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Flexoelectricity is an electromechanical coupling phenomenon, that can

generate noticeable electric polarization in dielectric materials for nanoscale

strain gradients. It is gaining an increasing attention because of its potential

applications, and the fact that experimental results were initially an order

of magnitude higher than initial theoretical predictions. This stimulated

intense experimental and theoretical researches to investigate flexoelectric

coefficients in dielectric materials such as two-dimensional materials. In

this work, we concentrate on the calculation of the flexoelectric coefficients

of 2D-MoS2 thanks to a model using self-consistently determined charges

and dipoles on the atoms. More specifically, we study the importance of

two contributions which were neglected/omitted in previous papers using

this model, namely the charge term in the total polarization and the con-

servation of electric charge through a Lagrange multiplier. Our calculations

demonstrate that the results for flexoelectric coefficients computed with this

improved definition of polarization agree better with experimental measure-

ments, provided consistent definitions for signs are used. Additionally, we

show how two physical contributions with opposite signs compete to give

net values of flexoelectric coefficients that can be either positive or negative

depending on their relative importance, and give net values for the case of

MoS2.
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I. INTRODUCTION7

Flexoelectricity1, a fascinating electromechanical phenomenon, is widely em-8

ployed to describe electric polarization caused by strain gradient. Unlike piezo-9

electricity, which arises only in noncentrosymmetric materials, flexoelectricity can10

a priori exist in all materials. Therefore, flexoelectricity can provide new oppor-11

tunities to use some centrosymmetric materials to build electromechanical sys-12

tems, such as energy harvesters2,3, actuators4,5, flexible electronics6, flexoelectric13

sensors7,8.14

Flexoelectricity was first predicted by Mashkevich and Tolpygo9 during Tolpygo’s15

studies on the optical and elastic properties of crystals. The polarization due to16

the flexoelectric effect was later phenomenologically described by Kogan10, using17

the contraction of a fourth order flexoelectricity tensor with the third order strain18

gradient tensor. Ever since the terminology ’flexoelectricity’ was firstly borrowed19

from the liquid crystals community by Indenbom11,12 et al in 1981, a great deal20

of theoretical work has been done to advance the development of the theory of21

flexoelectricity in solids. Earlier theoretical descriptions principally concentrated22

on lattice dynamics using Kogan’s phenomenological theory10,13,14 and continuum23

mechanics15 or microscopic theories based on lattice dynamics13,16–18 and quantum24

mechanics19–22. Calculations used methods such as core-shell model17,23, rigid-ion25

model13,14, molecular dynamics simulations24–26, finite element method27,28 and26

phase-field method29. Recently, the advancement and popularity of machine27

learning techniques30–32 provide original means for the computation of flexoelec-28

tricity coefficients. Another strategy combining isogeometric analysis (IGA) and29

the Method of Moving Asymptotes (MMA) allows to extract both the real and30

complex parts of the piezoelectric and flexoelectric coefficients from electrical31

impedance curves34. This complements another technique based on topology op-32

timization methods to design multi-material flexoelectric structures, using the33

electromechanical coupling coefficient as figure of merit33.34
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Flexoelectricity in solids was believed to be a very small effect. However, at35

the beginning of the 2000s, Ma and Cross reported unexpectedly high experimen-36

tal flexoelectric responses in a variety of perovskite ceramics35–40 greatly arousing37

the interest in research of flexoelectricity in perovskite ceramics.41–43 Furthermore,38

the relative importance of the flexoelectric effect with respect to the piezoelectric39

effect should increase as the scale of strain inhomogeneities decreases. Therefore,40

the recent development of ultrathin (2D) nanomaterials, due to the desired need41

for miniaturized devices, provide opportunities for researchers to study flexoelec-42

tricity in 2D materials which could offer interesting electromechanical coupling43

in nanodevices. Such an interest has stimulated intense research to investigate44

flexoelectric coefficients in carbon nanomaterials20,21,44–46 (nanotubes, fullerenes,45

nanocores and patterned graphene), phosphorene47, hexagonal boron nitride48 and46

transition-metal dichalcogenides49,50 by means of first-principle calculations. Re-47

markably, Kumar et al very recently calculated the flexoelectric coefficient for48

fifty-four representative atomic monolayers selected from distinct groups in the49

periodic table of elements using ab-initio Density Functional Theory (DFT)51.50

Recently, Zhuang and co-workers used molecular dynamics simulations cou-51

pled with a charge dipole (QP) model to compute flexoelectric coefficients for52

transition-metal dichalcogenides52 and related materials53. This kind of method53

uses calculations much faster than DFT calculations, and provides an easier way54

to predict the properties of bigger and less symmetric heterostructures. Since we55

have some experience in using the QP model54–56 we studied those papers in de-56

tails and noticed that a term involving effective charges was neglected/omitted in57

the definition of polarization that only used the effective dipoles, as in the case of58

covalent materials such as e.g. graphene. Furthermore, the enforcement of charge59

conservation was also not implemented, meaning that charges could flow in or60

out of the materials without any constraint, which can conflict with the fact that61

