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Abstract

During the two last decades, sustainability of IT in-
frastructures like datacenters became a major con-
cern for computer giants like Google or Amazon.
Datacenters powered with renewable energy have
been proposed. But because of the intermittency
of these power alternatives, these platforms remains
connected to the classical power grid. IT structure
and electrical constraints were often questioned sep-
arately, leading to a non-efficient global system. In
this paper, an energy self-sufficient green datacen-
ter is modeled and designed, by proposing an elec-
trically autonomous infrastructure including wind
turbines, solar panels and its own short and long-
term storage devices mainly based on batteries and
hydrogen system. Existing sizing approaches limit
themselves to a perfect QoS leading to an over-
estimation of the needed equipment. In this pa-
per we show how to reduce and combat this over-
provioning by questioning its impact on the QoS
and needed equipment: decreasing the number of
computing or storage elements (servers and batter-
ies). As an example, decreasing the targeted QoS
from 100 to 95% more than halves the needed num-
ber of servers, while a decrease of 30% of the battery
capacity has a negligible impact on the electrical in-
frastructure.

Green Datacenter, Sizing reduction, Scheduling,
Renewable energy, Quality of Service.

1 Introduction

Approximately two-thirds of the world’s population
will have access to the internet by 2023 |1] |2]. This
represents almost 5.3 billion people using all ser-
vices available on the internet. Datacenters form
a large group of computing resources linked by a

fast network designed to run the most diverse types
of applications that demand a huge amount of re-
sources [3] [4]. One of the main concerns of data-
centers is their major impact on global electricity
consumption. The entire IT sector wasted 4.7 %
of the worldwide electricity consumption in 2012,
while datacenters alone consumed 1.4 % [5] [4]. Re-
newable energy utilizes self-renewing resources such
as wind and sunlight, which provide clean energy.
These two renewable sources are suitable options
due to their competitive installation cost and their
abundance [6]. Using only renewable energy like
in the DataZero Project |7] imply the use of stor-
age systems to manage the intermittent nature of
renewable energy production.

Renewable energy seems the energy future,
mainly to large datacenters, but it also introduces
some uncertainty that demands new strategies.
Datacenters are modeled to deal with workload
peaks leading to over-provisioning, generating un-
der utilization most of the time [8]. Hence, there are
two main problems in the datacenter size definition.
The first problem is to define the appropriate sizing
to a datacenter that minimizes under/over utiliza-
tion. This definition needs to meet the workload
demand by providing accurate resources. On the
other hand, the electrical side needs to determine
the components to meet the datacenter power re-
quirement. Our approach is in two steps. First, we
propose an IT model to define the right amount of
servers according to workload demand and a given
utilization rate. This model outputs the number
of servers applying a scheduling algorithm which
provides a more accurate way to predict the data-
center size according to certain metrics. Then, we
define the electrical components needed to supply
the power envelope required by the datacenter us-
ing only renewable energy. The novelty of our ap-



proach is the link between the electrical side using
only green energy with the computing side sizing.

Therefore, our contribution to mitigate overpro-
visioning during sizing is twofold:

e We explore the balance between QoS and num-
ber of servers (and their utilization);

e We explore the number of days the storage el-
ements are used at full capacity, hinting on the
impact of their possible reduction.

This paper is organized as follows: Section
starts with an overview of the state of the art. Then
Section [3] defines the problem we address, including
the models and the metrics. Section [B.1] describes
the algorithms to size both the IT and electrical
components for a QoS of 100 % while Section [d] pro-
poses strategies to mitigate oversizing of the data-
center. Section [o|describes and discusses the exper-
imental results. Section [f] concludes the paper.

2 Related work

Until now, the holistic sizing problem in the con-
text of renewable-powered datacenter was not re-
ally addressed before. Most research on such sizing
actually focus on a part of the whole infrastructure.
In [9], authors focus only on the sizing of the elec-
trical system. Even more precisely, in [10], authors
focus on the storage sizing, and propose to use the
storage not only for the datacenter itself, but as a
tool for the overall grid stability also. The choice
of renewable energy was mainly based on the avail-
ability of wind and solar energy across the world,
and in |11], the combination of both sources seems
to lead to better results. But solar and wind en-
ergy are known to be intermittent, and compensat-
ing this problem with adequate storage system is a
prerequisite.

