174 960
221 2 3 3 4 3 q 466 560
222 1 5 2 4 3 l 29 160
223 3 3 2 4 3 q 29 160
224 0 2 7 3 3 q 1 973 160 2 507 760 1 137 240 1 574 640 174 960
225 0 2 7 3 3 l 29 160 233 280 87 480
226 1 2 6 3 3 q 1 749 600 116 640 233 280
227 0 4 5 3 3 q 835 920 1 283 040 116 640 174 960
228 2 2 5 3 3 q 145 800 204 120
229 1 4 4 3 3 q 699 840 116 640
230 0 6 3 3 3 q 116 640 58 320
231 0 3 7 2 3 q 524 880 213 840 58 320
232 1 3 6 2 3 q 291 600 291 600 58 320
233 1 3 6 2 3 l 29 160
234 0 5 5 2 3 q 524 880 58 320
235 2 3 5 2 3 q 145 800
236 1 5 4 2 3 q 58 320 29 160
237 3 3 4 2 3 q 29 160
238 0 4 7 1 3 q 58 320
239 0 6 5 1 3 q 58 320
240 0 0 4 9 2 q 1 283 040 3 168 720 1 166 400 3 615 840 1 049 760 116 640
241 1 0 3 9 2 q 602 640 1 487 160 933 120 456 840
242 1 0 3 9 2 l 97 200 233 280
243 0 1 4 8 2 q 2 464 020 7 202 520 4 126 140 10 847 520 3 557 520 262 440
244 0 1 4 8 2 l 233 280 262 440 320 760 933 120 204 120 29 160
245 1 1 3 8 2 q 4 082 400 2 332 800 1 516 320
246 2 1 2 8 2 q 233 280 291 600 174 960
247 2 1 2 8 2 l 58 320
248 0 0 6 7 2 q 1 807 920 3 868 560 1 866 240 3 790 800 408 240
249 1 0 5 7 2 q 699 840 2 216 160 991 440 291 600
250 0 2 4 7 2 q 7 406 640 7 523 280 1 458 000 3 090 960 116 640
251 2 0 4 7 2 q 116 640
252 1 2 3 7 2 q 1 312 200 2 216 160 787 320 87 480
253 1 2 3 7 2 l 174 960
254 2 2 2 7 2 q 524 880 58 320
255 0 1 6 6 2 q 4 830 840 8 922 960 6 765 120 11 401 560 2 303 640 116 640
256 1 1 5 6 2 q 6 648 480 1 749 600 1 166 400
257 0 3 4 6 2 q 3 105 540 3 645 000 1 370 520 2 478 600 262 440
258 0 3 4 6 2 l 34 020 583 200 102 060
259 2 1 4 6 2 q 481 140 437 400 174 960
260 1 3 3 6 2 q 1 224 720 77 760
261 2 3 2 6 2 q 58 320 58 320
262 2 3 2 6 2 l 14 580
263 0 0 8 5 2 q 874 800 1 283 040 641 520 699 840
264 1 0 7 5 2 q 379 080 699 840 233 280
265 1 0 7 5 2 l 116 640
266 0 2 6 5 2 q 9 097 920 6 531 840 816 480 1 924 560
267 1 2 5 5 2 q 2 216 160 2 857 680 524 880
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Observables Configuration of negative lines
TypeAB C D E ν 3 4 5 6 7A 7B 8A 8B 9 10 11 12
268 0 4 4 5 2 q 2 624 400 583 200 58 320
269 2 2 4 5 2 q 641 520
270 1 4 3 5 2 q 233 280 116 640
271 1 4 3 5 2 l 29 160
272 0 1 8 4 2 q 1 662 120 2 449 440 1 137 240 1 516 320 233 280
273 0 1 8 4 2 l 29 160 291 600 87 480
274 1 1 7 4 2 q 2 187 000 233 280 58 320
275 0 3 6 4 2 q 3 888 000 3 863 700 1 166 400 1 370 520 29 160
276 2 1 6 4 2 q 116 640 116 640
277 2 1 6 4 2 l 14 580
278 1 3 5 4 2 q 2 099 520 116 640
279 0 5 4 4 2 q 575 910 466 560 123 930
280 0 5 4 4 2 l 87 480
281 2 3 4 4 2 q 204 120 58 320
282 2 5 2 4 2 q 29 160
283 0 2 8 3 2 q 2 099 520 1 049 760 116 640
284 1 2 7 3 2 q 874 800 758 160 116 640
285 1 2 7 3 2 l 87 480
286 0 4 6 3 2 q 1 108 080 194 400
287 2 2 6 3 2 q 349 920
288 1 4 5 3 2 q 291 600 116 640
289 0 3 8 2 2 q 349 920 262 440 29 160
290 0 3 8 2 2 l 58 320