an insulating substrate (Polydimethylsiloxane (PDMS), Au, Al2O3)57,58 was used62
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to obtain the out-of-plane effective flexoelectricity coefficient of monolayer MoS2,63

by using an equation for converse flexoelectricity to link the out-of-plane effective64

piezoelectric coefficient measured by piezoresponse force microscopy and the flex-65

oelectric coefficient to be determined57,58. We also note that in-plane flexoelectric66

coefficients µ1111 or µ2222 for such 2D materials have not yet been experimentally67

obtained, since it has been difficult to isolate the relative contributions of piezo-68

electricity and flexoelectricity to the resulting polarization.69

In this work, we computed the in-plane flexoelectric coefficients µ1111, µ2222,70

transverse flexoelectric coefficient µ3311 and out-of-plane flexoelectric coefficient71

µ3333 for monolayer MoS2 using the charge-dipole model59 with radial Gaussian72

regularization54,56,60–63 enforcing charge conservation with a Lagrange multiplier73

and adding an ionic charge term in the definition of polarization. The significance74

of the missing charge term is estimated in the computation of µ3333, by compar-75

ison with the simulation paper of Javvaji et al.53 and the experimental papers76

of Brennan et al.57,58. Our calculations illustrate that the results for this flexo-77

electric coefficient computed with the improved definition of polarization agree in78

magnitude with experimental measurements, with the possible reason causing the79

discrepancy in sign discussed. Moreover, two critical factors capable of affecting80

the sign of flexoelectric coefficient are fully elucidated while µ3311 is computed.81

Additionally, µ1111 and µ2222 are calculated by using an in-plane displacement field82

that effectively eliminates the piezoelectric contribution to the polarization.83

This paper is organized as follows. In Sec.II we describe the Gaussian reg-84

ularized charge-dipole model, our bending simulation set-ups and the computa-85

tional methodology for the computation of the strain gradient. The computation86

of in-plane flexoelectric coefficient µ1111, µ2222, transverse flexoelectric coefficient87

µ3311 and out-of-plane flexoelectric coefficient µ3333 are presented and discussed in88

Sec.III. Section IV concludes our findings.89
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II. METHODS90

A. Principle of the method used to compute flexoelectricity91

coefficients92

As written in the introduction, the direct flexoelectric effect describes the fact

that a strain gradient in a material will cause an (additional) electric polarization of

the material, because of the inhomogeneous distribution of positive and negative

charge centers caused by the inhomogeneous deformation. Polarization being a

vector described by a vector (first order tensor) and strain gradient a third order

tensor, the supposedly linear relation between these two quantities is represented

by a fourth order flexoelectricity tensor. Various conventions for the signification of

the indices, leading to different matrix compressed representations, are used in the

literature. We chose the one that puts the index corresponding to the polarization

in first place, since we do not make use of the equivalence of the two strain indices:

∆Pi = µijklGjkl (1)

where i, j, k, l are indices labeling the coordinates x, y, z or 1, 2, 3. The Einstein93

implied summation convention for repeated indices is used.94

Our goal is to compute values for these µijkl coefficients. For that purpose we95

will use an inverse effect: when submitted to an external electric field, a dielectric96

material tends to deform so as to align its global dielectric polarization vector with97

the external field. Hence, we use various symmetric field configurations designed98

to deform inhomogeneously a MoS2 monolayer, while not changing the global po-99

larization contributions due to the dielectric susceptibility of the material or its100

piezoelectric properties. Then, we compute both the global polarization and the101

global strain gradient of the deformed structure and fit the (hopefully linear) re-102

lation between these two quantities to find the µ coefficients.103

We shall therefore describe now, how we compute the global polarization and104
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strain gradient in the monolayer.105

B. Description of the charge dipole model used to compute the106

polarization of a monolayer MoS2 subjected to an external electric field107

We start with the regularized charge-dipole (QP) model54,56,60–63, in which each

atom of a MoS2 nanoribbon is described by the combination of an effective charge

and a dipole with radial Gaussian distributions, plus an effective electronegativity.

The total electrostatic energy Eelec associated with those effective charges {qα}

and dipoles {pα} located at the atomic positions {rα} (with α = 1, ..., N), in the

presence of an external electric field Eext is given by:

Eelec =
N∑

α=1

qα(χα + Vext,α)−
N∑

α=1

pα ·Eext +
1

2

N∑
α=1

N∑
β=1

qαT
α,β
q−qqβ

−
N∑

α=1

N∑
β=1

pα · T α,β
p−qqβ −

1

2

N∑
α=1

N∑
β=1

pα · T α,β
p−p · pβ (2)

where N stands for the number of atoms in the structure considered and χα is

the electronegativity of the atom α, once inserted in the molecule. Vext,α is the

electrostatic potential at rα corresponding to the external electric field, which can

be expressed as −Eext · rα in the case of a uniform external field. Tq−q, Tp−q

and Tp−p are interaction tensors between effective point charges or dipoles in

vacuum (see equation 3), which have been convoluted with one radial Gaussian

distribution per atom, of the form π3/2R3
αexp(−|r− rα|2/R2

α). This allows to take

into account approximately the extension of the electronic clouds, and prevents the

occurrence of divergence problems, i.e. polarization catastrophes, that can occur

in simulations when two atoms are so close to each other that the approximation

of an interaction between point charges or dipoles is not a good approximation
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any more.60–62,64,65