Only few works address the case of full datacenter
sizing, from computing elements to electrical one.
In [12], authors choose to provide a perfect data-
center, i.e., able to answer to all job requests. It
leads to an oversizing of both computing and elec-
trical infrastructure due to high variability for both
renewable energy production and job workload.

3 Problem statement

The sizing problem consists in designing both the
IT and electrical parts of the datacenter by choos-
ing which component and how many one need to
give the most appropriate infrastructure to address
metrics that have to be optimized. Multiple con-
figurations exist and the sizing process has to give

these solutions which associated metrics to help the
decision maker to make his choice depending on the
future datacenter usage. The IT components are
servers, while the electrical ones are photovoltaic
panels (PV), wind turbines (WT), batteries (Bat),
electrolyzers (EZ) and fuel cells (FC). The last two
respectively consume or produce Hy in exchange
for electricity. We consider an extreme case where
the datacenter does not have access to the classical
power grid.

We assume that we are able to known what kind
of workload W has to be executed within the dat-
acenter with a given quality of service (QoS) and
a given scheduling algorithm. We also assume that
weather data is available for the planning period
for the location where the datacenter is to be built.
The problem is to find the appropriate number of
servers to run tasks of YW and what electrical plat-
form is needed to supply the IT part of the data-
center.

We propose here to question this sizing process
that has been described with a perfectly guaranteed
Quality of Service in [12]. The proposed approach
consists in measuring the influence of reducing some
component size such as the number of servers or the
capacity of batteries on the datacenter performance
on specific metrics. In the following, we show the
impact of reducing these elements on the overall
QoS provided by the datacenter. This aims at com-
bating datacenter over provisioning and at provid-
ing to datacenter operators’ tools to select the most
relevant sizing for their own use case.

3.1 Models

An usual sizing process is divided into two steps:
first sizing the IT part and then the electrical part
of the datacenter. The first step consists in com-
puting the number of adapted servers given a work-
load W to be executed on a time horizon 4. Then,
executing W on these servers implies a power de-
mand that has to be supplied on site by the elec-
trical part of the datacenter. The number of wind
turbines, the area of photo-voltaic panels (produc-
ing renewable energy from wind and sunlight) and
the capacity of the storage devices (for mitigating
the intermittency of these renewable energies) are
linked to the IT-provided power demand. Several
configurations are possibles considering the balance
between the number of wind turbines and the sur-
face of solar panels.

The decision horizon H is defined as a set of deci-
sion steps. Indeed, H is discretized into K indivisi-
ble time slots At such that H = KAt and where it
is possible to take decisions. For simplicity reasons,
we assume that At is one unit of time (At = 1u.t.).



In the rest of the paper, one unit of time will be one
hour.

Notations and models are now given to de-
scribe the addressed problem and solutions pro-
vided. These models are based on a previous study
initially described by the authors in 2021 in [12].
However this study does not evaluate the over siz-
ing of the datacenter infrastructure as we propose
in what follows.
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Figure 1: Electrical sizing: the configuration of the
renewable devices (g, Apv,) is the number of WT
and the corresponding surface of PV required to
meet the datacenter demand with its m computing
servers. Storage devices are designed to store or de-
liver energy to mitigate the renewable energy inter-
mittency. Note that (0, maxApv) and (maxWT,0)
are valid configurations.

3.1.1 IT infrastructure

The amount of work that has to be processed by
the datacenter is a workload. This workload W
consists of a set of jobs that are either services S; €
S={5,...,S}ortasks T, € T = {T1,..., T, }.
Each job has respectively a release date rs; or rt;
and an number of instructions ws; , and wt; that
has to be proceed, depending whether it is a ser-
vice or a task. We assume that unlike tasks, ser-
vices are unable to be delayed (interactive applica-
tions or video streaming for instance). Moreover,
each service has to complete its workload in due
time (i.e., ws; x must be processed during the k'"
time-window). The task execution model is quite
different. Each task T; is submitted at time rt; —
released date at the beginning of the time slot &
(k=1,...,K),rt; = (k—1)— and its earlier comple-
tion time is rt; + 1 whatever the requested amount
of work w; 5! to process. When scheduled, T; is as-
signed onto processors in different time slots such
that its actual completion time is less than rt; + 0
where § is the flexibility of 7. As a consequence,
the amount of work wtffkh of T; at time slot k is not

the same after the scheduling process of the work-
load. The amount of work to process within a time
slot is expressed in million of instructions [MI].