291 1 3 7 2 2 q 174 960
292 0 5 6 2 2 q 379 080 145 800 29 160
293 2 3 6 2 2 q 72 900
294 0 7 4 2 2 q 58 320
295 2 5 4 2 2 q 29 160
296 0 0 5 9 1 q 116 640 145 800 291 600 991 440 145 800 58 320
297 0 0 5 9 1 l 116 640 116 640
298 1 0 4 9 1 q 699 840 291 600 291 600
299 2 0 3 9 1 q 38 880 116 640
300 0 1 5 8 1 q 2 216 160 2 857 680 1 283 040 2 274 480
301 1 1 4 8 1 q 933 120 1 691 280 758 160 116 640
302 1 1 4 8 1 l 233 280
303 2 1 3 8 1 q 583 200 58 320
304 0 0 7 7 1 q 77 760 466 560 291 600 349 920 174 960
305 1 0 6 7 1 q 466 560 272 160 116 640
306 0 2 5 7 1 q 2 653 560 4 694 760 1 895 400 2 303 640 291 600
307 0 2 5 7 1 l 58 320 466 560 174 960
308 1 2 4 7 1 q 2 566 080 291 600 291 600
309 2 2 3 7 1 q 116 640 233 280
310 3 2 2 7 1 q 58 320
311 0 1 7 6 1 q 2 449 440 2 916 000 699 840 583 200
312 1 1 6 6 1 q 1 224 720 1 341 360 291 600
313 0 3 5 6 1 q 4 607 280 1 691 280 233 280 233 280
314 2 1 5 6 1 q 466 560
315 1 3 4 6 1 q 933 120 991 440 116 640
316 1 3 4 6 1 l 87 480
317 2 3 3 6 1 q 233 280
318 0 0 9 5 1 q 58 320 29 160 174 960 58 320 29 160
319 0 0 9 5 1 l 9720 29 160
320 0 2 7 5 1 q 3 265 920 3 732 480 1 399 680 933 120
321 1 2 6 5 1 q 2 332 800 233 280
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Observables Configuration of negative lines
TypeAB C D E ν 3 4 5 6 7A 7B 8A 8B 9 10 11 12
322 0 4 5 5 1 q 1 574 640 1 341 360 58 320 116 640
323 0 4 5 5 1 l 174 960
324 2 2 5 5 1 q 291 600 116 640
325 1 4 4 5 1 q 583 200
326 2 4 3 5 1 q 58 320
327 0 1 9 4 1 q 991 440 622 080 58 320 58 320
328 1 1 8 4 1 q 349 920 291 600
329 1 1 8 4 1 l 58 320
330 0 3 7 4 1 q 2 507 760 408 240
331 1 3 6 4 1 q 874 800 262 440
332 0 5 5 4 1 q 349 920
333 1 5 4 4 1 q 145 800
334 3 3 4 4 1 q 29 160
335 0 2 9 3 1 q 913 680 787 320 204 120 58 320
336 0 2 9 3 1 l 58 320
337 1 2 8 3 1 q 233 280
338 0 4 7 3 1 q 816 480 408 240 58 320
339 2 2 7 3 1 q 116 640
340 0 6 5 3 1 q 58 320
341 0 3 9 2 1 q 87 480
342 1 3 8 2 1 q 116 640
343 1 5 6 2 1 q 58 320
344 0 0 0 15 0 q 311 040 155 520 136 080 641 520 186 624 103 680
345 0 1 0 14 0 q 534 600 1 603 800 831 060 2 741 040 1 759 320 554 040
346 0 2 0 13 0 q 3 207 600 4 432 320 1 399 680 3 965 760 349 920
347 0 3 0 12 0 q 2 227 500 3 936 600 1 383 480 4 169 880 926 640 29 160
348 0 4 0 11 0 q 3 790 800 2 099 520 136 080 874 800
349 0 5 0 10 0 q 1 526 040 1 648 512 330 480 592 920 9720
350 0 0 6 9 0 q 58 320 77 760 58 320 58 320
351 1 0 5 9 0 q 12 960 3240
352 1 0 5 9 0 l 58 320
353 2 0 4 9 0 q 58 320
354 3 0 3 9 0 l 3960
355 0 6 0 9 0 q 939 600 142 560
356 0 1 6 8 0 q 165 240 174 960 311 040 262 440 58 320 4860
357 0 1 6 8 0 l 14 580 43 740
358 1 1 5 8 0 q 466 560 97 200
359 2 1 4 8 0 q 38 880 9720
360 2 1 4 8 0 l 19 440 4860
361 0 7 0 8 0 q 340 200 126 360 19 440
362 0 0 8 7 0 q 58 320 97 200 58 320 58 320
363 1 0 7 7 0 q 58 320 58 320