Tαβ
q−q = 1

4πϵ0rαβ
erf

(
rαβ√
R2

α+R2
β

)
T αβ
p−q = −∇rαT

αβ
q−q = − 1

4πϵ0

rαβ

r3αβ

[
erf

(
rαβ√
R2

α+R2
β

)
− 2√

π

rα,β√
R2

α+R2
β

exp
(
− r2αβ

R2
α+R2

β

)]
T αβ
p−p = −∇rβ ⊗∇rαT

αβ
q−q

= 1
4πϵ0

{
3rαβ⊗rαβ−r2αβI

r5αβ

[
erf

(
rαβ√
R2

α+R2
β

)
− 2√

π

rα,β√
R2

α+R2
β

exp
(
− r2α,β

R2
α+R2

β

)]
− 4√

π

rαβ⊗rαβ

r2αβ

1

(
√

R2
α+R2

β)
3
exp

(
− r2αβ

R2
α+R2

β

)}
.

∀α ̸= β

(3)

where rαβ = rβ −rα is the vector pointing from αth atom to βth atom. Rα and Rβ

are the characteristic widths of Gaussian charge distributions for atom type α and

β respectively. In the limit rα = rβ, the expressions of the various Tα,β interaction

tensors in equation 3 converge to finite values (Eq. 4) related to the self-energy

for each atom (atomic ’capacitance’ or chemical hardness and polarizability).
qαT

α,α
q−qqα = q2α

4πϵ0

√
2/π

Rα

pα · T α,α
p−qqα = 0

pα · T α,α
p−p · pα = − p2α

4πϵ0

√
2/π

3R3
α
.

(4)

Our version of the QP model for MoS2 possesses 8 parameters: 2 (χ and R)108

per kind of atoms by 4 kinds: Mo and S ’bulk’ + Mo and S ’edge’. Details on109

this parameterization, by comparison with DFT data, are given in our previous110

work.56
111

The charges and dipoles at electrostatic equilibrium are then determined by

minimizing the electrostatic energy (Eq. 2) using a Lagrange multiplier λ to enforce

charge conservation in the nanoribbon:

f = Eelec + λ(
N∑

α=1

qα −Qtot) (5)

This Lagrange multiplier can be physically interpreted as the chemical potential112

of the molecule.61 This enforcement of charge conservation within the framework113
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of QP model is quite essential since it ensures that charges stay in the material114

in order to mimic the conditions of experimental measurements.58 Requiring the115

derivative of function f(q,p, λ) with respect to qα, px,α, py,α, pz,α and λ to be zero116

will give a system of 4N + 1 linear equations for determining the 4N + 1 scalar117

unknowns (qα, px,α, py,α, pz,α and λ). These linear equations may be written in a118

matrix form:119


Tq−q T t

p−q 1

Tp−q Tp−p 0

1 0 0



q

p

λ

 =


−(χ+ Vext)

−Eext

Qtot

 (6)

where Tq−q is a block matrix with N rows and N columns. Tp−p is a block matrix

with 3N rows and 3N columns. Tp−q is a block matrix with 3N rows and N

columns. T t
p−q is the transpose of Tp−q. Similarly, blocks q and −(χ + Vext) have

N rows and 1 column, while blocks p and −Eext have 3N rows and 1 column. We

note that the solution can be written in two parts as:
q

p

λ

 =


Tq−q T t

p−q 1

Tp−q Tp−p 0

1 0 0


−1 

−χ

0

Qtot

+


Tq−q T t

p−q 1

Tp−q Tp−p 0

1 0 0


−1 

−Vext

−Eext

0

 (7)

where the first term on the right side corresponds to intrinsic charges q0α and

dipoles p0
α, i.e. charges and dipoles in the absence of any external electric field,

that can however vary due to a mechanical deformation. The electronegativities χα

uniquely determine these intrinsic charges and dipoles (given the atomic positions),

independently from any external electric field Eext or potential Vext. For our

calculations, the total charge of the nanoribbon (Qtot) is set to be zero because

of the fact that flexoelectricity is supposed to be an intrinsic property, therefore

requiring no extra charge to appear. The second term on the right side corresponds

to effective additional charges (qindα ) and dipoles (pindα generated by the external
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electric field and potential). This can be summarized under the form:



px =
N∑

α=1

(p0x,α + pindx,α)

py =
N∑

α=1

(p0y,α + pindy,α)

pz =
N∑

α=1

(p0z,α + pindz,α)

q =
N∑

α=1

(q0α + qindα )

(8)

In terms of the calculated dipoles p and charges q, the global polarization P for

MoS2 nanoribbon is defined as59:

P =

N∑
α=1

(qαrα + pα)