Load
5 x nbl +
Ts
4 x nbl +
Ty
3 x nbl = = T
2 x nbl T2 SS T
1 x nbl +— 3
Sy Sa Te Sy | T ‘
1 2 3 4 5 timeslots k

(a) Gantt chart of W (SUT) at their submit-
ted release date. Time slot k = 2 (the busiest
one) defines maxM = 5. Time slots k = 3
and 5 define minM = 0.
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(b) Gantt chart of W being scheduled on m =
4 > mOPT servers.

Figure 2: Motivated example of a workload W to
be scheduled thanks to EDF algorithm considering
the same flexibility § = 2 time slot for each task
(each task T; can be completed at most 2 time-slots
latter than ¢ “? (c[“? = rt; + 1 < ;P < [ +9).
The red horizontal line represents the overall load
in [MI] the datacenter is able to run.

The jobs are scheduled with the EDF algorithm
(Earliest Deadline First). When the available re-
sources are not available a task might not be ex-
ecuted before its deadline. In this case, we reject
this task. The QoS is given by the ratio between
the number of executed tasks and the total number
of tasks.

On the IT infrastructure side, the operating room
of the datacenter consists of a set of m homogeneous
servers M; € M = {M,,..., My,}. Each server M;
consumes at most p; = p Watts for the computation
of at most nbl; = nbl MI (Millions of instructions).

Considering the number m of servers of the
IT hardware architecture of the datacenter, it is
possible to evaluate the power demand D™ =
{Ds,..., Dk} of the datacenter time slot & by time
slot k as explained in [12]. PUE (Power Usage Ef-
fectiveness) is a coefficient greater than one that
allow to integrate the datacenter facilities, as the
cooling system, into the power demand.

The power demand is needed to provide the elec-
trical sizing of the datacenter. But to obtain the
power envelope requested by the IT part, the work-



load scheduling has to be processed first and the
value for m has to be set. The IT sizing process
consists in finding the minimal number of servers
m = mOPT for a given QoS. The minimum num-
ber of servers mOPT is found using a binary search
algorithm between minM and max M, where each
step corresponds to a schedule attempt.

At the end of the IT sizing process, mOPT and
the power profile D are given.

3.1.2 Electrical infrastructure

The electrical infrastructure consists of primary
sources, such as wind turbines and photovoltaic
panels, and secondary sources such as batteries and
hydrogen system to mitigate the effect of intermit-
tency of the primary sources. This intermittency
has several origins as day and night alternation
(short-term) and seasonal variations (long-term).
Given the storage capacity and the efficiency in-
volved by these storage devices, we assume to ded-
icate batteries and hydrogen systems for managing
respectively short-term and long term-storage.

The electrical sizing process aims to determine
the number of each component of the electrical in-
frastructure, to satisfy the IT power demand D.
Basically, considering a workload W, and character-
istics of individual elements (one server, one wind
turbine, one PV, one battery, one fuel cell), the siz-
ing:

1. Selects a number m of servers and produce the
associated power demand D™ needed to run
A%

2. Determines the maximum number of wind tur-
bines maxWT to meet alone the power de-
mand D" over H. Then the number of config-
urations to explore is maxWT + 1, each with
g WT with 0 < g < mazWT,;

3. Determines the surface of photovoltaic panels
Apv, to meet D™ thanks to the aggregated
combined renewable power production using
also ¢ WT;

4. Simulates over ‘H the behavior of the whole sys-
tem (IT and electrical parts) and determines
the needed short-term and long-term storage
capacities (resp. BC and LOH) and power of
each storage device.

Considering any number of servers m chosen to
run W, a power demand D™ is requested to the
electrical part of the datacenter. Weather data over
one year (H = 1 year) allows us to determine which
electrical infrastructure should be required in term

of WT and surface of PV to meet D™ and to main-
tain the same level of Ho at the end as at the be-
ginning of the time horizon (LOHy = LOHk). As
mentioned before, maxWT + 1 configurations are
valid. The principle is to set ¢ (0 < ¢ < maaWT)
and to find the corresponding surface Apv, of PV
using a binary search approach to satisfy the con-
straint LOHy = LOHg. This level is determined
using the rules of the game of the storage manage-
ment, time slot by time slot, as initially described
in [12].