364 0 2 6 7 0 q 816 480 777 600 174 960 97 200
365 1 2 5 7 0 q 505 440 476 280 136 080 9720
366 1 2 5 7 0 l 77 760 38 880
367 2 2 4 7 0 q 174 960 19 440
368 3 2 3 7 0 q 38 880 9720
369 0 8 0 7 0 q 19 440
370 0 1 8 6 0 q 304 560 281 880 213 840 106 920 58 320
371 1 1 7 6 0 q 213 840 90 720 58 320
372 0 3 6 6 0 q 1 373 760 952 560 340 200 291 600 42 120
373 0 3 6 6 0 l 81 000 9720 24 300 58 320 3240 1620
374 2 1 6 6 0 q 77 760 77 760 9720
375 1 3 5 6 0 q 349 920 162 000 58 320
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Observables Configuration of negative lines
TypeAB C D E ν 3 4 5 6 7A 7B 8A 8B 9 10 11 12
376 2 3 4 6 0 q 84 240 58 320 24 300
377 2 3 4 6 0 l 19 440
378 3 3 3 6 0 q 19 440
379 4 3 2 6 0 l 1620
380 0 9 0 6 0 q 55 080 9720 1620
381 0 0 10 5 0 q 6480 19 440
382 1 0 9 5 0 q 29 160 9720
383 1 0 9 5 0 l 12 960 9720
384 0 2 8 5 0 q 855 360 233 280 77 760 97 200
385 1 2 7 5 0 q 427 680 408 240 97 200 19 440
386 0 4 6 5 0 q 349 920 97 200 38 880
387 2 2 6 5 0 q 155 520 19 440
388 1 4 5 5 0 q 184 680 58 320 19 440
389 1 4 5 5 0 l 38 880
390 2 4 4 5 0 q 38 880
391 0 1 10 4 0 q 252 720 87 480 9720 19 440
392 0 1 10 4 0 l 9720 9720
393 1 1 9 4 0 q 38 880 38 880 19 440
394 0 3 8 4 0 q 1 577 880 349 920 160 380 77 760 19 440
395 2 1 8 4 0 q 9720 9720
396 2 1 8 4 0 l 9720
397 1 3 7 4 0 q 136 080 38 880 19 440
398 0 5 6 4 0 q 750 870 116 640 72 900 68 040
399 0 5 6 4 0 l 4860 38 880 14 580
400 2 3 6 4 0 q 110 160 77 760
401 1 5 5 4 0 q 155 520 19 440
402 3 3 5 4 0 q 38 880
403 2 5 4 4 0 q 19 440 19 440
404 2 5 4 4 0 l 7290
405 4 5 2 4 0 q 2430
406 0 11 0 4 0 q 4860
407 0 2 10 3 0 q 136 080 32 400 19 440 19 440
408 1 2 9 3 0 q 51 840 19 440
409 1 2 9 3 0 l 38 880
410 0 4 8 3 0 q 77 760 123 120 19 440
411 2 2 8 3 0 q 77 760
412 1 4 7 3 0 q 142 560 136 080 19 440
413 3 2 7 3 0 l 3240
414 0 6 6 3 0 q 97 200 19 440
415 2 4 6 3 0 q 97 200
416 1 6 5 3 0 q 38 880 19 440
417 1 6 5 3 0 l 19 440
418 3 4 5 3 0 q 19 440
419 0 3 10 2 0 q 383 940 19 440
420 0 3 10 2 0 l 3240 9720
421 1 3 9 2 0 q 38 880 6480
422 0 5 8 2 0 q 332 910 58 320 19 440
423 2 3 8 2 0 q 29 160 19 440
424 2 3 8 2 0 l 9720
425 1 5 7 2 0 q 38 880
426 0 7 6 2 0 q 43 740 29 160 4860
427 0 7 6 2 0 l 9720
428 2 5 6 2 0 q 29 160
429 2 7 4 2 0 q 9720
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Observables Configuration of negative lines
TypeAB C D E ν 3 4 5 6 7A 7B 8A 8B 9 10 11 12
430 1 4 9 1 0 q 19 440 19 440
431 1 4 9 1 0 l 9720
432 0 6 8 1 0 q 19 440
433 1 6 7 1 0 q 19 440
434 3 4 7 1 0 q 9720
435 0 5 10 0 0 q 12 960
436 1 5 9 0 0 q 1080
437 0 7 8 0 0 q 32 400 810
438 2 5 8 0 0 l 1620
439 3 5 7 0 0 q 3240
440 0 9 6 0 0 q 21 330
441 0 9 6 0 0 l 90 270
442 2 7 6 0 0 q 2160 1620
443 4 5 6 0 0 l 540
444 2 9 4 0 0 l 810
445 4 7 4 0 0 q 810
446 0 15 0 0 0 q 360
447 6 9 0 0 0 l 10
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