V
(9)

in which V is the volume of MoS2 nanoribbon. A thickness of 6.5 Å is used in120

computing V .66 More information on the charge dipole model for MoS2 can be121

found in our previous work56. Note that since MoS2 is not ferroelectric, the total122

contribution to polarization of the q0α and p0
α is zero (verified numerically), so that123

Eq. 9 could be rewritten by taking into account the induced charges and dipoles124

only.125

In order to compare with some DFT results or remove edge effects, periodic126

boundary conditions can be applied in the QP model by adding the contributions127

of periodic images in the interaction tensors, i.e. adding contributions obtained by128

replacing rαβ in Eq.3 with rαβ +L ∗ p (p ∈ [−k, k]) , with L denoting the periodic129

length in a given direction and k being a very large integer. We verified that130

setting k = 100 in our calculation is already sufficiently large to reach convergence131

in the computation of in-plane flexoelectric coefficients µ1111, µ2222 and out-of-plane132

flexoelectric coefficient µ3333, thus eliminating edge effects.133
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C. Calculation of flexoelectricity coefficients134

We illustrate the method we use to compute the flexoelectric coefficients on the135

special case of the determination of µ3311.136

1. potential energy functional used for the ’structure’ part137

The key of the molecular simulations is actually the interatomic potential, which138

is applied to describe the interaction among atoms. For single-layer MoS2, the139

Stillinger-Weber many-body potential (ESW ) as parameterized by Wen et al67 was140

very recently proven to be robust through a quantitative systematic comparison of141

structural and mechanical properties, as well as phonon dispersion for single-layer142

MoS2 using density functional theory (DFT) and molecular statics calculations.68
143

We therefore used this parameterizaton of the SW potential (ESW ) in our simula-144

tions, and found it very stable. Its analytical form and the values of the parameters145

are recalled in Supplementary material. The various MoS2 nanoribbons we use in146

our simulations are thus initially relaxed by minimizing ESW . This gives the un-147

deformed configuration mentioned in the previous subsection.148

To compute the deformed configurations, we removed the interactions between149

intrinsic charges and dipoles in Eelec, since they are already included in ESW .150

We also neglected the total contribution of the interactions between intrinsic and151

induced charges and dipoles to keep only the total contributions of the interactions152

between charges and dipoles induced by the external field and potential (which we153

name E ′
elec).154

2. Initial conditions for the calculation of µ3311155

In order to compute µ3311, a ↘↗-like external electric field Eext, with both156

directions of Eext in the x-z plane, is applied to the MoS2 nanoribbon, keeping the157
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FIG. 1. Schematic of bending simulation for MoS2 nanoribbon subjected to an external

electric field. The left and right parts of the MoS2 sheet are submitted to an electric field

in the bottom-right and top-right direction, respectively. The external electric field E is

represented by the arrows. θ is the angle with the +x direction.

middle row of atoms fixed (as if it were attached to a virtual fixed object). This158

field generates a bending deformation of the nanoribbon because of the inverse159

flexoelectric effect, as seen in Fig 1. The conjugate gradient algorithm is then160

used to minimize the energy function Etot = ESW + E ′
elec which now includes161

the interactions with the external field and potential and the contributions of the162

effective induced charges and dipoles. The energy optimization simulation then163

makes the MoS2 flake bend towards the direction of the applied electric field by164

adjusting the positions of the atoms until the computed average force is less than165

0.00004 eV/Å. Note that all these simulations are done with a FORTRAN code166

that has been continuously developed in the group for years.167

The mechanism of electrostatic bending of MoS2 flake is depicted in Figure168

1 of Supplementary material. We can see that negative and positive charges are169

shifted to opposite directions due to the non-zero transversal electric field (positive170

charges move to upper left and negative ones move to top right of the MoS2 flake).171

The interaction between the electric field generated by the induced charges and172

the external electric field produces two torques with opposite direction, termed τ1173
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and τ2, which may be expressed as qr × Eext, making the two sides of the MoS2174

flake respectively bend towards the direction of the external electric field with the175

fixed atoms as the rotation axis, while giving a zero total polarization along the176

vertical axis.177

3. Calculation of µ3311178

Contributions to the polarization of a given dielectric material submitted to an

external electric field may come from piezoelectricity, flexoelectricity and electric

susceptibility. In the simulations defined in the previous subsection, piezoelectric-

ity may not be taken into account due to the symmetric bending deformation52.

This makes the total induced polarization due to the first order deformation gra-

dient become zero. Additionally, one can find the total external electric field along

the out-of-plane is also zero. Hence, the out-of-plane polarization equal to the

product of the susceptibility and the electric field should be removed as well. The

remaining flexoelectric part of the out-of-plane polarization P3 can be written as:

P3 =
3∑

j=1

3∑
k=1

3∑
l=1

µ3jklGjkl (10)

with µ3jkl standing for flexoelectric tensor components. With the setup defined in

the previous section, this can be approximated by:

P3 = µ3311G311 (11)

Hence µ3311 can be determined as the slope of the supposedly linear relation be-179

tween P3 and G311. Details on the computing method for determining strain180

gradient can be found in Supplementary material.181
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FIG. 2. (a) Schematic diagram of creation of strain gradient G333 inside monolayer

MoS2. h and t stand for the small upward shift for a layer of molybdenum atom and

the geometric thickness of monolayer MoS2, respectively. (b) Basic unit for periodic

monolayer MoS2, with length and width of basic unit being 6.570 nm and 6.322 nm,

respectively. (c) Variation of polarization P3 with strain gradient G333 for monolayer

MoS2.