4 How to combat the oversiz-
ing?

The sizing process, as explained above, provides a
set of configurations (m, ¢, Apv, BC, LOH) for both
the IT and the electrical parts of the datacenter. In
the initial sizing, the configuration obtained fully
met the demand, without consideration of possible
variations in it. As mentioned before, the electri-
cal sizing is designed to supply the power demand
of the IT part of the datacenter to reach a QoS of
100%. Thus the sizing of both IT and electrical
parts is designed by a worth case approach. In-
deed, the number of servers is defined by the time
slot that needs to schedule the maximum amount of
work. In the same way, the capacity of the batter-
ies is defined by the day where we need the largest
amplitude to allow the batteries to compensate for
the alternation of day and night in terms of renew-
able power production, allowing the datacenter to
be used even if the renewable energy is missing. In
the both cases, if the sizing is defined by an epiphe-
nomena, the sizing of the datacenter can be arbi-
trary large. In this section, we propose an approach
to combat the oversizing by questioning both the
initial number of servers and the battery capacity.
Moreover we show how to compensate the battery
capacity limitation without changing the datacen-
ter power supply. Section[5]is then dedicated to the
analysis of this approach.

4.1 Mitigate the IT oversizing

The number of servers needed to satisfy a given
workload with a QoS of 100% is the minimum num-
ber of servers to complete each job before its dead-
line. To question this number of servers, the QoS
becomes a parameter. Thus, if the QoS is 100%,
the proposed configuration does not tolerate any
deadline violation. Conversely, a lower QoS admits
a certain number of job cancellations and then al-
lows a lower number of servers for the datacenter.



In this way we adopt the same binary search ap-
proach as described before to obtain the optimal
number of servers for different QoS targets. Sec-
tion [Bl shows which number of servers is needed for
QoS levels of 100%, 99%, 95% and 90% respectively.

4.2 Mitigate the battery capacity

To question the battery capacity, we choose BC
into a set of values that are less than the one opti-
mally computed by the sizing process in other to re-
spect the rules of the game and the datacenter QoS.
Then we supply the datacenter within the energy
demand using a greedy strategy of using the bat-
tery as much as possible and the hydrogen system
to store renewable energy only when the battery is
full or to generate electricity only when the battery
is empty. This strategy aims to minimize energy
waste since the efficiency of the battery is higher
than that of the hydrogen system. Since BC'is less
than its initial value, this strategy put more pres-
sure on the hydrogen system. After this one year
simulation process, it is easy to appreciate the lack
of hydrogen at the end of the year because we have
to consume more hydrogen as initially expected by
the initial sizing. Indeed, we loose energy because
the hydrogen system is less efficient than the bat-
teries.

The question then becomes how to compensate
for this lack of energy in order to supply the data-
center as required by the IT demand and to main-
tain a QoS of 100%. A valid option is to pro-
duce this missing energy from renewable energies by
oversizing one of the electrical components, such as
additional solar panels. To validate this process of
improving the electrical infrastructure, we have to
measure whether limiting the battery capacity and
adding solar panels, even if it means slightly break-
ing the rules of the game as mentioned before, is an
advantage for different metrics or not.

The surface of solar panels to be added can be op-
timally computed using a binary search algorithm.
This algorithm consists in increasing the surface of
the solar panels if the level of hydrogen LOH at
the end of the time horizon H is less than its level
LOH, at the beginning, or decreasing the surface
otherwise. During the period, as BC is fixed for
the battery capacity, a greedy algorithm is imple-
mented to know which storage device to use hour by
hour. Since the efficiency of the battery is higher
than the one of the hydrogen system, we use the
battery whenever we can. This simulation step of
our approach is performed for different values of
the battery capacity BC' in order to evaluate the
benefit of this under-sizing process.

5 Experiments

5.1 Inputs

For the IT experiments, 50 workloads of 8760
hours were generated, following distributions law
of Google trace workloads [13|. The average num-
ber of job arrival per hour is 50, when each job size
is between 10'° and 10 MI.

The considered IT resources are 16 cores servers,
where each server can compute 5.29 x 103 MI and
consume 350W (only one medium frequency is con-
sidered here). The considered value for PUE is 1.3
(Power Usage Effectiveness).