III. RESULTS AND DISCUSSION182

In this section, we discuss the results we got for the computation of the in-183

plane flexoelectric coefficients µ1111, µ2222, the transverse flexoelectric coefficient184

µ3311 and the out-of-plane coefficient µ3333. The parameters for ESW and QP185

model used in this work were initially validated through calculation of the in-186

plane piezoelectric constant e222 for an MoS2 monolayer. We found a value of the187

same order of magnitude as the corresponding experimental result (more details188
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are given in Supplementary material).189

A. Out-of-plane flexoelectric coefficient µ3333190

As can be seen on Fig.2a, for this calculation, the layer of molybdenum atoms191

is shifted a small distance h to the positive direction of z axis to generate a strain192

gradient only along the out-of-plane (z) direction. In this case, the unique strain193

gradient that does exist is G333 and the expression for computing µ3333 can be194

written as µ3333 = ∂P3

∂G333
. The geometric thickness of monolayer MoS2 is t. With195

both h and t, the strain gradient G333 can be computed as −8h
t2

, which may be196

derived by: G333 = d2uz(0)
dz2

≈ uz(− t
2
)+uz(

t
2
)−2uz(0)

(t/2)2
= 0+0−2h

(t/2)2
= −8h

t2
, with uz(

t
2
),197

uz(− t
2
) and uz(0) representing the displacement of atoms for top sulfur layer,198

bottom sulfur layer and molybdenum layer, respectively. In this calculation, we199

enforce periodic boundary conditions to eliminate edge effects that can be quite200

important in such a setup. As can be seen on Fig.2b, we use a MoS2 flake with a201

width of 6.164 nm and a length of 6.388 nm as supercell, which gives periods along202

x and y direction of 6.322 nm and 6.570 nm, respectively. Bond length between203

Mo and S is set as 2.39763 Å in the presence of periodic boundary conditions.204

On Fig.2c, we plot the polarization P3 as a function of G333, in order to obtain205

the flexoelectric coefficient µ3333 of 2D MoS2. Three different ways to compute206

the polarization are used (using qαrα only, using pα only or using both terms in207

Eq.9, with charges and dipoles computed using the QP scheme in the three cases).208

The units of polarization P3 and strain gradient G333 are converted from e/Å2
209

and Å−1 to 1010 nC/m2 and 1010 m−1 respectively, so as to readily obtain µ3333 in210

nC/m from the slope of the fitted straight line. We compare µ3333 computed under211

the various definitions of polarization with that obtained from the experimental212

measurements conducted by Brennan et al in 2017 and 202057,58, respectively, as213

shown in Table I.214
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TABLE I. Comparison between out-of-plane flexoelectric coefficients µ3333 obtained by

charge-dipole model and experimental measurements. The two different contributions

to the polarization coming from charges alone or dipoles alone are considered separately

then together for the computation of µ3333 by the charge-dipole model.

Ref. µ3333 (nC/m) Definition of polarization

present work -0.0416 P3 =

N∑
α=1

(qαr3,α+p3,α)

V

present work -0.0350 P3 =

N∑
α=1

qαr3,α

V

present work -0.0066 P3 =

N∑
α=1

p3,α

V

Brennan et al (2017)57 0.08 or 0.12 ———

Brennan et al (2020)58 0.065 ———

It can be seen that the result for µ3333 computed when the charge term is215

included in the definition of polarization will be comparatively closer to the exper-216

imental result in absolute value whereas µ3333 computed with the dipole term only217

considered is of the same order of magnitude but much smaller than the experi-218

mental value. This manifests that the charge term, omitted/neglected in Ref.52,219

cannot be neglected for the calculation of polarization for MoS2. We do not take220

into account the discrepancy in sign between our computed results and the results221

of the Piezoresponse Force Microscopy (PFM) measurements of Brennan et al.,222

since we believe that it is due to a problem of different definition for the algebraic223

(or not) radius of curvature. This is reflected in another experimental measure-224

ments of out-of-plane flexoelectric coefficient µ3333 for few-layers MoS2 with PFM,225

very recently conducted by Hirakata et al69. In their work, the sign of the out-226

of-plane flexoelectric coefficient is measured to be negative, though they quote a227

positive number. Indeed, using their Eq. 9, one can get µ3333 = µ39 = −c33ϵ3/
∂E3

∂x3
.228
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Since c33, ϵ3 and ∂E3

∂x3
(see their Figure 11) are all positive, their µ3333 is in fact229

negative.69
230

Other problems could arise because the MoS2 samples used in the PFM exper-231

iments might not be as perfect as that used in our calculation. Indeed, intrinsic232

atomic defects have been observed in the CVD-grown monolayer MoS2 using near-233

field photoluminescence imaging70. These defects could give rise to very localized234

strain gradients and therefore to noticeable additional polarization due to flexo-235

electricity, since monolayer MoS2 is sensitive to any tiny deformation along vertical236

direction (z) due to its atomically thin thickness. Furthermore, the possibly exist-237

ing interfacial contamination between substrate and MoS2 sample and the other238

uncertainties relevant to the measurements could be another cause of discrepancy239

between our theoretical results and the experimental ones. It would be useful if240

these (difficult) experiments could be repeated many times, so as to reduce the241

large uncertainties on the experimental results, but we feel that our present results242

for µ3333 of a MoS2 monolayer, agree well enough with experiment, to encourage243

us to compute other flexoelectric coefficients for MoS2 monolayer, for which we do244

not have experimental data to compare with.245

B. Transverse flexoelectric coefficient µ3311246

The bending simulation described in the ’Methods’ section is employed to com-247

pute the transverse flexoelectric coefficient µ3311 of MoS2. Since the visible dis-248

placements are mostly along z direction, the strain gradient enabling polarization249

to be nonzero is principally G311. Hence, µ3311 may be approximately expressed250

as µ3311 =
∂P3

∂G311
. Fig.3a presents the variations of the out-of-plane polarization P3251

for a MoS2 flake bent along (x) zigzag direction with respect to the strain gradient252

G311. One can notice that the intercept of the linear-fitting straight line is almost253

zero, meaning that the nonzero polarization is mainly caused by G311.254
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FIG. 3. (a)Variation of P3 with strain gradient G311. The magnitude of the elec-

tric fields imposed to the MoS2 monolayer for bending simulation are 0.0424 V/Å,

0.0566 V/Å, 0.0707 V/Å, respectively. (b)Transverse flexoelectric coefficient µ3311 vs

number of atoms. An exponential function is used to describe the tendency to conver-

gence. The lengths a and b of the sides the of MoS2 flakes are marked next to each

computed µ3311. The first and second number for the size of MoS2 flake corresponds

to a and b, respectively. The unit of a and b is Å. δ denotes characteristic length of

exponential function. The angle between the electric field and the positive direction of

the x-axis is set to 45 degrees.
17



Contrarily to what we did for the computation of µ3333, periodic boundary255

conditions cannot be exerted in the bending simulation because bending of material256

submitted to the external electric field will break the periodicity of the lattice itself.257

We therefore studied the effect of the size of the MoS2 flake, on the computed258

flexoelectric coefficient. Fig.3b is plotted to present the variation of transverse259

flexoelectric coefficient µ3311 with the increasing number of atoms. It can be seen260

that the value of µ3311 scales non-linearly down with the number of atoms. The261

larger the number of atoms, the more obvious the trend of curve convergence. To262

obtain a converged value, data is fitted with an exponential function. With the263

number of atoms increasing, the transverse flexoelectric coefficient µ3311 converges264

to −0.1075 nC/m, comparable to that for phosphorene47 and boron nitride sheet48.265

A comparison is made between µ3311 computed with QP model and that obtained266

by DFT-based first principle calculation by Shashikant et al51, as listed in Table II.267

It can be seen that our computed result for µ3311 agrees much better in absolute268

value with that obtained from DFT calculations than the one computed by Zhuang269

et al.52, signifying that the computation of transverse flexoelectric coefficient of270

MoS2 can be well captured by the QP model, if the proper definition for the271

polarization is used. Note that the radial polarization pr defined in reference51
272

and71 to compute µ3311 can be considered equivalent to the pz used in our work,273

since it is always locally perpendicular to the 2D material. We will now turn again274

to the question of the sign of the flexoelectric coefficients.275276

Understanding the reason causing the discrepancy in the sign of flexoelectric277

coefficients is essential because the direction of the electric polarization induced by278

flexoelectricity is of significance for sensors and energy harvesters. We will study279

successively the sign of the polarization and the strain gradient.280

Concerning polarization, we separate two distinct contributions: one due to281

the deformation of the lattice and the other one due to charge transfer between282

the inner and outer layers during bending. For that purpose we first compute283
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TABLE II. Comparison between transverse flexoelectric coefficient µ3311 obtained by

charge dipole model and theoretical computation.