Electrical sizing requires the characteristics of so-
lar panels, wind turbines and storage infrastruc-
ture. These include the charging and discharging
efficiencies of batteries and hydrogen system. These
characteristics are listed in Table [l

P. 400kW V, 14m/s | Voo 4dm/s
Veo  25m/s | nye 0.6 Nex 0.6
Neh 0.8 Ndch 0.8 Npv 0.15

Table 1: Devices behaviors for the electrical sizing
process

5.2 Simulation results when combat-
ing the oversizing

5.2.1 IT oversizing

To illustrate the combating IT oversizing process,
we consider the previous presented workloads as an
input considering a given QoS target. On the par-
ticular configuration described as an example, the
minimum number of servers required to run the en-
tire workload is mOPT = 194 as shown in Table 2

minM 135 servers
maxM 342 servers
mOPT 194 servers

Number of jobs
max power demand maxi<x<x (Dk)

254420 jobs
67.9 kW

Table 2: Variables during a IT sizing process when
QoS is 100% on one of the tested workload.

Based on this result, a linear search is done be-
tween minM and mOPT to identify which tasks
are decisive in the computation of W. Starting
from mOPT and decreasing the number of servers
to minM, the problematic tasks are listed. A task
becomes problematic when its deadline is violated
or when it remains no space in any timeslot to be
scheduled. Several strategies are studied when such



a task is found, but only one is selected: The Re-
ject Strategy. This strategy consists in rejecting a
task when its schedule is no longer possible with-
out violating its deadline. It is then discarded and
the scheduling process restarts without the rejected
task.
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Figure 3: Number of rejected tasks, for a load per
server at 1000 MI. The linear search starts with
mOPT = 194 on the bottom right and finishes with
minM = 135 on the left.

The Reject Strategy impacts on the number of re-
jected tasks is shown in Figure [3] The experiment
starts on the bottom right with mOPT servers,
where no rejection is expected. The number of
servers decreases until minM, showing in the same
way that the number of rejected tasks increases
drastically.

This first step allows us to build a first intuition
of the behavior of sizing at reduced QoS. In the
next step, other sizing are proposed, respectively
with a QoS of 99%, 95% and 90%. In order to
propose such configurations, the same linear search
is performed, but with another lower bound: For
a given workload, its rejection limit is calculated
from the total number of tasks in the workload, as
well as the targeted QoS. Thereafter, the number of
servers decreases from the mazW at QoS of 100%.
The linear search stops when the limit of rejections
is reached.

Number of servers distribution, for QoS level.
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Figure 4: Distribution of the servers over 50 work-
loads with an average load per server of 5.29 x 103

MIL

The sizing with reduced QoS is performed with
50 workloads, in order to see the distribution of

the number of servers. For these experiments, 50
workloads were generated, following distributions
law of Google trace workloads [13]. Figure || shows
the number of servers distribution needed to satisfy
the workloads, with four different QoS level. For a
QoS of 100%, we observe a variation that can be
up to double for some workloads. This dispersion
is drastically reduced as soon as the QoS reaches
99%. It is explained by the fact that the rejections
"smooth" the workload, by discarding the epiphe-
nomena. The reduction is also remarkable because
the 1% reduction is enough to almost halve the
number of servers.

5.2.2 Electrical oversizing

This simulation allows to observe the behavior of
the electrical sizing when the battery capacity is
limited. This analysis consists in setting BC' to a
set values, its maximum value being the capacity
given by the initial sizing, and then in running a
simulation to find a new electrical sizing as describe
before and then giving metrics to help the decision
maker to choose the appropriate configuration.

To do so, different power profiles required by a
initial IT sizing for different studied workloads are
considered. An initial electrical sizing configuration
that respects the rules of the game is performed of
each of them. An alternative battery capacity is
then computed in the second step to combat its
oversizing if so. Wind speed and irradiation from
the city of Lille, France, over the year 2019 are
taken from NASA data.