Ref. µ3311 (nC/m)

present work -0.1075

Shashikant et al51 0.14

Zhuang et al52 0.032

FIG. 4. Origin of flexoelectric effect in bending deformation. (a) Under bending

deformation, the direction of induced dipole moment points to -z direction. For an

undeformed MoS2 flake, the total dipole moment along the direction normal to the surface

of MoS2 is zero. (b) Separation of the centers (in black) of positive (in red) and negative

charges (in blue) due to bending deformation.

the relaxed positions of a MoS2 flake deformed under the action of an electric284

field, using the QP model (Fig.4a). Then we compute the polarization for that285

bent MoS2 flake, for an hypothetical case where the charges of the sulfur atoms286

would be the same in the upper and lower layers. In that hypothetical case, the287

computation gives a polarization in the negative direction of z axis, whereas in the288

undeformed MoS2 flake, the total dipole moment along the out-of-plane direction289
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is always zero due to the fact that the molybdenum atomic layer is equidistantly290

sandwiched between two layers of sulfur atoms. Fig.4b illustrates this phenomenon291

with the case of the two rows of atoms nearest to the symmetry plane of the292

deformed flake: the molybdenum cations are repelled away from the inner part293

of the bend (which is its denser part). The consequence is that, while the charge294

center of the sulfur anions stays half way between the two layers, the charge center295

of the molybdenum is lower which results in a polarization pointing downwards296

(hence a negative contribution to µ3311 since G311 is positive in that case).297

However, the above effect is not enough to fully account for the polarization298

since we artificially used identical charges for the sulfur atoms. In reality, since299

the overlapping of the electronic clouds of two nearby ions change during bending,300

partial charges can be transferred from one sulfur layer to the other. In order to301

understand that second contribution to the polarization, two representative areas302

of the same deformed MoS2 flake, named A and B, are considered in Fig.5a. The303

average charge for the sulfur atoms in the upper and lower layers, calculated by304

averaging net charges obtained by the QP model along y direction perpendicular305

to the figure, are −0.776 e and −0.803 e, respectively. Therefore the atoms of the306

lower sulfur layer appear to be more negative than those of the upper layer. This307

creates a net dipole moment pointing from the outside to the inside of the curvature308

(in the positive direction of z axis in our case). At the B site, the curvature is309

much smaller than at the A site and consequently the difference in charges between310

sulfur atoms in the upper and lower layer is smaller. In Fig.5b, we plotted the311

average charge difference ∆q = qlower−qupper between sulfur atoms in the lower and312

upper layer, as a function of their index along the x coordinate (see numbers on the313

molecular picture inside the graph). It can be seen that the absolute value of ∆q314

decreases with the increasing index of sulfur, which agrees with what we expected315

before implementing the computation, since it corresponds to the flexoelectric316

effect: if the strain gradient is smaller, then the polarization is smaller (in absolute317
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FIG. 5. (a) Charge distribution of a bent MoS2 subjected to Ex = Ez = 0.4 V/Å. A

and B are two representative regions for explanation of charges transfer from the upper

layer to the lower layer, respectively. (b) ∆q vs index. ∆q is calculated as the charge

of sulfur atoms in the lower layer minus the corresponding quantity for the upper layer.

The upper and lower sulfur atoms are numbered by increasing value of z. Only the right

portion of the bent MoS2 is shown here.
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value). Hence, we have two contributions in opposite directions: a downward318

electric dipole moment due to bending of the lattice and an upward electric dipole319

moment due to charge transfer. In the case of MoS2, our computations show320

that polarization caused by bending deformation of lattice (which tends to give321

a negative flexoelectric coefficient) surpasses that resulting from charge transfer322

(which tends to give a positive flexoelectric coefficient). It is worth mentioning323

here that a negative µ3311 for MoS2 monolayer has very recently been obtained324

using first-principles linear-response theory71. Very interestingly, it can be found in325

their calculations that two contributions coming from the dipolar and the lattice-326

mediated response, respectively, to the total polarization response also play a327

competing role, the signs of the former and the latter tending to be opposite, as328

in our study.329

FIG. 6. Illustration of the different definitions for strain gradient G311.

We now turn to the sign of the strain gradient. In a review paper, Wang et al72
330

pointed the discrepancies between definitions and symbols of physical quantities331
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to be one of the reasons for the inconsistency of the reported signs of flexoelectric332

coefficients. It is often the case for the strain gradient G311. Indeed, on Fig.6333

we illustrate that the strain gradient, defined as G311 = u′′
z(x) which can be either334

positive or negative, is often approximated as the inverse of the radius of curvature.335

Since, for some authors, the radius of curvature is always positive, G311 is always336

positive for them, regardless of the bending direction of the material. Slightly337

differently, Kundalwal et al48 considered a boron nitride sheet shaped as an upward338

convex curved arch and defined G311 as the absolute value of the inverse of radius339

of curvature. We note, however, that we used a downward pointing bend (top part340

of Fig.6 and Fig.4) which gives a positive strain gradient for all these definitions.341

The previous considerations tentatively explain why flexoelectric coefficients342

can be either positive or negative, due to a competition between lattice and charge343

transfer effect, and not always positive as some authors define it by using absolute344

values inside their definition.345

C. In-plane flexoelectric coefficient µ1111 and µ2222346

Inspired by the work of Hong et al73, the in-plane flexoelectric coefficients µ1111347

and µ2222 are computed in the present work. Strain gradient G111 is created by dis-348

placing every atoms along x axis, according to a parabolic displacement function349

ux(x). Fig.7a is a schematic diagram showing the transverse displacement of atoms350

for a MoS2 flake with a bigger (so that it be visible thanks to the two vertical lines)351

strain gradient imposed along x axis. Fig.7b shows the variation of displacement352

of atoms along x direction in the case ∆d = ux(x) = 0.01− 10−5x2, strain ϵxx and353

strain gradient ϵxx,x (G111) as functions of the position along x axis for MoS2. We354

can see that the total strain is zero due to the symmetric distribution of displace-355

ment with respect to x = 0. Hence, the polarization due to piezoelectricity can be356

fully removed from the total polarization, leaving only flexoelectricity. Further-357
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more, µ1111 can be expressed as µ1111 = ∂P1

∂G111
and for a similar simulations with358

parabolic displacement along y, µ2222 = ∂P2

∂G222
. The magnitude of strain gradient359

for our calculations of µ1111 and µ2222 ranges from 0 to 0.00004 Å−1, which is small360

enough to neglect any non-linear effect.361

FIG. 7. (a) Applied displacement field along x axis for each atom with ∆d denoting the

difference between the x coordinate of atoms in deformed MoS2 and that in undeformed

MoS2. The two vertical lines are guides to the eye to see the displacements along x

between the top and bottom sub-figures. (b) Displacement field ∆d = ux(x), strain (ϵxx)

and strain gradient (ϵxx,x = G111) vs the position along x axis for MoS2.362

363

The dependence of in-plane flexoelectric coefficients µ1111 and µ2222 on the width364

of nanoribbon with infinite lengths is shown in Figure 4 in Supplementary material.365

Clearly, the in-plane flexoelectric coefficients increase as the width of nanoribbons366

increases (polynomial fits are guides to the eye). The non-convergence behavior367

of those flexoelectric coefficients with the increase of the width of the nanoribbons368

has been elaborately discussed74. Hao et al. reveals through DFT calculations that369
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the flexoelectric coefficients of the 2D Janus TMDs nanoribbons depend strongly370

upon their widths. The (slightly) different results for the two orientations are371

probably due to edge effects different for armchair and zigzag edges. To completely372

eliminate edge effect we use periodic boundary conditions in both directions for the373

displacements. In their article,73 Hong et al. computed the in-plane flexoelectric374

coefficients of SrTiO3 using a strain gradient with a cosine form, to be compatible375

with the periodic boundary conditions. In our work, strain gradient is a constant376

function (see Fig.7b), which is an even simpler case. Fig.8 shows the variations377

of polarization P1 and P2 with strain gradient G111 and G222 for those doubly-378

periodic setups. The computed flexoelectric coefficients µ1111 and µ2222 are 0.6872379

nC/m and 0.7119 nC/m, respectively. Hence, the in-plane flexoelectric properties380

of doubly-infinite MoS2 are nearly isotropic, i.e. independent of the zigzag or381

armchair direction.382

FIG. 8. Variations of polarization P1 and P2 with strain gradient G111 and G222, respec-

tively. The rectangular frame surrounding the edge of molybdenum disulfide represents

the enforcement of periodic boundary conditions in both directions.
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IV. CONCLUSIONS383

Employing three different simulation setups, we calculated in-plane flexoelectric384

coefficients µ1111, µ2222, transverse flexoelectric coefficient µ3311 and out of plane385

flexoelectric coefficient µ3333 for monolayer MoS2 using the charge dipole model and386

charge conservation. The out-of-plane flexoelectric coefficient µ3333 and transverse387

flexoelectric coefficient µ3311 computed by the charge-dipole model are compared388

with those obtained by experimental measurements and DFT-based first principle389

calculations, by which good agreement in absolute value can be seen when the390

charge term is included in the computation of the polarization. We discuss in391

details possible origins of discrepancy in sign between our calculated flexoelectric392

coefficient µ3311 and other reported results, by showing two opposite effects for the393

sign of the polarization. Furthermore, we emphasize that comparison of flexoelec-394

tric coefficients between different computational works requires a careful check for395

the sign of strain gradient and the way of defining the polarization. Concerning396

the computed in-plane flexoelectric coefficient µ1111 and µ2222 are found to be quasi397

identical, which is consistent with the analysis of symmetry for the flexoelectric398

coefficient tensor of a 2D continuum.399

Finally, it is worth pointing out that the computed in-plane flexoelectric coef-400

ficient is about twenty times greater than out-of-plane flexoelectric coefficient for401

MoS2, which can be ascribed to the fact that the net charges induced by in-plane402

strain gradient between every primitive cells lead to the generation of larger electric403

dipole moments, whereas the movement of the charge in the out-of-plane direction404

is restricted due to the finite thickness. Hence, a relatively small polarization is405

then induced in the out-of-plane direction. For 2D materials, bending seems to406

be the easiest way to externally generate a big strain gradient at nanoscale, on a407

large area. Therefore, even if in-plane flexoelectric coefficients may play a role in408

some systems, the differences between in-plane, out-of-plane and transverse coef-409

ficients in MoS2 flakes is not big enough to compensate for the bigger and more410
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homogeneous strain gradient that can be realized by bending. It is thus important411

to find 2D materials that optimize the transverse flexoelectric coefficients µ3311 for412

applications in energy harvesting.413
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