The parameters used for this analysis are given
in Table 3] and the profile of the configuration ref-
erence is shown in Figure 5]

Lille (France) / 2019
Configurations #1 (0, 22921, 6045, 939019509),
Configurations #2 (1, 9687, 3948, 268069986)
Configurations #3 (2, 1596, 2599, 269806939)
Configurations #4 (3, 0, 3230, 826084706)

Location/year

Table 3: Parameters for electrical sizing anal-
ysis.  An electrical Configuration is defined by
(¢, Apv, BC, LOH), where ¢ is the number of wind
turbine [u], Apv is the solar panel area [m?|, BC
the battery capacity [Wh| and LOH the hydrogen
capacity [kg].

Table [ shows the evolution of the difference in
solar panel surface and hydrogen storage capacity,
for the configuration #3 in Table [3] For a reduc-
tion of -16% of the battery capacity, the solar panel
surface does not increase, and the needed hydrogen
resources stay almost unchanged too, according to
the reference configuration shown in Table |3] The



Over-production of the renewable devices along one year

Production (kwWh)

Days

Battery capacity requirements day by day, sorted in ascending order

2N
o o
S o
s o

Batteries [kW]

o

o

50 100 150 200 250 300 350
Days

Figure 5: Over-production with a configuration of
2 wind turbines and 1596 m? of solar panels in Lille
(France) in 2019 and the corresponding battery ca-
pacity requirements day by day, sorted in ascending
order.

Batteries capacity reduc- | -16% | -20% | -30%
tion

PV increasing [%] 0.0% | 0.21% | 1.11%
LOH increasing [%] 0.13% | 0.29% | 0.77%

Table 4: PV and H evolution, depending on the
battery capacity reduction. The reduction is com-

puted on the basis of the reference configuration, in
Table

lack of battery is indeed compensated by an addi-
tion of photovoltaic panels, however, it is interest-
ing to note that this increase is not significant con-
sidering the drastic limitation of the battery. This
result is interesting, given the price of solar pan-
els compared to the price of batteries. Indeed, the
NREL laboratory had predicted a net increase in
the batteries cost, in particular due to its increas-
ing use for electric vehicles or for the manufacture of
digital equipment [14]. On the other hand, the price
of solar panels seems to be decreasing, thanks to
technological advances and the global will to limit
carbon emissions [15], [16]. In the case of hydro-
gen, the production and storage facility remains a
significant investment, but one that can be largely
amortized if the excess is resold [17], [18].

Overall the reduction of the battery capacity
leads to a small increase on the other elements of
the electrical infrastructure. In our example, a de-
crease of 30% of the battery capacity leads to an
increase of 1.11% of the PV area, and of .77% of
the produced hydrogen.

6 Conclusion
Obtaining the sizing of the infrastructure is divided

into two parts: the IT sizing gives the number of
servers needed to satisfy a given workload; the elec-

trical sizing deducts from the IT power demand
the number of wind turbines, solar panels, short
and long term power/capacity of the storage sys-
tem (resp. batteries and hydrogen system). In a
context of reducing the carbon footprint of the to-
tal infrastructure, several analysis have been per-
formed to observe the consequences of decreasing
the number of servers and battery capacity. An
important and interesting reduction has been noted
on the IT and electrical sizing. For all workloads
studied, a reduction in the number of servers by up
to half had little impact on QoS. A resilient reduc-
tion would then be possible: Indeed, for a QoS of
95% for example, all the workloads seem to be able
to cope with less than half the servers needed for a
QoS of 100%. However, it is important to note that
the workloads studied follow the same jobs distri-
bution, and that the total load remains modest. An
analysis of more workloads, with different profiles,
may lead to different results.

Similarly, for electrical sizing, a clear decrease in
battery capacity had little impact on the rest of the
configurations, both for solar panels and hydrogen
storage. In the case of an unexpected event leading
to a higher electrical demand, an overconsumption
of Hy can be envisaged, and compensated after-
wards on favorable weather conditions, as Ho is a
long-term storage that smooths out epiphenomena.
Buying green Hs remains an open option, where
this purchase can be offset by future sales of Ho,
again under favorable weather conditions. Overall
a reduction of 30% of the battery capacity finally
leads to a negligible impact on the overall electrical
infrastructure.

However, it is important to estimate the total
cost of the infrastructure, both in terms of budget
and ecological impact, to measure a real positive
impact. For this, a life cycle (LCA) and a budget
analysis of the infrastructure are needed. Further
experiments need to be conducted, always with the
aim of reducing the cost of the infrastructure, in
terms of economic and environmental impacts.
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